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1.1 Jacobi forms

the weight of a Jacobi form will be k in N and the index L = (L, β), where:
L is a finite rank Z-module
β : L× L→ Z is a Z-bilinear form which is:

symmetric: β(λ, µ) = β(λ, µ)
positive-definite: β(λ, λ) > 0 unless λ = 0
even: β(λ, λ) ∈ 2Z

set β(λ) := 1
2β(λ, λ)

the dual of L: L# := {t ∈ L⊗Q : β(λ, t) ∈ Z, for all λ in L}
the support of L:

supp(L) := {(D, t) : D ∈ Q≤0, t ∈ L# and D ≡ β(t) mod Z}

the determinant of L: det(L) := |L#/L|
the level of L: lev(L) := min{N ∈ N : Nβ(t) ∈ Z for all t in L#}

Definition (The Jacobi group associated to L)

Define JL(Z) to be the semi-direct product Γ n L2.
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JL(Z) acts on Hol(H× (L⊗ C)→ C):

φ|k,L (A, (λ, y)) (τ, z) := φ

(
Aτ,

z + λτ + µ

cτ + d

)
(cτ + d)−k

× e

(
−cβ(z + λτ + µ)

cτ + d
+ τβ(λ) + β(λ, z)

)

Definition (Jacobi form of lattice index)

A function φ in Hol(H× (L⊗ C)→ C) is called a Jacobi form of weight k and
index L if:

1 φ|k,L(A, h) = φ, for all (A, h) in JL(Z);
2 φ has a Fourier expansion of the form

φ(τ, z) =
∑

(D,t)∈ supp(L)

C(D, t)e ((β(t)− D)τ + β(t, z)) .

for fixed k and L, denote the C-vector space of all such functions by Jk,L

as a consequence of results of Boylan (2015), Jk,L = {0} if k < rk(L)
2
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1.2 Jacobi–Eisenstein series

define Iso(L) := {r ∈ L#/L : β(r) ∈ Z}
define JL(Z)∞ := {(( 1 n

0 1 ) , (0, µ)) : n ∈ Z, µ ∈ L}

Definition (Jacobi-Eisenstein series)

For every r in Iso(L), let gL,r (τ, z) := e(β(r)τ + β(r , z)) and define the
Eisenstein series of weight k and index L associated to r as

Ek,L,r (τ, z) :=
1
2

∑
γ∈JL(Z)∞\JL(Z)

gL,r |k,Lγ(τ, z).

defined by Ajouz (2015); it is absolutely and uniformly convergent on
compact subsets of H× (L⊗ C) for k > rk(L)

2 + 2

Jacobi cusp forms have the following type of Fourier expansion:

φ(τ, z) =
∑

(D,t)∈ supp(L)
D<0

C(D, t)e ((β(t)− D)τ + β(t, z))

denote the subspace of cusp forms of weight k and index L by Sk,L
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Theorem (M., 2017)

The Eisenstein series Ek,L,r is an element of Jk,L and it is orthogonal to Sk,L

with respect to a suitably defined Petersson scalar product. It has the following
Fourier expansion:

Ek,L,r (τ, z) =
1
2

(
ϑL,r (τ, z) + (−1)kϑL,−r (τ, z)

)
+

∑
(D,t)∈supp(L)

D<0

Ck,L,r (D, t)e ((β(t)− D)τ + β(t, z)) ,

where

Ck,L,r (D, t) =
(2π)k−

rk(L)
2 ik

2 det(L)
1
2 Γ
(
k − rk(L)

2

) (−D)k−
rk(L)

2 −1

×
∑
c≥1

c−k
(
HL,c(r ,D, t) + (−1)kHL,c(−r ,D, t)

)
,

where HL,c(r ,D, t) is the lattice sum∑
λ∈L/cL,d∈(Z/cZ)×

ec
(
β(λ+ r)d−1 + (β(t)− D)d + β(t, λ+ r)

)
.
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1.3 Level raising operators

they were defined for Jacobi forms of scalar index by Eichler & Zagier
(1985), where they were used to develop a theory of newforms

Definition

For every l in N, define the operator U(l) on the space Jk,L as:

φ|U(l)(τ, z) := φ(τ, lz).

Definition

For every l in N, define the operator V (l) on the space Jk,L as:

φ|V (l)(τ, z) = l
k
2−1

∑
M∈Γ\M2(Z)

det(M)=l

(φ|k,LM) |U(
√
l)(τ, z).

these operators were defined by Gritsenko (1988) as double coset
operators and V (·) was also defined and used in Cléry & Gritsenko (2013)
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the operator U(l) corresponds to the endomorphism “multiplication by l"
on Tτ,L = (L⊗ C) /(Lτ ⊕ L)

assume that Lτ ⊕ L is contained in L′ with index l ; if {ω1, ω2} is a basis
for L′, then there exists M ∈M2(Z) with determinant l , such that
( τ1 ) = M ( ω1

ω2 )

if M = ( a b
c d ), then (φ|k,LM) |U(

√
l)(τ, z) contains a factor of

φ
(
Mτ, lz

cτ+d

)
think of U(l) : Mk(N)→ Mk(lN),

U(l)f (τ) =
∑

a(ln)qn

and of V (l) : Mk(N)→ Mk(lN)

V (l)f (τ) =
∑

a(n)qln
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2. Why the interest?

since Jacobi–Eisenstein series are perpendicular to cusp forms, we obtain
the following decomposition:

Jk,L = Sk,L ⊕ JEis
k,L

we are interested in a theory of newforms with respect to Hecke operators
(defined by Ajouz (2015)): for every l in N, which is coprime to lev(L),
define a double coset operator on Jk,L

T0(l)φ(τ, z) := lk−2−rk(L)
∑

g∈JL(Z)\JL(Z)
(
l−1 0
0 l

)
JL(Z)

φ|k,Lg(τ, z)

the twists of Ek,L,r by primitive Dirichlet characters modulo divisors of Nr

(order of r in L#/L) form a basis of eigenforms of JEis
k,L

Ek,L,r,χ(τ, z) :=
∑

d∈Z×
Nr

χ(d)Ek,L,dr (τ, z)
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there are two ways to think about newforms:
Jacobi forms coming from lattices of lower level

e.g. Jk,L 'M2k−1−rk(L)(lev(L)/4)− for L ' (Z, (x , y) 7→ det(L)xy)

Jacobi forms coming from sublattices (i.e. L = L1 ⊕ L2)

linear operators give structure to a finite dimensional vector space (think
basis of Hecke eigenforms) and U(·) and V (·) are “predecesors” of T (·)
they facilitate lifts between different types of modular forms; for example,
V (·) was used by Cléry & Gritsenko (2013) to construct maps

Jk,L(m)(ξ)→ Mk

(
Õ+(L′)

)
,

where L(m) = (L,m · β)

they have algebraic interpretations in terms of the surfaces that our
modular forms underlie

the level raising operators satisfy the following properties:
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3.1 Properties of the level raising operators

Proposition (M., 2016)

The operators U(l) map Jk,L to Jk,L(l2) and the V (l) map Jk,L to Jk,L(l).
Moreover, if φ in Jk,L has the Fourier expansion

φ(τ, z) =
∑

(D,r)∈supp(L)

C(D, r)e((β(r)− D)τ + β(r , z)),

then φ|U(l) and φ|V (l) have the following Fourier expansions:

φ|U(l)(τ, z) =
∑

(D,r′)∈supp(L(l2))

r′∈lL(l2)#

C(D, lr ′)e
(
(l2β(r ′)− D)τ + l2β(r ′, z)

)

φ|V (l)(τ, z) =
∑

(D,r′′)∈supp(L(l))

∑
a|(lβ(r′′)−D),l

r′′
a
∈L(l)#

ak−1C

(
lD

a2 ,
lr ′′

a

)
,

× e
(
(lβ(r ′′)− D)τ + lβ(r ′′, z)

)
.

note that the level of L(m) is lev(L(m)) = m · lev(L).
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The proof is straight forward:
modularity of φ|U(l) follow easily from that of φ; for φ|V (l), a clever choice
of coset representatives does the job
to determine the Fourier expansions, use the fact that L# ' L(m)# as
Z-modules (r 7→ 1

m
r)

Proposition (M., 2017)

The operators U(·) and V (·) commute:

φ|U(l)|U(l ′) = φ|U(ll ′) (1)

φ|V (l ′)|U(l) = φ|U(l)|V (l ′) (2)

φ|V (l ′)|V (l) =
∑

d|gcd(l,l′)

dk−1φ|V
(
ll ′

d2

)
|U(d) (3)

The operators U(·) and V (·) commute with T (·). If l is coprime to lev(L) and
to l ′, then:

T (l)[φ|U(l ′)] = [T (l)φ]|U(l ′) (4)

T (l)[φ|V (l ′)] = [T (l)φ]|V (l ′). (5)
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the proof of (1) follows from the definition; reminder:
φ|U(l)(τ, z) = φ(τ, lz)

(2) follows from (1); reminder: V (l) depends on U(
√
l)

(3), (4) and (5) can be proved by comparing Fourier coefficients of both
sides:

(3) is, as stated in The Theory in Jacobi forms, a question of counting:
compute N(e) from∑
b|gcd(n,l)

r
b
∈L#

bk−1
∑

a|gcd
(

nl
b2
,l′

)
r
ab
∈L#

ak−1c

(
nll ′

a2b2 ,
ll ′r

ab

)
=
∑
e

N(e)ek−1c

(
nll ′

e2 ,
ll ′r

e

)

=⇒ N(e) = #

{
d : d |

(
n, l , l ′, e,

nl

e
,
nl ′

e
,
ll ′

e
,
nll ′

e2

)
and

r

e
∈ L#

}
for (4) and (5), use brute force combined with some modular arithmetic,
which uses the fact that (l , l ′) = 1 and that lev(L)L# ⊆ L for all L
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3.2 Level raising operators and Jacobi–Eisenstien series

the goal would be to show that JEis
k,L is the image of Eisenstein series

coming from lower level under combinations of U(·) and V (·) + some new
Eisenstein series and use it in

Jk,L = Sk,L

⊕
JEis
k,L

Theorem (M., 2018)

Let L = (L, β) be a positive-definite, even lattice. For every r in Iso(L) and
every l in N, the following holds:

Ek,L,r |U(l)(τ, z) =
∑

s∈( 1
l
L#)/L

ls≡r mod L

Ek,L(l2),s(τ, z),

Ek,L,r |V (l)(τ, z) =
∑

s∈Iso(L(l))

Ek,L(l),s(τ, z)
∑

a|(lβ(s),l)
ls
a
≡r mod L

ak−1.
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Proof

we saw that the singular term (terms with D = 0 in the Fourier expansion)
of Ek,L,r is given by

1
2

(
ϑL,r (τ, z) + (−1)kϑL,−r (τ, z)

)
the theta functions {ϑL,r : r ∈ Iso(L)} are linearly independent for a fixed L

ϑL,r (τ, z) :=
∑
s∈L#

s≡r mod L

e (β(s)τ + β(s, z))

for every L and every φ in Jk,L, we have Cφ(D, r) = Cφ(D ′, r ′) whenever
D = D ′ and r ≡ r ′ mod L, due to the invariance of φ with respect to the
|k,L action of L2
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in particular, this implies that

U(l) : JEis
k,L → JEis

k,L(l2) and

V (l) : JEis
k,L → JEis

k,L(l)

this result can also be used to show the following:

Proposition (M., 2018)

For every r in Iso(L), every l in N and every d in N such that d2 | l , the
following holds:

Ek,L,r |U(d)|V
(

l

d2

)
(τ, z) =

∑
x∈Iso(L(l))

Ek,L(l),x(τ, z)
∑

a|
(
lβ(x), l

d2

)
lx
da
≡r mod L

ak−1.

to prove this, apply the previous theorem and then show that∑
s∈( 1

d
L#)/L

ds≡r mod L

δ

(
s,

lx

d2a

)
= δ

(
r ,

lx

da

)
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Corollary

For every l in N, the following holds:

1
lk−1

∏
p|l

1
1 + p−(k−1)

∑
d2|l

µ(d)Ek,L,0|U(d)|V
(

l

d2

)

=
1

lk−1

∏
p|l

1
1 + p−(k−1)

∑
d2|l

µ(d)
∑

x∈( 1
l
L)/L

lβ(x)∈Z

Ek,L(l),x

∑
a|
(
lβ(x), l

d2

)
lx
da
∈L

ak−1.

this is nothing but the previous Proposition with r = 0, the observation
that

{x ∈ L(l)#/L : lx ∈ L} =

(
1
l
L

)
/L

and a strange looking “normalizing” factor; it is normalizing, because
when k is odd, both sides of the above equation vanish (this is because
Ek,L,r = (−1)kEk,L,−r )
when k is even, the coefficient corresponding to Ek,L(l),0 on the right-hand
side of the above equation is equal to one, in other words

1
lk−1

∏
p|l

1
1 + p−(k−1)

∑
d2|l

µ(d)σk−1

(
l

d2

)
= 1
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To Do

show that every Ek,L,r can be written as linear combinations of
Ek,L(1/ll′2),x |U(l ′)|V (l)

which are the “new” Eisenstein series?

Thank you!
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To Do

show that every Ek,L,r can be written as linear combinations of
Ek,L(1/ll′2),x |U(l ′)|V (l)

which are the “new” Eisenstein series?

Questions?
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