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Structure of the talk

@ Setup
@ Jacobi forms and elliptic modular forms

o Jacobi forms of index D,
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1. Setup

o SLo(Z) :={(2}) € Ma(Z) : ad — be = 1}
o me N FU(Tn) = SL?( ) {(Omodm )}
={zeC:3(2) >0}

o SLy(Z) & §: (2h) 7=t

Definition

Fix k in N. An elliptic modular form of weight k with respect to
I'g(m) is a holomorphic function f : $ — C which satisfies

/ ( : ”) = (er + D*F(7)

ct +d

o M. (m) := Spanc{f as above} is finite-dimensional
o e(z) := €2™*, every f as above has a Fourier expansion:

F(r) = Y} ap(n)e(nr)

nz=0

o Sp(m) = {f e My(m):ar(0) =0}
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o fix L =(L,p):
o I ~ 7rk(L)
o f:LxL—Zis
o positive-definite: B(A,\) > 0 for all Ain L
o even: B(A):= w EZ

JE = SLy(Z) x L?

(1,3) € 5 x (L &2 C)

JE e H x (L®zC): [(‘gg),()\,m] (1,3) := (%,%)
o L7 :={te L®zQ:B(t,\) e Zforall Xin L}

© ©

©

Definition
Fix k in N. A Jacobi form of weight k and index L is a holomorphic
function ¢ : $ x (L ®z C) — C which satisfies
0 ¢ (1(r,3)) = (7 + d) e (LLETH — r5(3) - B(),3))
xo(7,3)
Q p(ra)= D, Cu(D,t)e((B(t) — D)7 + B(t,3))-

DeQ«o ,tEL#
D=p(t) mod Z
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o Jj. 1 := Spanc{p as above} is finite-dimensional
o Sip=1{pediL:Cy(0,t) =0Vt e L s.t. B(t) € Z}

If L is unimodular, then

I(,3) == Y e (BT +B(\.3))

AeL

is a Jacobi form of weight ° ( ) and index L.

o set Iy :={(} 1) : n € Z} < Ty(m) and define the weight k
Eisenstein series

Ei() ;:% S (er+d)t e My(m)

(g g)erw\r

o My(1) = Si(1) ® CE}
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osetJoo.—{[( "), (0,p)] :neZpe L} < JE

o define gre(7,3) := e(B(t)T + B(t, 2)) (t € LF)

o for every r in L¥ s.t. B(r) € Z, define the Eisenstein series of
weight k and index L associated with r

1 p—
By pr(7:3) =35 D gpe((ma))er + d)7F
yeT\IE

‘e (—c,@’(5+)\r+,u)
ct +d

FTBO) + m,a))

o JI'; :=Spang {Ey, : v € L#/L and B(r) € Z}

Theorem (M. 2017)

When k > @ + 2, the Eisenstein series are elements of Ji,, and

.
JkL = Sk,L ® Ji I
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Hecke theory

o (Atkin—Lehner, 1970): 7'(I

o T(m)T(n)f = T(n)T(m
o (T()f,9)=<{f;T(1)gy
o T(l) : Sp(m) — Sk(m)

o (Ajouz, 2015): T(1) : Jpp = JrL
o T(m)T(n)p = T(n)T(m)p
o (T(l)p, vy = (o, T(D)y
) T(l) S’%L — Sk7L

o a Hecke eigenformis f in My(m) s.t. T(1)f = Xe(D) f
o a Hecke eigenformis ¢ in Ji s.t. T()p = A(1)g

)+ My(m) — My(m) (Il € N)
)f

>

The space My(m) has a basis of Hecke eigenforms.

The space Jy, 1, has a basis of Hecke eigenforms. I
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on|mandd|™, ge My(n) = g(dr) e My(m)
o My(m) = M®¥(m) @ M9 (m), compatible with Hecke ops.
o a normalized newform is a Hecke eigenform in Sp®%(m) s.t.
ar(l) =1
o if f is a normalized newform, then f(7) = Z As(n)e(nr)

nz=l

Remark

There does not exist a complete theory of newforms for Jacobi
forms of lattice index.

Modularity Theorem (Wiles et. al.)

Elliptic curves over Q are “related to” normalized newforms of
weight 2.

Fermat's Last Theorem (Wiles, 1994)

No three positive integers a, b, and c satisfy the equation
a” + b" = c" for any integer n > 3.
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2. Jacobi forms and elliptic modular forms

o if fis a Hecke eigenform, then (s Z Afr(n
nz=1

o if ¢ is a Hecke eigenform, then /(s Z Ao
nz=1

Langlands Program

It is a series of conjectures about connections between geometry
and number theory.

(arithmetic L-functions) «~~ (automorphic L-functions)

o fe Mi(m) is a Hecke eigenform:
Lis, /)= ]] (1= Xplp)p~ +p 71727
p prime
o rk(L) is odd and ¢ € Ji 1, is a Hecke eigenform:
L(s,p) = [] (1= Xp(p)p™* + pP=rk{B)m225)~1

p prime
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Liftings

o lev(L) := min{N € N: NB(t) € Z,Vt in L#}

Theorem (Ajouz, 2015)

If rk(L) is odd and 2k > rk(L) + 3, then there exist liftings from

Sk,L to May_nr)—1(lev(L)/2) which commute with Hecke
operators.

o My(m) =M, (m) (—B]Wk+ (m)

fEMIi(m) = Lu(s, f) = eLm(k —s, f)

Birch—Swinnerton-Dyer Conjecture

If E is an elliptic curve, then the rank of the group of rational
points of E is the order of the zero of L(s, E) at s = 1.

o Miy(m) := M (m) @ {very special oldforms}
o My (m) :=M(m) n Mg (m)
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Conjecture (*) (Ajouz, 2015)

If rk(L) is odd, then there exists an isomorphism

Jir = My pry—1(ev(L)/4)

which commutes with Hecke operators, where e = — if rk(L) =
or 3 mod 8 and € = + otherwise.

o (x) was proved for rk(L) = 1 by Skoruppa—Zagier (1988)

o Mgk_g(l) (?M]:‘(Fg)
ShimuraJvl {Maa[&
M () G zagar T

Eichler-Zagier

o can /ift Jacobi forms to reflective modular forms (RMFs)

o some RMFs are automorphic discriminants of moduli spaces
o Fourier coefficients of a RMF v generators and relations of
Lorentzian Kac—Moody algebras
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3. Jacobi forms of index D,

o D, ={(x1,...,xn) €L" : x1 + -+ + x, € 2}
o Euclidean bilinear form: (x,y) := x1y1 + -+ + Tnyn
o n is odd

If m =n mod 8, then Jk+[%],Dn By Jk+[%],Dm-

o enough to consider n =1,3,5and 7

There exists a differential operator 0 : Jg. 1, = Jg12.L. I

If f e My, (1) and ¢ € Jy, 1, then fo € Jy, 4k, L-
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Generators for even weights

° Egz{QZ:(EEZSOF(L’E(Z+%)8,(E1+"'+$862Z}

o ap: Dy — Eg, (x1,...,2,) = (0,...,0,21,...,2,)

If p € Jy g, then o(7,n(3)) € Ji,D,,-

o consider Vg, (7,3) = Z e (@T + (A,g)) and define
ANeEg
Ey.p,(7,3) = Vs (7, ()
EG,Dn (7—73) = arﬁEs (7—7 an(3))
By p,(7,5) := 0*0p, (7, an(3))

Theorem (Boylan—Skoruppa, in preparation)
Jok, D, = Mo_4(1)Ey p, ® Mor—6(1)Es p,, ® Mar_g(1)Es p,
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Generators for odd weights

o (1) :=e(7/24) H(l — e(n7)) has weight %

nz1

n?  nz
o Hr,z2) = 2 (%4) e (TF + 7) has weight 1 and index

nez

(Z, (z,y) > 2 x z2y)

For1 < n <7, the function

Y12-n,D, (T,3) = 77(7')24_3"19(7', 21) ... (T, zn)

is an element of S12_p p, (3= (21,...,2n)).

Theorem (Boylan—Skoruppa, in preparation)

Jok+1,0,, = Mog—114n(1)%12-n,D,
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Strategy

o lev(D,) =8

(*) = Jip, ~ sn-(2) n=1.3
P = oms . (2), n=5.7

o for fixed odd n and every weight:
Q find formulas for Fourier coefficients of generators (by hand)
Q find basis of Hecke eigenforms (by hand/use SageMath)
T(l)(p _ CT(I)LP(D,T)
N Cy(D,r)

Q if ¢ is a Hecke eigenform: A, (/) =

(implement item 1 in SageMath)
Q compare eigenvalues with those of elliptic modular forms
(available on the LMFDB)

Conjecture (x) = Ji.p, ~ Ji+1,05 and Ji ps ~ Jit1.D;-
But Boylan-Skoruppa = this is false!

o e.g. Ji1,p, is 1-dim and Ji2 p, is 3-dim

Andreea Mocanu Jacobi forms and elliptic modular forms



Weight 4

o Jyp, ~CEyp,

O Fourier coefficients are representation numbers of quadratic

forms and
Eyp, =FE4p, 0
Qv
C D,r
Q (D,r) =(-1,(0,0,0)) in Ag, ,, (1) = TWE,,py (D7)

— =3 gjves
CE4’D3 (D,r) g€

l 113 5 7 9 11 13 15
ABip, (1) || 1|28 | 126 | 344 | 757 | 1332 | 2198 | 3528
Q the eigenvalues match

E4(1) =1/240 + (1) + 9e(27) + 28¢(37) + 73 e(47) 4+ 126 e(57)
+252e(67) 4+ 344 e(7T) + 585 e(87) + 757 e(97)
+1134e(107) + 1332 e(117) + 2044 (127) + 2198 e(137)
+ 3096 e(147) + 3524 e(157) + ...
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Summary

° J"ld = {f € Ji,p,, :eigenv. of f match those of ell. oldforms}

° J”ew :={f € Jk,p,, : eigenv. of f match those of ell. newforms}
° results in The Table suggest that

TR by = TR py ~ My (1) = Myt (2)
T by =T by ~ My (1) = My (2)
it py =Tk py = My (2) = My (2),
JRES b SRS b~ Myt T (2) = My (2)

o Skoruppa—Zagier (1988):

Jk+1,D1 = Qﬁ;k(Q) = Manew,—@) @ M27€(1)
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Conjecture (M. 2019)
For every k > 2, the following holds:

Tht2,ps =D (2) @ MAST(2),
Jii3.0s SIMIET(2) @ MG (2),
Jhra,p, =25, (2)

and these isomorphisms are Hecke equivariant.

Lemma (M. 2019)
For every k > 2, the following holds:

dim(Ji42,p,) = dim(DGe"(2)) + dim(M" " (2)),
dim(Jy13.p;) = dim(MGEH(2)) + dim(MGD(2)) and
dim(Jk+4’D7) = dlm(f)ﬁ;k(2))
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The proof of the lemma uses:

o dimension formulas for My, (1), from which in turn we obtain
dimension formulas for J; p,

o dimension formulas for Ms(2), from which in turn we obtain
dimension formulas for My (2)™" = Sop(2)™Y

o the fact that May(2)"" = Moy (2)"0 @ My, (2)"0,
combined with the formula

dim (Mg (2)) =

dim(M" ™ (2)), k= 2,3 mod 4,
dim(M3"7(2)) + 1, otherwise
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o make experimental results precise

@ more computations
o newform theory

o trace formula for Jacobi forms of lattice index

Thank you!
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