Eisenstein series for Jacobi forms of lattice index

Andreea Mocanu

The University of Nottingham

Building Bridges 4
Alfréd Rényi Institute of Mathematics
17th of July, 2018

- Introduction to Jacobi forms
- Jacobi-Eisenstein series
- Fourier coefficients of Eisenstein series
- the arithmetic theory of scalar Jacobi forms was developed in 1985 by Eichler \& Zagier
- Eisenstein series
- Taylor expansions
- Hecke operators
- relation with half-integral weight elliptic modular forms and with vector-valued modular forms (theta expansion)
- relation with Siegel modular forms
- Jacobi forms and Algebraic Geometry (from the work of V. Gritsenko)
- orthogonal modular forms can be obtained as lifts of Jacobi forms; the former determine Lorentzian Kac-Moody Lie (super) algebras of Borcherds type
- Jacobi forms are solutions to the mirror symmetry problem for $K 3$ surfaces
- the elliptic genus of a Calabi-Yau manifold is a weak Jacobi form
- and much more...
- $e_{c}(x)=\exp \left(\frac{2 \pi i x}{c}\right)$ and $e(x)=e_{1}(x)$
- the weight of a Jacobi form will be k in \mathbb{N} and the index $\underline{L}=(L, \beta)$:
- $L \simeq \mathbb{Z}^{\mathrm{rk}(\underline{L})}$ is a free, finite rank \mathbb{Z}-module
- $\beta: L \times L \rightarrow \mathbb{Z}$ is a symmetric, positive-definite, even \mathbb{Z}-bilinear form
- set $\beta(\lambda):=\frac{1}{2} \beta(\lambda, \lambda)$
- the dual lattice of $\underline{L}: L^{\#}:=\left\{t \in L \otimes_{\mathbb{Z}} \mathbb{Q}: \beta(\lambda, t) \in \mathbb{Z}\right.$ for all λ in $\left.L\right\}$
- the determinant of \underline{L} is $\operatorname{det}(\underline{L}):=\left|L^{\#} / L\right|$
- the integral Jacobi group associated to \underline{L} is $J^{\underline{L}}:=\Gamma \ltimes L^{2}$
- $J^{\underline{L}}$ acts on $\operatorname{Hol}(\mathfrak{H} \times(L \otimes \mathbb{C}) \rightarrow \mathbb{C})$; given $g=(A,(\lambda, \mu))$ in $J^{\underline{L}}$, set

$$
\begin{aligned}
\left.\phi\right|_{k, \underline{L}} g(\tau, z) & :=\phi\left(A \tau, \frac{z+\lambda \tau+\mu}{c \tau+d}\right)(c \tau+d)^{-k} \\
& \times e\left(\frac{-c \beta(z+\lambda \tau+\mu)}{c \tau+d}+\tau \beta(\lambda)+\beta(\lambda, z)\right)
\end{aligned}
$$

Definition

A function ϕ in $\operatorname{Hol}(\mathfrak{H} \times(L \otimes \mathbb{C}) \rightarrow \mathbb{C})$ is called a Jacobi form of weight k and index \underline{L} if:
(1) $\left.\phi\right|_{k, \underline{L}}(A, h)=\phi$, for all (A, h) in J^{L};
(2) ϕ has a Fourier expansion of the form

$$
\phi(\tau, z)=\sum_{\substack{D \in \mathbb{Q} \leq 0, t \in L^{\#} \\ \beta(t)-D \in \mathbb{Z}}} C(D, t) e((\beta(t)-D) \tau+\beta(t, z)) .
$$

- for fixed k and \underline{L}, denote the \mathbb{C}-vector space of all such functions by $J_{k, \underline{L}}$
- Jacobi cusp forms: $D<0$; denote the subspace of cusp forms of weight k and index \underline{L} by $S_{k, \underline{L}}$

Why the interest?

- they are an example of Jacobi forms

$$
\vartheta_{\underline{L}, y}(\tau, z)=\sum_{\substack{t \in L^{\#} \\ t \equiv y \bmod L}} e(\beta(t) \tau+\beta(t, z))
$$

- they should be perpendicular to Jacobi cusp forms with respect to a suitably defined Petersson scalar product and hence we obtain the following decomposition:

$$
J_{k, \underline{L}}=S_{k, \underline{L}} \oplus J_{k, \underline{L}}^{E i s}
$$

- we are interested in a theory of newforms with respect to Hecke operators (defined by Ajouz in 2015)
- the isotropy set of \underline{L} is $\operatorname{Iso}\left(D_{\underline{L}}\right):=\left\{r \in L^{\#} / L: \beta(r) \in \mathbb{Z}\right\}$
- define $J \frac{L}{\infty}:=\left\{\left(\left(\begin{array}{cc}1 & n \\ 0 & 1\end{array}\right),(0, \mu)\right): n \in \mathbb{Z}, \mu \in L\right\}$

Definition

For every r in $\operatorname{Iso}\left(D_{\underline{L}}\right)$, let $g_{\underline{L}, r}(\tau, z):=e(\beta(r) \tau+\beta(r, z))$ and define the Eisenstein series of weight k and index \underline{L} associated to r as

$$
E_{k, \underline{L}, r}(\tau, z):=\left.\frac{1}{2} \sum_{\gamma \in J \frac{L}{\infty} \backslash J \underline{L}} g_{\underline{L}, r}\right|_{k, \underline{L}} \gamma(\tau, z)
$$

- it is absolutely and uniformly convergent on compact subsets of $\mathfrak{H} \times(L \otimes \mathbb{C})$ for $k>\frac{\mathrm{rk}(\underline{L})}{2}+2$
- their twists by primitive Dirichlet characters modulo divisors of N_{r} (order of r in $\left.L^{\#} / L\right)$ form a basis of eigenforms of $\operatorname{Span}\left\{E_{k, \underline{L}, r}: r \in \operatorname{Iso}\left(D_{\underline{L}}\right)\right\}$

$$
E_{k, \underline{L}, r, \chi}(\tau, z):=\sum_{d \in\left(\mathbb{Z} / \mathbb{Z} N_{r}\right)^{\times}} \chi(d) E_{k, \underline{L}, d r}(\tau, z)
$$

with eigenvalues given by twisted divisor sums

- consider $\underline{L}_{m}=(\mathbb{Z},(x, y) \mapsto 2 m x y)$, with m in \mathbb{N}
- the dual is $\frac{1}{2 m} \mathbb{Z}$
- then $J_{k, \underline{L}_{m}}$ is the space of scalar Jacobi forms $J_{k, m}$
- take \underline{L}_{m} as the index, $r=0$ and k even; then $E_{k, \underline{L}_{m}, 0}$ has Fourier coefficients $C\left(0, \frac{t}{2 m}\right)=1$ for all $\frac{t}{2 m}$ in \mathbb{Z} and

$$
\begin{aligned}
C\left(\frac{t^{2}}{4 m}-n, \frac{t}{2 m}\right) & =\frac{(2 \pi)^{k-\frac{1}{2}} i^{k}}{(2 m)^{\frac{1}{2}} \Gamma\left(k-\frac{1}{2}\right)}\left(n-\frac{t^{2}}{4 m}\right)^{k-\frac{3}{2}} \sum_{c \geq 1} c^{-k} \\
& \times \sum_{\substack{\lambda, d(\bmod c) \\
(d, c)=1}} e_{c}\left(m d^{-1} \lambda^{2}-2 m r \lambda+n d\right) .
\end{aligned}
$$

- when $m=1$, we have $C\left(\frac{t^{2}}{4}-n, \frac{t}{2}\right)=\frac{L_{t^{2}-4 n}(2-k)}{\zeta(3-2 k)}$
- when m is square-free, we have

$$
C\left(\frac{t^{2}}{4 m}-n, \frac{t}{2 m}\right)=\frac{1}{\zeta(3-2 k) \sigma_{k-1}(m)} \sum_{d \mid(n, t, m)} d^{k-1} L_{\frac{t^{2}-4 n m}{d^{2}}}(2-k)
$$

Theorem (M., 2017)

For $k>\frac{r k(\underline{L})}{2}+2$ and for every r in $\operatorname{Iso}\left(D_{\underline{L}}\right)$, the Eisenstein series $E_{k, L, r}$ is an element of $J_{k, \underline{L}}$ and it is orthogonal to $S_{k, \underline{L}}$ with respect to a suitably defined Petersson scalar product. It has the following Fourier expansion:

$$
\begin{aligned}
E_{k, \underline{L}, r}(\tau, z) & =\frac{1}{2}\left(\vartheta_{\underline{L, r}}(\tau, z)+(-1)^{k} \vartheta_{\underline{L},-r}(\tau, z)\right) \\
& +\sum_{\substack{D \in \mathbb{Q}<0, t \in L^{\#} \\
\beta(t)-D \in \mathbb{Z}}} C_{k, \underline{L}, r}(D, t) e((\beta(t)-D) \tau+\beta(t, z)),
\end{aligned}
$$

where

$$
\begin{aligned}
C_{k, \underline{L}, r}(D, t) & =\frac{(2 \pi)^{k-\frac{r \boldsymbol{k}(\underline{L})}{2}} i^{k}}{2 \operatorname{det}(\underline{L})^{\frac{1}{2}} \Gamma\left(k-\frac{r \boldsymbol{k}(\underline{L})}{2}\right)}(-D)^{k-\frac{\boldsymbol{r k}(\underline{L})}{2}-1} \\
& \times \sum_{c \geq 1} c^{-k}\left(H_{\underline{L}, c}(r, D, t)+(-1)^{k} H_{\underline{L}, c}(-r, D, t)\right)
\end{aligned}
$$

and $H_{\underline{L}, c}(r, D, t)$ is the lattice sum

$$
\sum_{\lambda \in L / c L, d \in(\mathbb{Z} / c \mathbb{Z})^{\times}} e_{c}\left(\beta(\lambda+r) d^{-1}+(\beta(t)-D) d+\beta(t, \lambda+r)\right) .
$$

$$
\begin{equation*}
E_{k, \underline{L}, r}(\tau, z)=\left.\frac{1}{2} \sum_{\gamma \in J \frac{L}{\infty} \backslash J \underline{L}} g_{\underline{L}, r}\right|_{k, \underline{L}} \gamma(\tau, z) \tag{Reminder}
\end{equation*}
$$

- invariance under $\left.\right|_{k, \underline{L}}$ action of $J^{\underline{L}}$ follows by construction
- the given Fourier expansion completes the modularity argument
- for orthogonality to cusp forms, use unfolding technique:

$$
\begin{aligned}
&\left\langle\phi, E_{k, \underline{L}, r}\right\rangle: \\
&=\int_{\mathfrak{F}_{J \underline{L}}} \phi(\tau, z) \sum_{\gamma \in J \frac{L}{\infty} \backslash J \underline{L}} \overline{\left.g_{r}\right|_{k, \underline{L}} \gamma(\tau, z)} \Im(\tau)^{k} e^{-\frac{4 \pi \beta(\Im(z))}{\Im(\tau)}} d V_{\underline{L}}(\tau, z) \\
&=\int_{\mathfrak{F}_{J \frac{L}{\infty}}} \phi(\tau, z) \overline{g_{r}(\tau, z)} \Im(\tau)^{k} e^{-\frac{4 \pi \beta(\Im(z))}{\Im(\tau)}} d V_{\underline{L}}(\tau, z)
\end{aligned}
$$

- choose a convenient fundamental domain
- insert Fourier expansion of ϕ and use orthogonality relations for exponential function, which imply that the integral in $\Re(z)$ vanishes

$$
\begin{equation*}
E_{k, \underline{L}, r}(\tau, z)=\left.\frac{1}{2} \sum_{\gamma \in J \frac{L}{\infty} \backslash J \underline{L}} g_{\underline{L}, r}\right|_{k, \underline{L}} \gamma(\tau, z) \tag{Reminder}
\end{equation*}
$$

- choose a convenient set of coset representatives for $J_{\infty}^{L} \backslash J^{\underline{L}}$
- write each γ as $(A,(a \lambda, b \lambda))$ and separate contributions coming from terms with $c=0$ and $c \neq 0$
- $c=0$ gives the singular term

$$
\sum_{\substack{t \in L^{\#} \\ t \equiv r \bmod L}} e(\beta(t) \tau)\left(e(\beta(t, z))+(-1)^{k} e(\beta(-t, z))\right)
$$

- terms with $c<0$ give same contribution as those with $c>0$, multiplied by $(-1)^{k}$ and with z replaced by $-z$
- contribution coming from $c>0$ is:

$$
\sum_{c>0} c^{-k} \sum_{\lambda(c), d(c) \times} e_{c}\left(\beta(\lambda+r) d^{-1}\right) \mathcal{F}\left(\tau+\frac{d}{c}, z-\frac{1}{c} \lambda\right),
$$

where $\mathcal{F}(\tau, z)$ has period \mathbb{Z} in τ and period L in z.

Theorem (M., 2017)

For every r in $\operatorname{Iso}\left(D_{\underline{L}}\right)$, the Eisenstein series $E_{k, \underline{L}, r}$ is an element of $J_{k, \underline{L}}$ and it is orthogonal to $S_{k, \underline{L}}$ with respect to a suitably defined Petersson scalar product. It has the following Fourier expansion:

$$
\begin{aligned}
E_{k, \underline{L}, r}(\tau, z) & =\frac{1}{2}\left(\vartheta_{\underline{L}, r}(\tau, z)+(-1)^{k} \vartheta_{\underline{L},-r}(\tau, z)\right) \\
& +\sum_{\substack{D \in \mathbb{Q}<0, t \in L^{\#} \\
\beta(t)-D \in \mathbb{Z}}} C_{k, \underline{L}, r}(D, t) e((\beta(t)-D) \tau+\beta(t, z)),
\end{aligned}
$$

where

$$
\begin{aligned}
C_{k, \underline{L}, r}(D, t) & =\frac{(2 \pi)^{k-\frac{r \boldsymbol{k}(\underline{L})}{2}} i^{k}}{2 \operatorname{det}(\underline{L})^{\frac{1}{2}} \Gamma\left(k-\frac{r k(\underline{L})}{2}\right)}(-D)^{k-\frac{r \boldsymbol{k}(\underline{L})}{2}-1} \\
& \times \sum_{c \geq 1} c^{-k}\left(H_{\underline{L}, c}(r, D, t)+(-1)^{k} H_{\underline{L}, c}(-r, D, t)\right)
\end{aligned}
$$

and $H_{\underline{L}, c}(r, D, t)$ is the lattice sum

$$
\sum_{\lambda \in L / c L, d \in(\mathbb{Z} / c \mathbb{Z})^{\times}} e_{c}\left(\beta(\lambda+r) d^{-1}+(\beta(t)-D) d+\beta(t, \lambda+r)\right) .
$$

- suppose that $\operatorname{rk}(\underline{L})$ is even
- define $\Delta(\underline{L}):=(-1)^{\frac{\mathfrak{r k}(\underline{L})}{2}} \operatorname{det}(\underline{L})$ and write $\Delta(\underline{L})=\mathfrak{d} \mathfrak{f}^{2}$, with \mathfrak{d} the discriminant of $\mathbb{Q}(\sqrt{\Delta(\underline{L})})$; set $\chi_{d}(\cdot):=\left(\frac{d}{?}\right)$

Theorem (M., 2017)

When k is odd, $E_{0} \equiv 0$. When k and $r k(\underline{L})$ are even, E_{0} has the Fourier expansion

$$
E_{0}(\tau, z)=\vartheta_{\underline{L, 0}}(\tau, z)+\sum_{\substack{(D, t) \in \operatorname{supp}(\underline{L}) \\ D<0}} C_{0}(D, t) e((\beta(t)-D) \tau+\beta(t, z))
$$

and

$$
\begin{aligned}
C_{0}(D, t)= & \frac{2(-1)^{\left\lceil\frac{\mathfrak{k}(\underline{L})}{4}\right\rceil}(-D|\mathfrak{d}|)^{k-\frac{r \boldsymbol{k}(\underline{L})}{2}-1}}{\mathfrak{f} L\left(1-k+\frac{r k(\underline{L})}{2}, \chi_{\mathfrak{o}}\right) \sum_{d \mid \mathfrak{f}} \frac{\mu(d)}{d^{k-\frac{r k(\underline{L})}{2}}} \chi_{\mathfrak{d}}(d) \sigma_{1-2 k+r k(\underline{L})}\left(\frac{\mathfrak{f}}{d}\right)} \\
& \times \prod_{p \mid 2 D N_{t}^{2} \operatorname{det}(\underline{L})} \frac{L_{p}(k-1)}{1-\chi_{\Delta(\underline{L})}(p) p^{r \boldsymbol{k}(\underline{L})} 2} .
\end{aligned}
$$

- define the representation numbers

$$
R(b):=\#\{\lambda \in L / b L: \beta(\lambda+t)-D \equiv 0 \bmod b\}
$$

- set $r=0$ in the formula for $C_{r}(D, t)$, introduce the Möbius function to remove the coprimality conditions in $H_{\underline{L}, c}(0, D, t)$ and obtain

$$
C_{k, \underline{L}, 0}(D, t)=\frac{(2 \pi)^{k-\frac{\mathbf{r k}(\underline{L})}{2}} i^{k}(-D)^{k-\frac{\mathrm{rk}(\underline{L})}{2}-1}}{2 \operatorname{det}(\underline{L})^{-\frac{1}{2}} \Gamma\left(k-\frac{\mathrm{rk}(\underline{L})}{2}\right) \zeta(k-\mathrm{rk}(\underline{L}))}\left(1+(-1)^{k}\right) \sum_{b \geq 1} \frac{R(b)}{b^{k-1}}
$$

- reminder:

$$
\operatorname{singular-term}\left(E_{k, \underline{L}, 0}\right)=\frac{1+(-1)^{k}}{2} \vartheta_{\underline{L}, 0}
$$

- the $R(b)$'s are multiplicative functions of b; the Dirichlet series $L(s):=\sum_{b \geq 1} R(b) b^{-s}$ arises in Brunier \& Kuss (2001)
- it converges for $\Re(s)>\operatorname{rk}(\underline{L})$ and that it can be continued meromorphically to $\Re(s)>\frac{\mathrm{rk}(\underline{L})}{2}+1$, with a simple pole at $s=\mathrm{rk}(\underline{L})$
- define $w_{p}=1+2 \operatorname{ord}_{p}\left(2 N_{t} D\right)$ and the local Euler factor

$$
L_{p}(s):=p^{-w_{p} s} R\left(p^{w_{p}}\right)+\left(1-p^{-(s-\mathbf{r k}(\underline{L})+1)}\right) \sum_{l=0}^{w_{p}-1} p^{-l s} R\left(p^{l}\right)
$$

- using results of Siegel (1935) on representation numbers of quadratic forms modulo prime powers, we obtain

$$
L(s)=\frac{\zeta(s-\mathrm{rk}(\underline{L})+1)}{L\left(s-\frac{\mathrm{rk}(\underline{L})}{2}+1, \chi_{\Delta(\underline{L})}\right)} \prod_{p \mid 2 D N_{t}^{2} \operatorname{det}(\underline{L})} \frac{L_{p}(s)}{1-\chi_{\Delta(\underline{L})}(p) p^{-\left(s-\frac{\mathrm{rk}(\underline{L})}{2}+1\right)}}
$$

- functional equations, Gauss sums, the duplication formula and Euler's reflection formula for the Gamma function, values of the Riemann zeta function at positive even integers complete the proof
- we have obtained:

$$
\begin{aligned}
C_{0}(D, t)= & \frac{2(-1)^{\left\lceil\frac{\mathfrak{k}(L)}{4}\right\rceil}(-D|\mathfrak{d}|)^{k-\frac{\mathbf{r k}(\underline{L})}{2}-1}}{\mathfrak{f} L\left(1-k+\frac{\mathfrak{r k}(\underline{L})}{2}, \chi_{\mathfrak{J}}\right) \sum_{d \mid \mathfrak{f}} \frac{\mu(d)}{d^{k-\frac{\mathfrak{k}(\underline{L})}{2}}} \chi_{\mathfrak{d}}(d) \sigma_{1-2 k+\mathfrak{r k}(\underline{L})}\left(\frac{\mathfrak{f}}{d}\right)} \\
& \times \prod_{p \mid 2 D N_{t}^{2} \operatorname{det}(\underline{L})} \frac{L_{p}(k-1)}{1-\chi_{\Delta(\underline{L})}(p) p^{\frac{\mathbf{r k}(\underline{L})}{2}-k}}
\end{aligned}
$$

Corollary

The Fourier coefficients of E_{0} are rational numbers.

- use results of Zagier (1981)

$$
L(-n, \chi)=-\frac{M^{n}}{n+1} \sum_{l=1}^{M} \chi(l) B_{n+1}\left(\frac{l}{M}\right)
$$

- can we say something about the 'bad' Euler factors?
- Cowan, Katz and White (2017): set $\mathfrak{D}:=\prod \quad{ }_{p \mid N_{t}^{2} D} \quad p^{v_{p}\left(N_{t}^{2} D\right)}$

$$
\operatorname{gcd}(p, 2 \operatorname{det}(\underline{L}))=1
$$

$$
\prod_{\substack{p \mid N_{t}^{2} D \\ p \nmid 2 \operatorname{det}(\underline{L})}} \frac{L_{p}(k-1)}{1-\chi_{\underline{L}}(p) p^{-\left(k-\frac{\mathbf{k}(\underline{L})}{2}\right)}}=\chi_{\underline{L}}(\mathfrak{D}) \mathfrak{D}^{-\left(k-\frac{\mathbf{r k}(\underline{L})}{2}-1\right)} \sum_{d \mid \mathfrak{D}} \chi_{\underline{L}}(d) d^{k-\frac{\mathbf{r k}(\underline{L})}{2}-1}
$$

- the formulas in CKW were implemented in Sage by B. Williams: https://math.berkeley.edu/~${ }^{\sim}$ btw/local-L-functions.sagews

Example

If \underline{L} is unimodular $\left(L^{\#}=L\right)$, then

$$
C_{0}(D, t)=\frac{r k(\underline{L})-2 k}{B_{k-\frac{r \boldsymbol{k}(\underline{L})}{2}}} \sigma_{k-\frac{r \boldsymbol{k}(\underline{L})}{2}-1}(D) .
$$

This was also shown by Woitalla (2018).

- let $x \in L^{\#} / L$ and define the following Schrödinger representation $\sigma_{x}: \mathbb{Z}^{3} \rightarrow \operatorname{Span}_{\mathbb{C}}\left\{\vartheta_{\underline{L}, y}: y \in L^{\#} / L\right\}:$

$$
\sigma_{x}(\lambda, \mu, \nu) \vartheta_{\underline{L}, y}:=e(\mu \beta(x, y)+(\nu-\lambda \mu) \beta(x)) \vartheta_{\underline{L}, y-\lambda x}
$$

- note that \mathbb{Z}^{3} has group law

$$
(\lambda, \mu, t)\left(\lambda^{\prime}, \mu^{\prime}, t^{\prime}\right)=\left(\lambda+\lambda^{\prime}, \mu+\mu^{\prime}, t+t^{\prime}+\lambda \mu^{\prime}-\mu \lambda^{\prime}\right)
$$

- every Jacobi form has a theta expansion:

$$
\phi(\tau, z)=\sum_{y \in L^{\#} / L} h_{\phi, y}(\tau) \vartheta_{\underline{L}, y}(\tau, z)
$$

where

$$
h_{\phi, y}(\tau)=\sum_{\substack{D \in \mathbb{Q} \\(D, y) \in \operatorname{supp}(\underline{L})}} C(D, y) q^{-D}
$$

Definition

Define the averaging operator at x in the following way:

$$
A \mathrm{v}_{x} \phi(\tau, z):=\frac{1}{N_{x}^{2}} \sum_{(\lambda, \mu) \in\left(\mathbb{Z} / \mathbb{Z} N_{x}^{2}\right)^{2}} \sigma_{x}^{*}(\lambda, \mu, 0) \phi(\tau, z)
$$

- defined for vector-valued modular forms by Williams (2018)
- σ_{x} is unitary and Av_{x} maps $J_{k, \underline{L}}$ to $J_{k, \underline{L}}$

Proposition (M., 2017)

Suppose that k is even and let r be an element of $\operatorname{Iso}\left(D_{\underline{L}}\right)$. Then:

$$
\sum_{\lambda \in \mathbb{Z} / \mathbb{Z} N_{r}} E_{k, \underline{L}, \lambda r}(\tau, z)=\sum_{\substack{t \in L^{\#} / L \\ \beta(r, t) \in \mathbb{Z}}}\left(\sum_{\lambda \in \mathbb{Z} / \mathbb{Z} N_{r}} h_{E_{k, \underline{L}, 0}, t+\lambda r}(\tau)\right) \vartheta_{\underline{L}, t}(\tau, z)
$$

- for any r in $L^{\#} / L$,

$$
\mathrm{Av}_{r} E_{k, \underline{L}, 0}(\tau, z)=\sum_{\substack{\lambda \in \mathbb{Z} / \mathbb{Z} N_{r}^{2} \\ \lambda \beta(r) \in \mathbb{Z}}} E_{k, \underline{L}, \lambda r}(\tau, z)
$$

- insert definition of $A \mathrm{v}_{r}$ and theta expansion of $E_{k, \underline{L}, 0}$ on left-hand side and expand:

$$
A \mathbf{v}_{r} E_{k, \underline{L}, 0}(\tau, z)=N_{r} \sum_{\substack{t \in L^{\#} / L \\ \beta(r, t) \in \mathbb{Z}}} h_{E_{k, \underline{L}, 0}, t}(\tau) \sum_{\lambda \in \mathbb{Z} / \mathbb{Z} N_{r}} \vartheta_{\underline{L}, t-\lambda r}
$$

- if $\beta(r) \in \mathbb{Z}$, then trivially

$$
\sum_{\lambda \in \mathbb{Z} / \mathbb{Z} N_{r}^{2}} E_{k, \underline{L}, \lambda r}(\tau, z)=N_{r} \sum_{\lambda \in \mathbb{Z} / \mathbb{Z} N_{r}} E_{k, \underline{L}, \lambda r}(\tau, z),
$$

- with this formula, we can compute Fourier coefficients of $E_{k, \underline{L}, r}$ for any r of order $2,3,4$ or 6

Example

Suppose that r in has order 2. Then:

$$
E_{k, \underline{L}, 0}(\tau, z)+E_{k, \underline{L}, r}(\tau, z)=\sum_{\substack{t \in L^{\#} / L \\ \beta(r, t) \in \mathbb{Z}}}\left(h_{E_{k, \underline{L}, 0}, t}+h_{E_{k, \underline{L}, 0}, t+r}\right)(\tau) \vartheta_{\underline{L}, t}(\tau, z)
$$

and hence

$$
C_{k, \underline{L}, r}(D, t)= \begin{cases}C_{k, \underline{L}, 0}(D, t+r), & \text { if } \beta(r, t) \in \mathbb{Z} \\ -C_{k, \underline{L}, 0}(D, t), & \text { otherwise }\end{cases}
$$

- Poincaré series:

$$
\begin{aligned}
C_{k, \underline{L}, F, r}(D, t):= & \delta_{L}(F, r, D, t)+(-1)^{k} \delta_{L}(F,-r, D, t)+\frac{2 \pi i^{k}}{\operatorname{det}(\underline{L})^{\frac{1}{2}}} \\
& \times\left(\frac{D}{F}\right)^{\frac{k}{2}-\frac{\mathbf{r k}(\underline{L})}{4}-\frac{1}{2}} \sum_{c \geq 1} J_{k-\frac{\mathbf{r k}(\underline{L})}{2}-1}\left(\frac{4 \pi(D F)^{\frac{1}{2}}}{c}\right) c^{-\frac{\mathbf{r k}(\underline{L})}{2}-1} \\
& \times\left(H_{\underline{L}, c}(F, r, D, t)+(-1)^{k} H_{\underline{L}, c}(F,-r, D, t)\right)
\end{aligned}
$$

- Schwagenscheidt (2018): Fourier coefficients of $E_{D_{\underline{L}}, r, \chi}$
- Ran and Skoruppa (in progress): Fourier coefficients of $E_{k, \underline{L}, r, \chi}$

Thank you!

