Level raising operators and Jacobi-Eisenstein series

Andreea Mocanu

The University of Nottingham

Workshop on Jacobi forms and applications
15th of March, 2018

- Setting
 - Motivation
 - Results

- the weight of a Jacobi form will be k in \mathbb{N} and the index $\underline{L}=(L, \beta)$, where:
- L is a finite rank \mathbb{Z}-module
- $\beta: L \times L \rightarrow \mathbb{Z}$ is a \mathbb{Z}-bilinear form which is:
- symmetric: $\beta(\lambda, \mu)=\beta(\lambda, \mu)$
- positive-definite: $\beta(\lambda, \lambda)>0$ unless $\lambda=0$
- even: $\beta(\lambda, \lambda) \in 2 \mathbb{Z}$
- set $\beta(\lambda):=\frac{1}{2} \beta(\lambda, \lambda)$
- the dual of $\underline{L}: L^{\#}:=\{t \in L \otimes \mathbb{Q}: \beta(\lambda, t) \in \mathbb{Z}$, for all λ in $L\}$
- the support of \underline{L} :

$$
\operatorname{supp}(\underline{L}):=\left\{(D, t): D \in \mathbb{Q}_{\leq 0}, t \in L^{\#} \text { and } D \equiv \beta(t) \bmod \mathbb{Z}\right\}
$$

- the determinant of $\underline{L}: \operatorname{det}(\underline{L}):=\left|L^{\#} / L\right|$
- the level of $\underline{L}: \operatorname{lev}(\underline{L}):=\min \left\{N \in \mathbb{N}: N \beta(t) \in \mathbb{Z}\right.$ for all t in $\left.L^{\#}\right\}$

Definition (The Jacobi group associated to \underline{L})

Define $J_{\underline{L}}(\mathbb{Z})$ to be the semi-direct product $\Gamma \ltimes L^{2}$.

- $J_{\underline{L}}(\mathbb{Z})$ acts on $\operatorname{Hol}(\mathfrak{H} \times(L \otimes \mathbb{C}) \rightarrow \mathbb{C})$:

$$
\begin{aligned}
\left.\phi\right|_{k, \underline{L}}(A,(\lambda, y))(\tau, z) & :=\phi\left(A \tau, \frac{z+\lambda \tau+\mu}{c \tau+d}\right)(c \tau+d)^{-k} \\
& \times e\left(\frac{-c \beta(z+\lambda \tau+\mu)}{c \tau+d}+\tau \beta(\lambda)+\beta(\lambda, z)\right)
\end{aligned}
$$

Definition (Jacobi form of lattice index)

A function ϕ in $\operatorname{Hol}(\mathfrak{H} \times(L \otimes \mathbb{C}) \rightarrow \mathbb{C})$ is called a Jacobi form of weight k and index \underline{L} if:
(1) $\left.\phi\right|_{k, \underline{L}}(A, h)=\phi$, for all (A, h) in $J_{\underline{L}}(\mathbb{Z})$;
(2) ϕ has a Fourier expansion of the form

$$
\phi(\tau, z)=\sum_{(D, t) \in \operatorname{supp}(\underline{L})} C(D, t) e((\beta(t)-D) \tau+\beta(t, z)) .
$$

- for fixed k and \underline{L}, denote the \mathbb{C}-vector space of all such functions by $J_{k, \underline{L}}$
- as a consequence of results of Boylan (2015), $J_{k, \underline{L}}=\{0\}$ if $k<\frac{\mathrm{rk}(\underline{L})}{2}$
- define Iso $(\underline{L}):=\left\{r \in L^{\#} / L: \beta(r) \in \mathbb{Z}\right\}$
- define $J_{\underline{L}}(\mathbb{Z})_{\infty}:=\left\{\left(\left(\begin{array}{cc}1 & n \\ 0 & 1\end{array}\right),(0, \mu)\right): n \in \mathbb{Z}, \mu \in L\right\}$

Definition (Jacobi-Eisenstein series)

For every r in $\operatorname{Iso}(\underline{L})$, let $g_{\underline{L}, r}(\tau, z):=e(\beta(r) \tau+\beta(r, z))$ and define the Eisenstein series of weight k and index \underline{L} associated to r as

$$
E_{k, \underline{L}, r}(\tau, z):=\left.\frac{1}{2} \sum_{\gamma \in J_{\underline{L}}(\mathbb{Z})_{\infty} \backslash J_{\underline{J^{\prime}}}(\mathbb{Z})} g_{\underline{L}, r}\right|_{k, \underline{L}} \gamma(\tau, z)
$$

- defined by Ajouz (2015); it is absolutely and uniformly convergent on compact subsets of $\mathfrak{H} \times(L \otimes \mathbb{C})$ for $k>\frac{\mathrm{rk}(\underline{L})}{2}+2$
- Jacobi cusp forms have the following type of Fourier expansion:

$$
\phi(\tau, z)=\sum_{\substack{(D, t) \in \operatorname{supp}(L) \\ D<0}} C(D, t) e((\beta(t)-D) \tau+\beta(t, z))
$$

- denote the subspace of cusp forms of weight k and index \underline{L} by $S_{k, \underline{L}}$

Theorem (M., 2017)

The Eisenstein series $E_{k, \underline{L}, r}$ is an element of $J_{k, \underline{L}}$ and it is orthogonal to $S_{k, \underline{L}}$ with respect to a suitably defined Petersson scalar product. It has the following Fourier expansion:

$$
\begin{aligned}
E_{k, L, r}(\tau, z) & =\frac{1}{2}\left(\vartheta_{\vartheta_{L, r}(\tau, z)}+(-1)^{k} \vartheta_{L,-r}(\tau, z)\right) \\
& +\sum_{\substack{(D, t) \in \operatorname{supp}(\underline{L}) \\
D<0}} C_{k, L, r}(D, t) e((\beta(t)-D) \tau+\beta(t, z)),
\end{aligned}
$$

where

$$
\begin{aligned}
C_{k, \underline{L}, r}(D, t) & =\frac{(2 \pi)^{k-\frac{r k(L)}{2}} i^{k}}{2 \operatorname{det}(\underline{L})^{\frac{1}{2}} \Gamma\left(k-\frac{r k(\underline{L})}{2}\right)}(-D)^{k-\frac{r k(L)}{2}-1} \\
& \times \sum_{c \geq 1} c^{-k}\left(H_{\underline{L}, c}(r, D, t)+(-1)^{k} H_{\underline{L}, c}(-r, D, t)\right),
\end{aligned}
$$

where $H_{L, c}(r, D, t)$ is the lattice sum

$$
\sum_{/ c l, d \in(\mathbb{Z} / c \mathbb{Z})^{\times}} e_{c}\left(\beta(\lambda+r) d^{-1}+(\beta(t)-D) d+\beta(t, \lambda+r)\right) .
$$

- they were defined for Jacobi forms of scalar index by Eichler \& Zagier (1985), where they were used to develop a theory of newforms

Definition

For every I in \mathbb{N}, define the operator $U(I)$ on the space $J_{k, \underline{L}}$ as:

$$
\phi \mid U(I)(\tau, z):=\phi(\tau, I z)
$$

Definition

For every I in \mathbb{N}, define the operator $V(I)$ on the space $J_{k, \underline{L}}$ as:

$$
\phi\left|V(I)(\tau, z)=I^{\frac{k}{2}-1} \sum_{\substack{M \in \Gamma \backslash \mathcal{M}_{\mathbf{2}}(\mathbb{Z}) \\ \operatorname{det}(M)=I}}\left(\left.\phi\right|_{k, \underline{L}} M\right)\right| U(\sqrt{I})(\tau, z) .
$$

- these operators were defined by Gritsenko (1988) as double coset operators and $V(\cdot)$ was also defined and used in Cléry \& Gritsenko (2013)
- the operator $U(I)$ corresponds to the endomorphism "multiplication by I " on $\mathcal{T}_{\tau, \underline{L}}=(L \otimes \mathbb{C}) /(L \tau \oplus L)$
- assume that $L \tau \oplus L$ is contained in L^{\prime} with index I; if $\left\{\omega_{1}, \omega_{2}\right\}$ is a basis for L^{\prime}, then there exists $M \in \mathcal{M}_{2}(\mathbb{Z})$ with determinant I, such that $\binom{\tau}{1}=M\binom{\omega_{1}}{\omega_{2}}$
- if $M=\left(\begin{array}{c}a \\ a \\ c \\ c\end{array}\right)$, then $\left(\left.\phi\right|_{k, \underline{L}} M\right) \mid U(\sqrt{ })(\tau, z)$ contains a factor of $\phi\left(M \tau, \frac{c_{z} d}{c \tau+d}\right)$
- think of $U(I): M_{k}(N) \rightarrow M_{k}(I N)$,

$$
U(I) f(\tau)=\sum a(I n) q^{n}
$$

and of $V(I): M_{k}(N) \rightarrow M_{k}(I N)$

$$
V(I) f(\tau)=\sum a(n) q^{\prime n}
$$

- since Jacobi-Eisenstein series are perpendicular to cusp forms, we obtain the following decomposition:

$$
J_{k, \underline{L}}=S_{k, \underline{L}} \oplus J_{k, \underline{L}}^{E i s}
$$

- we are interested in a theory of newforms with respect to Hecke operators (defined by Ajouz (2015)): for every I in \mathbb{N}, which is coprime to $\operatorname{lev}(\underline{L})$, define a double coset operator on $J_{k, \underline{L}}$

$$
T_{0}(I) \phi(\tau, z):=\left.I^{k-2-r k(\underline{L})} \sum_{g \in J_{\underline{L}}(\mathbb{Z}) \backslash J_{\underline{L}}(\mathbb{Z})\left(\begin{array}{cc}
1^{-1} \\
0 & 0
\end{array}\right) J_{\underline{L}}(\mathbb{Z})} \phi\right|_{k, \underline{L}} g(\tau, z)
$$

- the twists of $E_{k, L, r}$ by primitive Dirichlet characters modulo divisors of N_{r} (order of r in $L^{\#} / L$) form a basis of eigenforms of $J_{k, L}^{\text {Eis }}$

$$
E_{k, \underline{L}, r, \chi}(\tau, z):=\sum_{d \in \mathbb{Z}_{N_{r}}^{\times}} \chi(d) E_{k, \underline{L}, d r}(\tau, z)
$$

- there are two ways to think about newforms:
- Jacobi forms coming from lattices of lower level

$$
\text { e.g. } J_{k, \underline{L}} \simeq \mathfrak{M}_{2 k-1-\mathrm{rk}(\underline{L})}(\operatorname{lev}(\underline{L}) / 4)^{-} \text {for } \underline{L} \simeq(\mathbb{Z},(x, y) \mapsto \operatorname{det}(\underline{L}) x y)
$$

- Jacobi forms coming from sublattices (i.e. $\underline{L}=\underline{L}_{1} \oplus \underline{L}_{2}$)
- linear operators give structure to a finite dimensional vector space (think basis of Hecke eigenforms) and $U(\cdot)$ and $V(\cdot)$ are "predecesors" of $T(\cdot)$
- they facilitate lifts between different types of modular forms; for example, $V(\cdot)$ was used by Cléry \& Gritsenko (2013) to construct maps

$$
J_{k, \underline{L}(m)}(\xi) \rightarrow M_{k}\left(\tilde{O}^{+}\left(L^{\prime}\right)\right)
$$

where $\underline{L}(m)=(L, m \cdot \beta)$

- they have algebraic interpretations in terms of the surfaces that our modular forms underlie
- the level raising operators satisfy the following properties:

Proposition (M., 2016)

The operators $U(I) \operatorname{map} J_{k, \underline{L}}$ to $J_{k, \underline{L}\left(I^{2}\right)}$ and the $V(I) \operatorname{map} J_{k, \underline{L}}$ to $J_{k, \underline{L}(I)}$. Moreover, if ϕ in $J_{k, \underline{L}}$ has the Fourier expansion

$$
\phi(\tau, z)=\sum_{(D, r) \in \operatorname{supp}(\underline{L})} C(D, r) e((\beta(r)-D) \tau+\beta(r, z)),
$$

then $\phi \mid U(I)$ and $\phi \mid V(I)$ have the following Fourier expansions:

$$
\begin{aligned}
\phi \mid U(I)(\tau, z) & =\sum_{\substack{\left(D, r^{\prime}\right) \in \operatorname{supp}\left(L\left(I^{2}\right)\right) \\
r^{\prime} \in L L\left(I^{2}\right)^{\#}}} C\left(D, I r^{\prime}\right) e\left(\left(I^{2} \beta\left(r^{\prime}\right)-D\right) \tau+I^{2} \beta\left(r^{\prime}, z\right)\right) \\
\phi \mid V(I)(\tau, z) & =\sum_{\substack{\left.\left(D, r^{\prime \prime}\right) \in \operatorname{supp}(L(I))\right)}} \sum_{\substack{a \mid\left(I \beta\left(r^{\prime \prime}\right)-D\right), I \\
\frac{r^{\prime \prime}}{2} \in L(I)^{\#}}} a^{k-1} C\left(\frac{I D}{a^{2}}, \frac{I r^{\prime \prime}}{a}\right) \\
& \times e\left(\left(I \beta\left(r^{\prime \prime}\right)-D\right) \tau+I \beta\left(r^{\prime \prime}, z\right)\right)
\end{aligned}
$$

- note that the level of $\underline{L}(m)$ is $\operatorname{lev}(\underline{L}(m))=m \cdot \operatorname{lev}(\underline{L})$.
- The proof is straight forward:
- modularity of $\phi \mid U(I)$ follow easily from that of ϕ; for $\phi \mid V(I)$, a clever choice of coset representatives does the job
- to determine the Fourier expansions, use the fact that $L^{\#} \simeq L(m)^{\#}$ as \mathbb{Z}-modules $\left(r \mapsto \frac{1}{m} r\right.$)

Proposition (M., 2017)

The operators $U(\cdot)$ and $V(\cdot)$ commute:

$$
\begin{align*}
& \phi|U(I)| U\left(I^{\prime}\right)=\phi \mid U\left(I I^{\prime}\right) \tag{1}\\
& \phi\left|V\left(I^{\prime}\right)\right| U(I)=\phi|U(I)| V\left(I^{\prime}\right) \tag{2}\\
& \phi\left|V\left(I^{\prime}\right)\right| V(I)=\sum_{d \mid \operatorname{gcd}\left(I, I^{\prime}\right)} d^{k-1} \phi\left|V\left(\frac{I I^{\prime}}{d^{2}}\right)\right| U(d) \tag{3}
\end{align*}
$$

The operators $U(\cdot)$ and $V(\cdot)$ commute with $T(\cdot)$. If I is coprime to $\operatorname{lev}(\underline{L})$ and to I^{\prime}, then:

$$
\begin{align*}
T(I)\left[\phi \mid U\left(I^{\prime}\right)\right] & =[T(I) \phi] \mid U\left(I^{\prime}\right) \tag{4}\\
T(I)\left[\phi \mid V\left(I^{\prime}\right)\right] & =[T(I) \phi] \mid V\left(I^{\prime}\right) . \tag{5}
\end{align*}
$$

- the proof of (1) follows from the definition; reminder:

$$
\phi \mid U(I)(\tau, z)=\phi(\tau, I z)
$$

- (2) follows from (1); reminder: $V(I)$ depends on $U(\sqrt{I})$
- (3), (4) and (5) can be proved by comparing Fourier coefficients of both sides:
- (3) is, as stated in The Theory in Jacobi forms, a question of counting: compute $N(e)$ from

$$
\begin{aligned}
& \sum_{\substack{b \left\lvert\, \operatorname{gcd}(n, l) \\
\frac{r}{b} \in L^{\#}\right.}} b^{k-1} \sum_{\substack{a \left\lvert\, \operatorname{gcd}\left(\frac{n I}{b^{2}}, l^{\prime}\right)\right.}} a^{k-1} c\left(\frac{n I I^{\prime}}{a^{2} b^{2}}, \frac{I I^{\prime} r}{a b}\right)=\sum_{e} N(e) e^{k-1} c\left(\frac{n I I^{\prime}}{e^{2}}, \frac{\| I^{\prime} r}{e}\right) \\
& \Longrightarrow N(e)=\#\left\{d: d \left\lvert\,\left(n, I, I^{\prime}, e, \frac{n I}{e}, \frac{n I^{\prime}}{e}, \frac{\| I^{\prime}}{e}, \frac{n I I^{\prime}}{e^{2}}\right)\right. \text { and } \frac{r}{e} \in L^{\#}\right\}
\end{aligned}
$$

- for (4) and (5), use brute force combined with some modular arithmetic, which uses the fact that $\left(I, I^{\prime}\right)=1$ and that $\operatorname{lev}(\underline{L}) L^{\#} \subseteq L$ for all L
- the goal would be to show that $J_{k, \underline{L}}^{E i s}$ is the image of Eisenstein series coming from lower level under combinations of $U(\cdot)$ and $V(\cdot)+$ some new Eisenstein series and use it in

$$
J_{k, \underline{L}}=S_{k, \underline{L}} \bigoplus J_{k, \underline{L}}^{E i s}
$$

Theorem (M., 2018)

Let $\underline{L}=(L, \beta)$ be a positive-definite, even lattice. For every r in Iso (\underline{L}) and every I in \mathbb{N}, the following holds:

$$
\begin{aligned}
& E_{k, \underline{L}, r} \left\lvert\, U(I)(\tau, z)=\sum_{\substack{s \in\left(\frac{1}{1} L^{\#}\right) / L \\
I s \equiv r \bmod L}} E_{k, \underline{L}\left(I^{2}\right), s}(\tau, z)\right., \\
& E_{k, \underline{L}, r} \left\lvert\, V(I)(\tau, z)=\sum_{s \in \operatorname{Iso}(L(I))} E_{k, \underline{L}(I), s}(\tau, z) \sum_{\substack{a \left\lvert\,(I \beta(s), I) \\
\frac{I}{2} \equiv r \bmod L\right.}} a^{k-1} .\right.
\end{aligned}
$$

- we saw that the singular term (terms with $D=0$ in the Fourier expansion) of $E_{k, \underline{L}, r}$ is given by

$$
\frac{1}{2}\left(\vartheta_{\underline{L}, r}(\tau, z)+(-1)^{k} \vartheta_{\underline{L},-r}(\tau, z)\right)
$$

- the theta functions $\left\{\vartheta_{\underline{L}, r}: r \in \operatorname{Iso}(\underline{L})\right\}$ are linearly independent for a fixed \underline{L}

$$
\vartheta_{\underline{L}, r}(\tau, z):=\sum_{\substack{s \in L^{\#} \\ s \equiv r \bmod L}} e(\beta(s) \tau+\beta(s, z))
$$

- for every \underline{L} and every ϕ in $J_{k, \underline{L}}$, we have $C_{\phi}(D, r)=C_{\phi}\left(D^{\prime}, r^{\prime}\right)$ whenever $D=D^{\prime}$ and $r \equiv r^{\prime} \bmod L$, due to the invariance of ϕ with respect to the $\left.\right|_{k, \underline{L}}$ action of L^{2}
- in particular, this implies that

$$
\begin{aligned}
& U(I): J_{k, \underline{L}}^{\text {Eis }} \rightarrow J_{k, \underline{L}\left(I^{2}\right)}^{\text {Eis }} \text { and } \\
& V(I): J_{k, \underline{L}}^{\text {Eis }} \rightarrow J_{k, \underline{L}(I)}^{\text {Eis }}
\end{aligned}
$$

- this result can also be used to show the following:

Proposition (M., 2018)

For every r in Iso(\underline{L}), every I in \mathbb{N} and every d in \mathbb{N} such that $d^{2} \mid I$, the following holds:

$$
E_{k, L, r}|U(d)| V\left(\frac{l}{d^{2}}\right)(\tau, z)=\sum_{x \in \operatorname{Iso}(\underline{L}(1))} E_{k, \underline{L}(I), x}(\tau, z) \sum_{\substack{a \left\lvert\,\left(\mid \beta(x), \frac{1}{d^{2}}\right) \\ \frac{\mid x}{d a} \equiv r \bmod L\right.}} a^{k-1} .
$$

- to prove this, apply the previous theorem and then show that

$$
\sum_{\substack{s \in\left(\frac{1}{d} L^{\#}\right) / L \\ d s \equiv r \bmod L}} \delta\left(s, \frac{I x}{d^{2} a}\right)=\delta\left(r, \frac{I x}{d a}\right)
$$

Corollary

For every I in \mathbb{N}, the following holds:

$$
\begin{aligned}
& \frac{1}{I^{k-1}} \prod_{p \mid I} \frac{1}{1+p^{-(k-1)}} \sum_{d^{2} \mid I} \mu(d) E_{k, L, 0}|U(d)| V\left(\frac{l}{d^{2}}\right) \\
& =\frac{1}{\left.\right|^{k-1}} \prod_{p \mid I} \frac{1}{1+p^{-(k-1)}} \sum_{d^{2} \mid I} \mu(d) \sum_{\substack{\left.x \in\left(\frac{1}{1} L\right) / L \\
\right\rvert\, \beta(x) \in \mathbb{Z}}} E_{k, L(I), x} \sum_{\substack{a \left\lvert\,\left(\mid \beta(x), \frac{l}{d^{2}}\right)\right.}} a^{k-1} .
\end{aligned}
$$

- this is nothing but the previous Proposition with $r=0$, the observation that

$$
\left\{x \in \underline{L}(I)^{\#} / L: I x \in L\right\}=\left(\frac{1}{I} L\right) / L
$$

and a strange looking "normalizing" factor; it is normalizing, because

- when k is odd, both sides of the above equation vanish (this is because

$$
\left.E_{k, L, r}=(-1)^{k} E_{k, L,-r}\right)
$$

- when k is even, the coefficient corresponding to $E_{k, L(I), 0}$ on the right-hand side of the above equation is equal to one, in other words

$$
\frac{1}{\mid k-1} \prod_{p \mid I} \frac{1}{1+p^{-(k-1)}} \sum_{d^{2} \mid I} \mu(d) \sigma_{k-1}\left(\frac{l}{d^{2}}\right)=1
$$

- show that every $E_{k, L, r}$ can be written as linear combinations of $E_{k, \underline{L}\left(1 / / I^{2}\right), \times}\left|U\left(I^{\prime}\right)\right| V(I)$
- which are the "new" Eisenstein series?

Thank you!

- show that every $E_{k, L, r}$ can be written as linear combinations of $E_{k, \underline{L}\left(1 / /{ }^{\prime} \mathbf{2}\right), x}\left|U\left(I^{\prime}\right)\right| V(I)$
- which are the "new" Eisenstein series?

Questions?

