# GEOMETRIC MODULAR FORMS <br> UON MATHEMATICS STUDY GROUP ON 'MODULI SPACES' 

ANDREEA MOCANU

## 1. Lecture 1

1.1. Reminders. Remember the following:

Definition 1.1 (Elliptic curve). Let $R$ be a field and $S$ and $R$-scheme. An elliptic curve over $S$ is a proper, smooth morphism $p: E \rightarrow S$ such that the geometric fibers are connected curves of genus 1 , together with a section $e: S \rightarrow E$.

We have seen that if $R=\mathbb{Z}\left[\frac{1}{6}\right]$ (or any field of characteristic $\neq 2,3$ ), then the set:

$$
\mathcal{W}(S)=\left\{\begin{array}{l}
(E, \omega): E \text { is an e.c } / S \\
\omega \text { is a non-zero invariant differential on } E\}_{/ \simeq},
\end{array}\right.
$$

where $(E, \omega) \simeq\left(E^{\prime}, \omega^{\prime}\right) \Longleftrightarrow \phi: E \rightarrow E^{\prime}$ is an $S$-isomorphism such that $\phi^{*}\left(\omega^{\prime}\right)=\omega$, is representable by

$$
W=\operatorname{Spec}\left(R[A, B]\left[\frac{1}{\Delta}\right]\right)
$$

where $\Delta=-16\left(4 A^{3}+27 B^{2}\right)$. If if $R=k$, with char. $k \neq 2,3$ and we look at $\mathcal{W}(K)$ for some field extension $K / k$, then given an elliptic curve $(E, \omega)$, we can obtain it from the universal elliptic curve over $W$

$$
(\mathbb{E}, \omega): y^{2}=x^{3}+A x+B, \quad \omega=\frac{d x}{2 y}
$$

by specializing $A$ and $B$.

### 1.2. Geometric modular forms.

Definition 1.2 (Modular form of level 1). Let $k \in \mathbb{Z}, R_{0}$ a commutative ring with unity and $R$ and $R_{0}$-algebra. A modular form of weight $k$ and level 1 is a rule $f$

$$
(E / R, \omega) \mapsto f(E / R, \omega) \in R
$$

where $E / R$ is an e.c. $/ R$ and $\omega$ is a basis of $\Omega^{1}(E / R)$, such that:
(i) $f$ only depends on the isomorphism class of $(E, \omega)$.
(ii) $f(E / R, \lambda \omega)=\lambda^{-k} f(E / R, \omega)$, for any $\lambda \in R^{\times}$.
(iii) $f$ commutes with arbitrary base change, i.e. if $\psi: R \rightarrow R^{\prime}$ is and $R_{0}$-algebra homomorphism which sends $E$ to $E^{\prime}=$ $E \times_{\operatorname{Spec}(R)} \operatorname{Spec}\left(R^{\prime}\right)\left(\right.$ with $\left.p: E^{\prime} \rightarrow E\right)$, then if $\omega^{\prime}:=p^{*} \omega$, we have $f\left(E^{\prime} / R^{\prime}, \omega^{\prime}\right)=\phi(f(E / R, \omega))$.

Note that we could have instead defined $f$ as a rule $E / S \rightarrow f(E / S)$, a section of $\underline{\omega}_{E / S}^{\otimes k}$, where $\underline{\omega}_{E / S}^{\otimes k}=p_{*}\left(\omega_{E / S}^{1}\right)$ is an invertible sheaf on $S$. Then, if $S=\operatorname{Spec}(R)$ and $\underline{\omega}_{E / R}$ is a free $\mathbb{Z}$-module with basis $\omega$, we would have $f(E / \operatorname{Spec} R)=f(E / R, \omega) \omega^{\otimes k}$.

They form an $R_{0}$-module $M\left(R_{0}, 1, k\right)$.
Example 1.1. We have seen that every e.c. $/ \mathbb{C}$ is isomorphic to $E_{\tau}=$ $\mathbb{C} / \mathbb{Z} \tau \oplus \mathbb{Z}$, for some $\tau \in \mathfrak{H}$. Then, $\left(E_{\tau}, \omega\right)=\left(E_{\tau^{\prime}}, \omega^{\prime}\right) \Longleftrightarrow \tau^{\prime}=\gamma \tau$ for some $\gamma \in \Gamma$ (which maps $z \mapsto z^{\prime}=\frac{z}{c \tau+d}$ ) and if $\omega=d z$, then $\omega^{\prime}=(c \tau+d) d z^{\prime}$ (where $(c, d)$ are the lower entries of $\gamma$ ). If we take a geometric modular form $f\left(E_{\tau}, d z\right)$ and we define $g(\tau)=f\left(E_{\tau}, d z\right)$, then, for any $\gamma \in \Gamma$,

$$
\begin{aligned}
g(\gamma \tau) & =f\left(E_{\gamma \tau}, d z^{\prime}\right)=f\left(E_{\tau},(c \tau+d)^{-1} d z\right) \\
& =(c \tau+d)^{k} g(\tau),
\end{aligned}
$$

so we obtain a modular form in the classical sense, provided we have the right holomorphicity conditions.

In order to talk about level $N$ modular forms, we need to define:
Definition 1.3 (Level $N$ structure). If $E / S$ is an e.c., a choice of isomorphism of group schemes $\alpha:(\mathbb{Z} / N \mathbb{Z})^{2} \rightarrow E[N]$ is called a level $N$ structure for $E / S$.

Definition 1.4 (Modular form of level $N$ ). If $R_{0}$ is a $\mathbb{Z}\left[\frac{1}{N}\right]$-algebra, then a modular form of weight $k$ and level $N$ is a rule $f$

$$
(E, \alpha, \omega) \mapsto f(E, \alpha, \omega)
$$

where everything is as before and $\alpha$ is a level $N$ structure on $E$, such that
(i) -
(ii) $f(E / R, \alpha, \lambda \omega)=\lambda^{-k} f(E / R, \omega, \alpha)$, for all $\lambda \in R^{\times}$.
(iii) -.

As before, they form an $R_{0}$-algebra $M\left(R_{0}, N, k\right)$.
1.3. $q$-expansions. Remember the following:

Definition 1.5 (Level $N$ Tate curve). It is the elliptic curve Tate $\left(q^{N}\right) / \mathbb{Z}((q)) \otimes_{\mathbb{Z}}$ $R_{0}$ given by the equation:

$$
y^{2}+x y=x^{3}+a_{4}\left(q^{N}\right) x+a_{6}\left(q^{N}\right),
$$

together with the canonical differential $\omega_{\text {can }}=\frac{d x}{x+2 y}$.
Note that $\operatorname{Tate}\left(q^{N}\right)[N]=\left\{\zeta_{N}^{i} q^{j}: 0 \leq i, j \leq N-1\right\}$, for some primitive $N$-th root of unity $\zeta_{N}$. Let $\alpha$ be a level $N$-structure of Tate $\left(q^{N}\right)$ and let $f$ be a modular form of weight $k$ and level $N$ over $R_{0}$, a $\mathbb{Z}\left[\frac{1}{N}, \zeta_{N}\right]$ algebra. Then:
Definition 1.6 ( $q$-expansion). The $q$-expansion of $f$ at $\alpha$ is

$$
(*) \quad f\left(\operatorname{Tate}\left(q^{N}\right), \alpha, \omega_{\text {can }}\right) \in \mathbb{Z}((q)) \otimes_{\mathbb{Z}} R_{0} .
$$

Note that this automatically ensures meromorphicity at $\infty$.
Definition 1.7. We say that $f$ is holomorphic at $\infty$ if $(*) \in \mathbb{Z}[[q]] \otimes_{\mathbb{Z}} R_{0}$ for all $\alpha$ and that $f$ is a cusp form if $(*) \in q \mathbb{Z}[[q]] \otimes_{\mathbb{Z}} R_{0}$ for all $\alpha$.

Remember that, if $R=\mathbb{Z}\left[\frac{1}{N}\right]$ and $S$ is an $R$-scheme, then

$$
\mathcal{M}_{N}(S)=\{(E, \alpha)\}_{/ \simeq}
$$

has a coarse moduli space (which is fine if $N \geq 3$ ), given by the smooth affine curve $Y(N)(R)$. Over $\mathbb{C}$,

$$
Y(N)(\mathbb{C})=\amalg_{\zeta \text { primitive }}^{\zeta \in \mu_{N}} Y(N)_{\zeta}(\mathbb{C}),
$$

where each $Y(N)_{\zeta}(\mathbb{C})=\left\{(E, \alpha): \alpha=\left(e_{1}, e_{2}\right)\right.$ with $\left\langle e_{1}, e_{2}\right\rangle_{\text {Weil }}=$ $\zeta\}_{/ \simeq} \simeq \Gamma(N) \backslash \mathfrak{H}$.

We have the following:
Theorem 1.1. Let $R_{0}$ be a $\mathbb{Z}\left[\frac{1}{N}, \zeta_{N}\right]$-algebra and $f$ a modular form which is holomorphic at $\infty$. If, for any primitive $N$-th root of unity $\zeta$, there exists a level $N$-structure $\alpha_{\zeta}=\left(e_{1}, e_{2}\right)$ on Tate $\left(q^{N}\right)$ with $\left\langle e_{1}, e_{2}\right\rangle_{\text {Weil }}=\zeta$, such that the $q$-expansion of $f$ at $\alpha_{\zeta}=0$, then $f \equiv 0$.

Proof. See Katz's original '72 paper.
The main consequence is:
Corollary 1.2 ( $q$-expansion principle). Let $f$ be a modular form which is holomorphic at $\infty$ and has coefficients in some $R_{0}$-module $K$. If, on each of the $\phi(N)$ connected components of $Y(N)(R)$, there is at least one cusp at which the $q$-coefficients of $f$ lie in some $R_{0}$-submodule of $K$, then $f$ is a modular form with coefficients in that submodule.

Proof. Short exact sequences.
Example 1.2. We have seen (many times) the Weierstrass $\wp$-function, which satisfies the elliptic equation: $\wp^{\prime 2}=4 \wp^{3}-g_{2}(L) \wp-g_{3}(L)$. We have $g_{2}(L)=60 G_{4}(L)$ and $g_{3}(L)=140 G_{6}(L)$, where

$$
G_{k}(L)=\sum_{\beta \in L} \beta^{-k} .
$$

Note that we could have defined $G_{k}(\tau)$ or $G_{k}(E, \omega)$ because the spaces they lie in are isomorphic. If we define

$$
E_{k}(\cdot)=\frac{1}{2 \zeta(k)} G_{k}(\cdot),
$$

then

$$
E_{k}(q)=1-\frac{2 k}{B_{2 k}} \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^{n} \in \mathbb{Q}[[q]] .
$$

Furthermore, $E_{4}$ and $E_{6} \in \mathbb{Z}[[q]]$ and $\Delta=\frac{E_{4}^{3}-E_{6}^{2}}{1728}$ and $j=\frac{E_{4}^{3}}{\Delta}$.
It is then easy to see that each $E_{k} \in M\left(R_{0}, 1, k\right)$.

## 2. Lecture 2

### 2.1. Reminders.

Definition 2.1 (Modular form of level $N$ ). If $R_{0}$ is a $\mathbb{Z}\left[\frac{1}{N}\right]$-algebra and $R$ is an $R_{0}$-algebra, then a modular form of weight $k$ and level $N$ on $R_{0}$ is a rule $f$

$$
(E, \alpha, \omega) \mapsto f(E, \alpha, \omega)
$$

where everything is as before and $\alpha$ is a level $N$ structure on $E$, such that
(i) $f$ is defined on isomorphism classes.
(ii) $f(E / R, \alpha, \lambda \omega)=\lambda^{-k} f(E / R, \omega, \alpha)$, for all $\lambda \in R^{\times}$.
(iii) $f$ is invariant under base change.

They form an $R_{0}$-algebra $M\left(R_{0}, N, k\right)$.
Definition 2.2 (Level $N$ Tate curve). It is the elliptic curve Tate $\left(q^{N}\right) / \mathbb{Z}((q)) \otimes_{\mathbb{Z}}$ $R_{0}$ given by the equation:

$$
y^{2}+x y=x^{3}+a_{4}\left(q^{N}\right) x+a_{6}\left(q^{N}\right),
$$

together with the canonical differential $\omega_{\text {can }}=\frac{d x}{x+2 y}$.
The Tate curve gives us the $q$-expansion of a modular form.

Definition 2.3 (Eisenstein series). We define the weight $k$ Eisenstein series:

$$
E_{k}(q)=1-\frac{2 k}{B_{2 k}} \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^{n} \in \mathbb{Q}[[q]] .
$$

Then, $E_{k} \in M\left(R_{0}, 1, k\right)$ Furthermore, $E_{4}$ and $E_{6} \in \mathbb{Z}[[q]]$.

## 3. $p$-ADIC MODULAR FORMS

Let $\mathbb{Q} \cap \mathbb{Z}_{p}=\mathbb{Z}_{(p)}$. Then, if $p \geq 5$, for $k=p-1$ we have

$$
v_{p}\left(\frac{-2(p-1)}{B_{p-1}}\right)=1
$$

and consequently $E_{p-1}(q) \in \mathbb{Z}_{(p)}[[q]]$. Thus, it makes sense to reduce the coefficients modulo $p$ and we get a modular form in $M\left(\mathbb{F}_{p}, 1, p-1\right)$ with $q$-expansion $E_{p-1}(q)=1$.

Let $E / R$ be an e.c., where $R$ is an $\mathbb{F}_{p}$-algebra (i.e. $p=0$ in $R$ ). Consider the absolute Frobenius map defined on the sheaf of holomorphic functions on $E$ :

$$
F_{a b s}: \mathcal{O}_{E} \rightarrow \mathcal{O}_{E}, \quad f \mapsto f^{p} .
$$

Let $\omega \in \Omega_{E / R}^{1}$ and let $\eta \in H^{1}\left(E, \mathcal{O}_{E}\right)$ be its dual. We have the following:

Definition 3.1 (The Hasse invariant). The Hasse invariant is the map $A:(E / R, \omega) \mapsto A(E / R, \omega)$ given by the equation

$$
F_{a b s}^{*}(\eta)=A(E / R, \omega) \eta
$$

The following holds:
Proposition 3.1. The Hasse invariant is an element of $M\left(\mathbb{F}_{p}, 1, p-1\right)$.
Proof. Given an $\omega \in \Omega_{E / R}^{1}$, if we make the substitution $\omega \mapsto \lambda \omega$ for some $\lambda \in R^{\times}$, then we will have $\eta \mapsto \lambda^{-1} \eta$. Thus,

$$
F_{a b s}^{*}\left(\lambda^{-1} \eta\right)=\lambda^{-p} F_{a b s}^{*}(\eta)=\lambda^{-p} A(E, \omega) \eta=A(E, \lambda \omega) \lambda^{-1} \eta .
$$

Thus, $A(E, \lambda \omega)=\lambda^{-(p-1)} A(E, \omega)$. Furthermore, it can be shown that $A\left(\operatorname{Tate}(q), \omega_{\text {can }}\right)=1$ and so $A$ is holomorphic.

By the $q$-expansion principle, $A=E_{p-1} \bmod p$ for $p \geq 5$ (this was shown by Deligne). For $p=2,3$ it is not possible to lift $A$ to a holomorphic modular form on $\mathbb{Z}_{(p)}$, but this can be fixed by adding some very specific level structure.

We want a $p$-adic theory of modular forms that strongly identifies a modular form with its q-expansion so that what 'looks' invertible, as in $E_{p-1} \bmod p$, is invertible. The Hasse invariant $A(E / R, \omega)=0$ if and
only if $E$ is supersingular. We want to somehow 'throw away' elliptic curves which are supersingular or have supersingular reduction:

Definition 3.2 ( $p$-adic modular form). Let $R$ be an $\mathbb{F}_{p}$-algebra for $p \geq 5$. Then a $p$-adic modular form of weight $k$ and level $N$ is a rule $f$

$$
(E / R, \alpha, Y, \omega) \mapsto f(E / R, \alpha, Y, \omega) \in R,
$$

where $Y \in R$ is such that $Y E_{p-1}(E / R, \omega)=1$ and such that
(i) -.
(ii) $f\left(E / R, \alpha, \lambda^{p-1} Y, \lambda \omega\right)=\lambda^{-k} f(E / R, \alpha, Y, \omega)$, for any $\lambda \in R^{\times}$.

We have the following:
Theorem 3.2 (Swinnerton-Dyer). Let $M\left(\mathbb{F}_{p}\right)=\sum_{k \geq 0} M\left(\mathbb{F}_{p}, 1, k\right)$. Then

$$
M\left(\mathbb{F}_{p}\right) \simeq \mathbb{F}_{p}\left[E_{4}, E_{6}\right] /\left(A\left(E_{4}, E_{6}\right)-1\right)
$$

Remark 1.
(i) Not a direct sum because modular forms of different weight may have same $\bmod p q$-expansion.
(ii) $M(\mathbb{C})=\bigoplus_{k} M_{k}(\mathbb{C})=\mathbb{C}\left[E_{4}, E_{6}\right]$.
(iii) Proof uses the commutative diagram:


Introduce derivation $\theta=q \frac{d}{d q}($ on $\mathbb{C}[q])$ and then $\partial=12 \theta-k E_{2}$ :

$$
E_{2}=1-24 \sum_{n \geq 1} \sigma_{1}(n) q^{n} .
$$

Then, $\partial$ is a derivation on $\mathbb{Z}_{(p)}[q]$ and then on $\mathbb{F}_{p}[q]$.

## References

[1] Buzzard, Kevin, 2001. p-adic Modular Forms Lecture 2 [online]. Available at: http://swc.math.arizona.edu/aws/2001/01BuzzardL2.pdf
[2] Iovita, Adrian, 2009. Geometric Modular Forms. Lecture notes taken by Marc Masdeu-Sabaté.
[3] Katz, Nicholas M., 1972. p-adic Properties of Modular Schemes and Modular Forms [online]. Available at: https://web.math.princeton.edu/~nmk/old/ padicpropMFMS.pdf

