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Abstract

Jacobi forms arise naturally in number theory in several ways: theta series arise
as functions of lattices, Siegel modular forms give rise to Jacobi forms through their
Fourier—Jacobi expansion and the largest Mathieu group gives rise to semi-holomorphic
MaalB—Jacobi forms, for example. Jacobi forms of lattice index have applications in the
theory of reflective modular forms and that of vertex operator algebras, among other
areas.

Poincaré and Eisenstein series are building blocks for every type of automorphic
forms. We define Poincaré series for Jacobi forms of lattice index and show that they
reproduce Fourier coeflicients of cusp forms under the Petersson scalar product. We
compute the Fourier expansions of Poincaré and Eisenstein series and give an explicit
formula for the Fourier coefficients of the trivial Eisenstein series in terms of values of
Dirichlet L-functions at negative integers. For even weight and fixed index, we obtain
non-trivial linear relations between the Fourier coefficients of non-trivial Eisenstein se-
ries and those of the trivial one. This result is used to obtain formulas for the Fourier
coeflicients of Eisenstein series associated with isotropic elements of small order.

A more efficient way of breaking down a given space of automorphic forms is into
its oldspace and its newspace. We study the linear operators leading to a theory of
newforms for Jacobi forms of lattice index, namely Hecke operators, operators arising
from the action of the orthogonal group of the discriminant module associated with the
lattice in the index and level raising operators. We show that these operators commute
with one another and are therefore suitable to define a newform theory. We define the
level raising operators of type U([) (for every isotropic subgroup / of the discriminant
module associated with the lattice in the index) and show that they preserve cusp forms
and Eisenstein series. We give a formula for the action of the level raising operators
U(I) and V(l) and operators W(s) arising from the action of the orthogonal group on
cusp forms and Eisenstein series. We obtain a description of some of the oldforms in a
given space of Jacobi forms using these operators and the relation between Jacobi forms
and vector-valued modular forms for the dual of the Weil representation.
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Introduction

This thesis concerns a certain generalization of elliptic modular forms called Jacobi
forms of lattice index. Interest in Jacobi forms has increased in recent years due to
their numerous applications to number theory, algebraic geometry and string theory.
Computing Jacobi forms gives direct information on the Fourier coefficients of half-
integral weight modular forms [RSST16]], they play a part in the Mirror Symmetry
conjecture for K3 surfaces [GN96] and a certain type of Jacobi forms can be the elliptic
genus of Calabi—Yau manifolds [Gri91]], to name some of these applications.

The arithmetic theory of Jacobi forms of scalar index was established in [EZ85].
In this book, the authors analyse Eisenstein series and cusp forms, compute the Taylor
expansions of Jacobi forms, define Hecke operators on these functions and, last but not
least, discuss the relation between Jacobi forms and half-integral weight elliptic modu-
lar forms, vector-valued modular forms and Siegel modular forms. Since then, several
generalizations of Jacobi forms have been studied, such as Siegel-Jacobi forms [Zie89],
Jacobi forms of lattice index [Gri88|] or Jacobi forms over number fields [Boy15]].

Let k be a positive integer and let L = (L, 5) be a positive-definite, even lattice over
Z. By a Jacobi form of weight k and index L we mean a holomorhic function of two
variables (a modular variable denoted by 7 and an abelian variable denoted by z), which
is invariant with respect to a certain action of the integral Jacobi group associated with
L and which has a prescribed Fourier expansion (see Definition [I.23)). These functions
were introduced in [Gri88] as the Fourier—Jacobi coefficients of orthogonal modular
forms. They have applications in the theory of reflective modular forms [Gril8|] and
that of vertex operator algebras [KM15], among other areas.

Our goal is to investigate the relation between Jacobi forms of lattice index and
elliptic modular forms. This would enable the transfer of information and mathematical
tools from one side to the other. Lifts of Jacobi forms to other type of automorphic forms
often have special properties, for example their Fourier coefficients satisfy simple linear
relations [Maa79], or their L-functions satisfy certain vanishing properties [EEZ83].

This problem was solved for Jacobi forms of scalar index in [SZ88]], where algebraic
lifting maps were defined between the former and elliptic modular forms, using the
action of Hecke operators on the Fourier coefficients of Jacobi forms. Hecke operators
were defined in [EZ83] only for good primes (i.e. primes not dividing the index).
As a result, the proof that a linear combination of these maps defines an isomorphism
between Jacobi forms of scalar index and a certain space of elliptic modular forms
utilizes heavy tools, such as trace formulas and a theory of newforms on either side. To
this end, in this thesis we study the linear operators which should lead to a theory of
newforms for Jacobi forms of lattice index, namely Hecke operators, operators arising
from the action of the orthogonal group of the discriminant module associated with the
lattice in the index (see Chapter [3]) and level raising operators (see Chapter H)).

In [Bri06], the author constructs lifting maps similar to those in [SZ88] from spaces
of Jacobi forms of matrix index to spaces of elliptic modular forms. In addition, they
define maps in the opposite direction and prove that, when the dimension of the ma-
trix in the index is congruent to 1 modulo 8, these maps are adjoint with respect to the

vii



viii INTRODUCTION

Petersson scalar products on the two underlying spaces. The proof relies on the con-
struction of a holomorphic kernel function for the two maps and on the fact that this
kernel function can be expressed as a linear combination of Jacobi—Poincaré series of
matrix index. Eisenstein and Poincaré series are the most simple examples of modular
forms. They are obtained by taking the average of a function over a group (modulo
a parabolic subgroup) and hence are invariant under the group action by construction.
They satisfy the important property of reproducing Fourier coefficients of cusp forms
under a suitably defined scalar product and this is a crucial fact used in [Bri06]. Fur-
thermore, while the term “newform” is usually applied to cusp forms, it is important to
define this for Eisenstein series as well, in order to obtain a complete description of the
spaces of newforms. For this reason, we study Poincaré and Eisenstein series for Jacobi
forms of lattice index in Chapter

0.1. Poincaré and Eisenstein series

To the best of the author’s knowledge, Poincaré series have not been defined in the
literature for Jacobi forms of lattice index. Let L* denote the dual of L with respect to 8
and define the following set, which is called the support of L:

supp(L) :={(D,r) : D € Q,r € L* D= B(r) mod Z}.

For every pair (D, r) in supp(L) such that D < 0, define the Poincaré series of weight k
and index L associated with the pair (D, r) as the series

Pirp(1,2) = Z gLy (T, 2),
yelG\JL

where g p, is a simple exponential function, J- denotes the integral Jacobi group asso-

ciated with L and J% is the stabilizer of the functions gL.p, inside JE. Furthermore, |; 1
is the action of J£ on Jacobi forms from Definition [1.22

In Theorem we show that Py, p, converges absolutely and uniformly on com-
pact subsets of its domain of definition under certain weight restrictions. By computing
its Fourier expansion, we show that it is a Jacobi cusp form of weight k and index
L. Its Fourier coeflicients are expressed in terms of infinite sums containing J-Bessel
functions and Gauss-type sums. Furthermore, the series Py p , reproduces the Fourier
coeflicients of Jacobi cusp forms of the same weight and index under the Petersson
scalar product defined in (I.21). As a result, the set

{Pirp,:r€L?/L,D e QandB(r) = D mod Z}

generates the C-vector space of Jacobi cusp forms of weight k and index L. It is well-
known that L*/L is a finite abelian group.

The definition of Jacobi—Eisenstein series of lattice index was given in [AjolS,
§3.3], where some of their properties were studied (such as dimension formulas for
their spanning set and the fact that they are Hecke eigenforms). These functions are
indexed by isotropic elements, i.e. elements r in L* such that 8(r) € Z, and they only
depend on r modulo L. For every such r, the Eisenstein series of weight k and index L
associated with r is defined as the series

1
Eip(1,2) = 5 ZL: 8oLy (T, 2).
yeJs\JL
The convergence conditions for Ey ; , were stated in [Ajo15]]. In Theorem we prove

that it is a Jacobi form of weight k and index L, by computing its Fourier expansion. Its
Fourier coefficients are expressed in terms of infinite sums containing Gauss-type sums,
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as can be seen in (2.16). Furthermore, the series Ey 1, is orthogonal to cusp forms of
the same weight and index under the Petersson scalar product. As a result, we obtain a
direct sum decomposition of Jacobi forms with respect to the Petersson scalar product
into cusp forms and Eiesenstein series. The proofs of Theorems and are based
on the approach employed in [BK93] for the study of Siegel modular forms.

We would like to obtain a closed formula for the Fourier coefficients of Eisenstein
series. Lattice sums similar to (2.16) also arise in the Fourier expansions of Poincaré
and Eisenstein series for vector-valued modular forms and those of orthogonal modular
forms [BKO01,Wil18], as well as in trace formulas for these types of automorphic forms
[SZ89, Ma18|]. Most of the literature deals with the simplest case, which is equivalent
to taking r = 0 in L*/L. Even for Jacobi forms of scalar index, the authors of [EZ85]|
compute the Fourier expansion of Ey o and state that “(the calculation) is tedious (for
arbitrary r)”. The mathematical objects that arise in these calculations are Gauss sums
for abelian groups and representation numbers for quadratic forms. For an introduction
to these topics, the reader can consult [Doy16] and [Sch85, §5], respectively, for exam-
ple. In Lemma@, we show that E} ; o vanishes identically when k is odd. In Theorem
[2.14] we use results from [BKO1]] on L-series arising from representation numbers of
quadratic forms, in order to obtain an explicit formula for the Fourier coefficients of
Ej o when k is even. Classical number theoretical objects such as Bernoulli numbers
and values of Dirichlet L-functions at negative integers appear in this formula and we
show that the final expression is a rational number.

Let N, denote the order of an element x of L*/L. For arbitrary isotropic elements
rin L*/L, we use the existence of an isomorphism between spaces of Jacobi forms
and spaces of vector-valued modular forms and a linear operator which was defined in
[Will8], in order to prove that the Fourier coefficients of

Ek,L,mr
mezZ/N,Z

are equal to finite linear combinations of Fourier coefficients of E; 1 o. The proof relies
heavily on the connection between the Weil and the Schrodinger representations. We
use this result to compute the Fourier coefficients of Eisenstein series associated with
isotropic elements of small order in Examples

0.2. Hecke operators and the action of the orthogonal group

Hecke operators give extra structure to spaces of automorphic forms and they have
algebraic interpretations in terms of the underlying surfaces. They can be used to con-
struct equivariant lifting maps between different types of automorphic forms. Hecke
operators acting on Jacobi forms of lattice index were defined in [Ajo15, §2.5] as dou-
ble coset operators (see Definition [3.2). It was shown there that they preserve spaces
of Jacobi forms of fixed weight and index and that they are Hermitian under the Pe-
tersson scalar product. Their action on the Fourier coefficients of Jacobi forms was
computed and their multiplicative properties were studied. Furthermore, by studying
the L-functions attached to Hecke eigenforms, a relation between Jacobi forms and el-
liptic modular forms was formulated. Explicit lifting maps were also defined in some
cases and we discuss them in Subsection

The discriminant module of L is the pair D, = (L*/L, 8 mod Z). It is a finite qua-
dratic module (see Definition [[.TT)). We show in Proposition [3.20] that the orthogonal
group of Dy acts on Jacobi forms of weight k and index L from the right. In Proposition
3.22} we prove that the operators arising from the action of the orthogonal group of D,



X INTRODUCTION

are unitary with respect to the Petersson scalar product. In particular, since they com-
mute with Hecke operators and the spaces of Jacobi cusp forms of weight k and index
L are finite-dimensional, every such space has a basis of common eigenforms. We also
compute the action of these operators on Eisenstein series in Proposition (3.24] using
the fact that Eisenstein series are uniquely determined by the theta series in their sin-
gular terms. Furthermore, reflection maps in the orthogonal group of D, act on Jacobi
forms as involutions. It is well-known that, in the case of lattices of rank one, reflection
maps act on Jacobi forms in the same way that Atkin—Lehner involutions act on elliptic
modular forms (see Example [3.28).
The root lattices D,, are defined as

Drlz{(-XI"",xn)EZn:x1+"'+xn€22}.

For odd n, the generators for the spaces of Jacobi forms of index D, over the ring of
elliptic modular forms were given in [BS19]. In Section we use them to compute
the Fourier coefficients of Jacobi cusp forms of weight k and index D, (odd n) for
small values of k. We compare their Hecke eigenvalues with the eigenvalues of elliptic
modular forms in Table [3.1] in order to verify the conjectured correspondence between
Jacobi forms of odd rank lattice index and elliptic modular forms from [Ajo15, §6.1.1].
Our calculations suggest that this conjecture is partially correct and we propose a fix for
Jacobi forms of index D,,.

0.3. Level raising operators

Level raising operators are intimately connected to the theory of newforms. They
can also be used to define additive lifting maps between Jacobi forms and other type of
automorphic forms [CG13, Maa79].

Level raising operators of type U(-) arise from isometries of lattices (see Definition
@.I). Let L, = (Ly,B1) and L, = (L,,3,) be positive-definite, even lattices over Z, such
that L; ® Q = L, ® Q as modules over Q and there exists an isometry o of L, into L,.
We define a linear operator U(c) and show in Theorem [4.3|that it maps Jacobi forms of
weight k and index L, to Jacobi forms of weight k and index L,. By analysing Fourier
expansions, it is straight-forward to show that such operators preserve cusp forms and
Eisenstein series. If L, and L, are as above, then (o(L,), ;) is a sublattice of L, and
o : L, — (o(Ly),pB>) is an isomorphism of lattices. Conversely, every sublattice (M, 5,)
of L, gives rise to an isometry of (M,[,) into L, given by inclusion. In other words,
given a positive-definite, even lattice L, for every overlattice L’ of L, Jacobi forms of
weight k and index L’ are Jacobi forms of weight k and index L. Every Jacobi form of
index L’ is called an oldform of index L. In Lemma[4.19] we obtain a criterion for when
a Jacobi form is an oldform of this type.

Level raising operators of type V(-) were constructed in [Gri94] as the images of
elliptic Hecke operators under a certain homomorphism of Hecke algebras, using the
relation between Jacobi forms and orthogonal modular forms. The reader can also
consult Definition for a classical approach. In Theorem we show that, for
every [ in N, the operator V(/) maps Jacobi forms of weight k and index L = (L,f) to
Jacobi forms of weight k and index L(I) := (L, IB) and we compute the action of V(/)
on Fourier coefficients of Jacobi forms. As a corollary, the operators V() also preserve
cusp forms and Eisenstein series. The precise action of U(:) and V(-) on Eisenstein
series is given in[4.41} Every Jacobi form ¢ of index L gives rise to the oldform V(/)¢
of index L(l).

In Section 4.3] we show that U(-) and V(-) commute with each other. They also
commute with Hecke operators and with the action of well-defined reflection maps,
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implying that they are well-suited to develop a theory of newforms for Jacobi forms
of lattice index. It was shown in [AjolS, §3.3] that “twisted” Eisenstein series (see
Definition form a basis of Hecke eigenforms for Hecke operators. We obtain a
sufficient condition for twisted Eisenstein series to be oldforms in Theorem






CHAPTER 1

Preliminaries

This chapter contains the notation and elementary theory which are necessary in
order to make the results in this thesis precise. We recall the definition of Jacobi forms
of lattice index, following [Ajo15]. We discuss the connection between Jacobi forms
and vector-valued modular forms and, finally, we list some examples.

Let N, Z,Q,R and C denote the set of positive natural numbers, the ring of rational
integers, the rational number field, the real number field and the complex number field,
respectively. Set S! := {z € C : |z] = 1}. The ring of integers modulo 7 is denoted by
Zy)- For every d in Z;, denote the inverse of d modulo n by d.

Consider the branch of the complex square root with argument in (—n/2,7/2]. It
follows that the function z — +/z takes positive reals to positive reals, complex numbers
in the upper half-plane to the first quadrant and complex numbers in the lower half-
plane to the fourth quadrant. Set 75/ := (+/z)* when k € Z. Let 7 denote the complex
conjugate of a complex number z and let R(z) and J(z) denote its real and imaginary
parts, respectively. For an odd prime p and an integer a, the number (%) is the usual
Legendre symbol and, when p = 2, it is equal to O when a is even, to 1 when a =
+1 mod 8 and to —1 when @ = +3 mod 8. Define (%) to be equal to 1 and (_il) to

be equal to sign(a). Let n in Z have prime factorization up{' p}*, with u = +1. The

Kronecker symbol (ﬁ) is defined as

6= e

For every prime number p, the p-adic valuation for Q is defined as

max{v e N, p¥|n}, ifnez)\{0},
vp 1 Q = Z U {oo},vy(n) 1= {v,(a) — vy(b), ifn=%€Q\Zand

00, ifn=0.
The greatest common divisor of two integers a and b is denoted by (a, b). Write b || a if
b|aand (b, %) = 1. In sums of the form },, or 3. ,,-,, the summation is over positive
divisors only. For an integer n, set e,(x) := e*™/" and "(x) := e*™"*. Write e(x) = e;(x).

The J-Bessel function of index @ > 0 is defined by the following series expansion

around x = 0:

o (-1)" (x)2n+a
1.1 Jo = -~ 2 = .
(.D *) ;nzr(mau) 2
For every ¢ in N and m, n in Z \ {0}, define the Kloosterman sum
(1.2) S(m,n;c) = Z e.(ma+na™),
aEZé)

where a~! denotes the inverse of ¢ modulo c.
Let Z, denote the p-adic integers and let || - ||, be the p-adic norm on the p-adic
numbers, i.e. || a ||,:= p~@,
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DerntTioN 1.1 (Igusa zeta function). Let f € Z,[Xi,. .., X.]. The Igusa zeta func-
tion of f at p is defined for every s in C with R(s) > 0 as the p-adic integral

{(fspss) = fz I fC0) I, dx.

It was proved in [Igu74] that {(f; p; s) is a rational function in p~® and hence it has
a meromorphic continuation to all of C.

Let w(-), u(-), o,(-) and £(-) denote the function counting the number of prime di-
visors of an integer, the Mobius function, the #-th divisor sum and the Riemann zeta
function, respectively. We define o,(n) = O for n in R \ N. Let B, denote the n-th
Bernoulli number and define the n-th Bernoulli polynomial

n n .
(1.3) B,(x) := ( ,)Bn_ X’
We remind the reader of the following well-known identity:
I, n=1and
1.4 d)y=1{"
(1.4) dzp;'u( ) {0, otherwise.

Let R be a ring. The set of n X n matrices with entries in R is denoted by M,,(R).
A matrix A in M,,(Z) is called even if it has even diagonal entries. Denote the group
of invertible matrices in M,,(R) by GL,(R) and the group of matrices with determinant
equal to one by SL,(R). If R C R, then denote the group of matrices with positive
determinant by GL; (R). For every n X m matrix A, its transpose is denoted by A’.
Let N > 1 be an integer. A Dirichlet character modulo N is amap y : Z — C which
satisfies the following properties:
e y(x+ N) = y(x) for all xin Z,
e y(x) = 0if and only if (x, N) > 1,
e y(xy) = x(x)x(y) forall x,yin Z.
For every Dirichlet character y, let o' denote the twisted divisor sum

ol(n) = ) x(d)d
dln
and, for every two Dirichlet characters & and y;, set
n
ot = Y &%)t
din

The Dirichlet L-function of a Dirichlet character y is
Lis,x) = Y xoom™ = [ [ (1 =x(pp™)™".
n=1 P

For every positive integer N, set

(o9

Ly(sx) = > xmn™ = Lis, ) [ [ (1=x(pp™).

n=1 N
(n,N)=1 P

A discriminant is an integer which is congruent to 0 or 1 modulo 4. For every dis-
criminant D, the function yp := (9) is a well-defined quadratic Dirichlet character and
we set Lp(+) := L(-,xp).- A fundamental discriminant is an integer d such that either
d =1 mod 4 and d is square-free or d = 4n for some n in Z such that n = 2 or 3 mod 4
and n is square-free.
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DEeriniTION 1.2 (Conductor). Let € and y be two Dirichlet characters modulo F and
N, respectively, with F' | N. If y(n) = &(n) for every n in Z(X ) then y is inflated by
é. If y is not inflated by any character other than itself, then it is called primitive. 1t is
well-known that every Dirichlet character y is induced by a primitive Dirichlet character
which is uniquely determined by y. The conductor of y is the period of the primitive
character which induces it.

Let y be a primitive character modulo N and define the Gauss sum

N
Gx) = ) x(mex(n)

n=1

and the constant

1, ify(-1)=-1.
Define the completed L-function of y as

_{0, if y(~1) = 1 and
=

s+a

N\ =
A(s, x) = (;) r(s J;“*)L(s,)().
The following holds:
G _
(1.5) A =5, y) = ﬁ/\(”{)’

For a proof of this fact, the reader can consult [CS17, §3.4.3], for example.

1.1. Modular forms

Let $ denote the upper half-plane
{ze C:J(z) >0}

For every 7 in $ and z in C, write g for ¢ and ¢ for ¢*™. The group GL;(R) acts on
$ via linear fractional transformations:

a b a b\ _ar+b
c d)') 7 \e df" T crva

Forevery A = (¢ 5)in GL](R) and every 7 in $, define the automorphy factor j(A,7) :=
¢t + d. For every integer k, define a right-action of GL;(Q) on the space of functions
f 9 — Cin the following way:

(£ 4) = (flkd) (1) := det(A)? (A, 7)™ f(AD).
Let I denote the modular group SL,(Z) and, for every positive integer N, set

1 0
0 1

F(N)::{AGF:AE( )modN}and

To(N) := {AEF:AE(S :)modzv}.

A congruence subgroup of I' is a subgroup containing I'(N) for some N. The smallest
possible such N is called the level of the congruence subgroup. A cusp of a congruence
subgroup G is an equivalence class of P'(Q) under the action of G and a representative
of such an equivalence class is also called a cusp. Let I's, denote the stabilizer of the
cusp (ico) in T, i.e. the subgroup {(} #) : n € Z} of T.

If k € Z, then a multiplier system of weight k for G is a homomorphism v : G — S'!
ifkeZ ItkeZ+ %, then a multiplier of weight k for G is a functionv : G —
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S' such that v(g1)v(g2) = 0(g1,82)v(g182) for every g1, g, in G, where o(g1,82) =
j(g1,8:1)"% j(g2,7)""%j(g182,7)"Y/? € {1} is independent of 7. In either case, v must
additionally satisfy v(—=1,) = e™* if I, € G.

Letk € Z, N € N, let G be a congruence subgroup of level N and let v be a multiplier
system of weight k for G. An elliptic modular form of weight k with multiplier system v
for G is a holomorphic function f : $ — C which satisfies the following properties:

o fltA =v(A)f for every A in G,
e the function f is holomorphic at the cusps of G.

Every f as above has a Fourier expansion of the form

f@ =D armg",

n>0

where w is the width of the cusp ico [CS17, §7.1]. The elliptic modular form f is called
a cusp form if it vanishes at the cusps of G. The C-vector space of elliptic modular
forms of weight k with trivial multiplier system for I'o(N) is denoted by M;(N) and its
subspace of cusp forms is denoted by S;(N). If y is a Dirichlet character modulo N
and A = (¢5) € Ty(N), then set y(A) := x(d). The map A — x(A) defines a multiplier
system of even integral weight for I'o(N), which we denote by the same symbol y.
Denote the C-vector space of elliptic modular forms of weight k with character y for
['o(N) by M (N, x) and its subspace of cusp forms by S (N, ).

It is also possible to define elliptic modular forms of half-integral weight, whose
theory was established by Shimura [Shi73]. For example, the Dedekind n-function

(1.6) 0o = ¥ 1;[0 -q) = %ZZ: (£)g5
is a modular form of weight 1/2 for I with multiplier system of order 24 given by
; (a b) _ {(ﬁ) exp (& ((a+d - 3)c - bd(c* - 1)), if 2 ¢ and
"\c (&)exp(&((a—2d)c - bd(c? - 1) +3d - 3)) e(c.d), if2]c,
where

.d) -1, ifc<0andd <0 and
(e, d) = )
1, otherwise.

Together with the scalar Jacobi theta series, the Dedekind n-function can be used as a
building block for Jacobi forms, as we shall see in Subsection(1.3.3
For every [ in N, define the following operators on My(N, x):

UDf) = ) aying,

n>0
V()f(x) = ) a(n)g" and
n>0
(1.7) TOf@) =07 > x@fl(§5) @
ad=Ilb mod d

It is well-known that the Hecke operators 7°(-) map M (N, y) to itself and that U(/) and
V(l) map Mi(N, x) to Mi(IN, x) (see [DS0S, §5], for example). Furthermore, if [ | N,
then U(/)f is an element of M (N, yx).

Let f = ), ar(n)q" be an elliptic modular form in M(N, x), which is a normalized
eigenfunction of the Hecke operators 7'(/) for all / in N. The L-series of f in s is defined
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as

()

Lis, )= ) a;mn™.

n=1

It has an Euler product of the form

(1.8) Lis, = [(1-arpp +)((ztv)fv"“‘2“')_1 :

p

The reader can consult [[CS17, §10.7] for a proof of this fact when f € M;(1) and the
same argument holds for f in My(N, y). Define the completed L-function of f as

2 )
An(s, f) = (7%) T(s)L(s, f).

DermNtTion 1.3 (Metaplectic group). The metaplectic group, denoted by I, consists
of pairs A := (A, w(1)) with A in I"and w : $ — C a holomorphic function satisfying
w(t)? = j(A, 7). The group law on I is

(A, w(T))(B,v(1)) = (AB, w(BT)V(7)).

The metaplectic group is a double cover of I and it is generated by the following ele-

ments: T:(((l) })1) - s:(((f _01),\/?).

DerinirioN 1.4 (Vector-valued modular forms). Let V be a finite-dimensional vec-
tor space over C. For every half-integer k, define a right-action of I" on the space of
functions F : $ — V in the following way:

(F,A) — FLA(T) := w(t)*F(A1).

Letp: T — Aut(V) be a finite-dimensional representation of I, whose kernel has finite
index in I'. A vector-valued modular form of weight k for p is a holomorphic function
F : 9 — V which satisfies

FliA(7) = p(A)F (1)

for every element A of I'. Denote the C-vector space of all such functions by M(p).

Let 1, denote the n X n identity matrix and set E,, = (_(}n 10) The symplectic group
Sp,(R) is the set of 2n X 2n matrices M in GL,(R) satisfying M" E,M = E,. We often
consider its subgroup Sp,(Z) of matrices with integer entries. The Siegel upper half-
space of degree n, denoted by %, is the set of complex, symmetric n X n matrices with
positive-definite imaginary part. The group Sp,(R) acts on 9, via

A B A B _
((C D)’Z)'_’(c D)Z::(AZ+B)(CZ+D) I

Let k € Z and n € N such that n > 1 and let G be a subgroup of Sp,(Z). A Siegel
modular form of weight k and degree n for G is a holomorphic function F : $, — C
which satisfies
F ((A b ) z) = det(CZ + D)'F(Z)
C D
for every (2 ) in G. An analogous definition can be given for every finite index sub-
group of Sp,(Z).



6 1. PRELIMINARIES

1.2. Lattices

Let R be a commutative ring and let L and N be R-modules, with L free of finite
rank equal to g. Amap 8 : L X L — N is called a symmetric R-bilinear form if

B(x,y) = By, x) and B(x, my + nz) = mB(x, y) + n(x, z)
for all x,y,zin L and all m,n in R. If N = R, then S is called integral. If B(x,y) = 0
for all y in L if and only if x = O, then  is called non-degenerate. Let {e,, ..., e,} be an
R-basis of L. The matrix G = (B(e;, e;));; is called the Gram matrix of  with respect
to {ej, ..., e.}. Let X and § be the column vectors whose entries are the coeflicients of x
and y with respect to {ey, ..., e,}. Then
8 8
(1.9) Bx.y) = ), > %FBlere)) = ¥GF.

i=1 j=1

DermniTion 1.5 (Lattice). Let L and N be R-modules, with L free of finite rank, and
letS: L x L — N beasymmetric, non-degenerate bilinear form. The pair L = (L, ) is
called a lattice over R.

The lattice L is called integral if the associated bilinear form is integral. By abuse
of notation, denote the quadratic form associated with L by S(-), i.e.

1
Bx) := SB(x, x).

Throughout this thesis, we consider only R = Z. Given an arbitrary Z-basis of L,
identify every element in the lattice with its coefficient vector and drop the tilde from
the notation, i.e. write S(x,y) = x'Gy. Using the matrix formula (I.9), it is possible
to extend the domain of definition of 8 to L ®; Q, L ® R and L ®; C in a natural
way. For every z = (z1,...,2k@) in L ®z C, let R(z) = (R(z1),..., R(zx)) and
3(2) = (3(z1), . .., I(zkw)) denote its real and imaginary parts, respectively.

An integral lattice L = (L,p) is called positive-definite if B(x, x) > 0 for all x in L
such that x # 0. It is called even if B(x, x) is even for all x in L, otherwise it is called
odd. The rank of L = (L, 8), denoted by rk(L), is defined as the rank of L as a Z-module.

ExampLE 1.6. The following are examples of positive-definite, even lattices over Z:

(1) For every positive integer m, the lattice L, := (Z, (x,y) > 2mxy).

(2) More generally, for every positive-definite, even, g X g matrix G, the lattice
L = (Z%,(x,y) = X'Gy).

(3) For every positive integer n, the Z-module

D, ={(x1,x2,...,x,) CZ" : x; + -+ + x, € 2Z},
equipped with the Euclidean bilinear form

(xl,-"a-xl’l)(yla-'-ayn) = xl)’l +-- +xn)’n-
(4) For every positive integer n, the Z-module

A, = {(Xl,xz,---,xnﬂ) ez Xy + 0t Xy :0},

equipped with the Euclidean bilinear form.
(5) The Z-module

Eg = {(X],Xz,...,)(g): all x; e Zorall x; € Z + %,xl + -+ X3 EZZ},
equipped with the Euclidean bilinear form.

DeriniTioN 1.7. For every lattice L = (L, 8) and every m in Z, set L(m) := (L, mp).
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If M is a free sub-module of L of finite rank equal to rk(L) and M has finite index
in L, then (M, B) is called a sublattice of L and L is called an overlattice of (M, 3). Two
lattices L, = (L, 1) and L, = (L,,3,) are isomorphic if there exists an isomorphism of

underlying Z-modules o : L, — L, such that 8; = 8, o 0. The isomorphisms between
L and itself form the orthogonal group of L, denoted by O(L).

For the remainder of this section, assume that L = (L, ) is an even lattice over Z.
Define the following Z-module:

L*={yeL®;Q:B(y,x) €ZVY xin L}.

The dual lattice of L is the pair L* = (L*, ). It is well-known that, if L has Gram matrix
G with respect to some basis {ey, ..., exq)} of L, then a Z-basis of L* is given by the
dual basis {e*, . . ., er#k(L)}, where

k(L)
# -1
€ = Z Gji €;j
J=1

and the Gram matrix of L* with respect to this basis is equal to G™'.

An integral lattice L = (L,p) is called unimodular if L* = L. For example, the
lattice E from Example[I.6] (5) is unimodular.

If {fi,..., faxw} 1s another Z-basis of L, then consider the change of coordinates
map

k(L)

U:L— LU =) Uifs

=1
Its matrix U = (Uj;;); j is an element of GLy)(Z) and, if x is the column vector whose
entries are the coefficients of x with respect to the new basis, then UX = X and the Gram
matrix of L with respect to {fi, ..., fuqw) is equal to G’ = (U'YGU™'. Let G be the
Gram matrix of L with respect to some basis of L. The determinant of L is defined as
det(L) := | det(G)|. The previous discussion implies that this quantity is independent of
change of basis. It is well-known that L*¥/L is a finite abelian group of order equal to
det(L).

The level of L, denoted by lev(L), is the smallest positive integer which satisfies
lev(L)B(x) € Z for all x in L*. It is well-known that lev(L) is the smallest positive
integer such that lev(L)G™! is an even matrix, independent of the choice of basis for
L [Ebel3, §3.1]. The following remark from [[CS17, §14.3] plays an important role
throughout this thesis:

Remark 1.8. If L is even, then leV(L)L# C L. Furthermore, the level and the dis-
criminant of L have the same set of prime divisors: if rk(L) is even, then lev(L) | det(L) |
lev(L)*® and, if tk(L) is odd, then 2 | det(L) and 4 | lev(L) | 2 det(L) | lev(L)™*®.

DerintTioN 1.9. Set

A(L) = (-D)"Fdet(L),  ifrk(L) =0 mod 2 and
= (=D 2det(L), if k(L) = 1 mod 2.

It is well-known that A(L) is a discriminant (see Lemma 14.3.20 and Remark 14.3.23
in [CS17, §14.3]).

DEriniTioN 1.10. For every a in N and every D in Q such that DA(L) € Z, set

xu(D,a) = (232) and xu(@) = x.(1,a).
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Since A(L) is a discriminant, the function y(-) is a well-defined quadratic character
modulo |A(L)].

DeriniTioN 1.11 (Finite quadratic module). A finite quadratic module over Z is a
pair (M, Q), such that M is an abelian group of finite order and Q : M — Q/Z is a
non-degenerate quadratic form on M, i.e

e O(ax) = a’Q(x) for all @ in Z and all x in M,
o the symmetric form 8 : M X M — Q/Z defined by

B(x,y) = Q(x +y) = Q(x) = O(y)

is Z-bilinear and non-degenerate.

THeOREM 1.12 ([Sko19, Thm 1.1.8]). Every finite quadratic module (M, Q) is iso-
morphic to a direct sum of finite quadratic modules of the following type (called Jordan
constituents):

° A;,l = (Zyry,r = ’;—2 + Z), for some odd prime p and some integer t such that
(t,p)=1, i
o A, = (Zay,r ;{T + Z), for some odd integer t,
® By = (Z(zn) X Ly, (1, 5) > S 4 Z),
o Coy = (Z(zn) X Z(zn), (I", S) (4 % + Z)

DeriniTiON 1.13 (Discriminant module). When L is even, the reduction of  modulo
Z induces a bilinear form on L*/L. The discriminant module associated with L is the
pair
Dy = (L*/Lx+ L Bx) + Z).
It is a finite quadratic module over Z.

The orthogonal group of D, denoted by O(D.), consists of all group automor-
phisms « of L*/L such that 8o @ = 8. Every automorphism of L extends to an automor-
phism of L*, which in turn induces an automorphism of D;. Hence, there is an induced
homomorphism between O(L) and O(D,) (which need not be injective or surjective).

For every element x in L*, let N, denote the order of x + L in L*/L, i.e. the smallest
positive integer such that N,x € L. Let lev(x) denote the smallest positive integer such
that lev(x)B(x) € Z.

RemARK 1.14. Since S(x, N.x) € Z and B(N,x, N.x) € 2Z for every x in L, it follows
that lev(x) | 2N, and that lev(x) | N2. In particular, we have lev(x) | N, when N, is odd.

The isotropy set of Dy is
Iso(Dy) := {x € D : B(x) = O}.
Let 7, denote the set of isotropic subgroups of Dy .

DeriniTION 1.15. There is an action of Z(Xlev( 1y on Iso(Dy) given by right multiplica-

tion. Let i, be a set of representatives of the orbit space Iso(Dy) /Zéev(L))' Note that
N, =N, if x = rin Z,.

Consider the group algebra C[L*/L] of maps L*/L — C, with natural basis {¢,}cz#/r-
Define a scalar product on C[L*/L] as

(3 e Y we)i= 3 1

xel*/L xel*/L xel*/L
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DeriniTiON 1.16 (Weil representation). The Weil representation associated with L of
I on Aut(C[L*/L)) is defined by the following action of the generators of [ on the basis
elements of C[L*/L):

pu(T)e, =e(B(x)e,,

k@

pLSI = 7 el ey

et(— 2 yeL#/L

In general, write
prye, = > prlA)aye
xel*/L

for every element A of . It is well-known that pr 1s unitary and hence its dual repre-
sentation is given by the formula

piAey = > pr(A)e.
xel*/L
DEeriNiTION 1.17 (Direct sum of two lattices). Let L, = (Ly,8;) and L, = (L,,/3,) be

two even lattices and define a symmetric, non-degenerate bilinear form on L; & L, as
fLi®l)X (L& L, — Z,

S(x1 @ x2, 91 ® y2) 1= Bi(x1, y1) + Ba(x2, y2).
The direct sum of L, and L, is the even lattice L, ® L, := (L; @ Lo, f).

DeriniTion 1.18 (Stably isomorphic lattices). Two even lattices L, and L, are stably
isomorphic if and only if there exist even unimodular lattices U, and U, such that
LeU =LoU,

THeEOREM ([N1k80, Thm 1.3.1]). Two even integral lattices are stably isomorphic if
and only if their discriminant modules are isomorphic.

Let F be a field of characteristic different from two. A quadratic space over F is a
pair (V, Q), such that V is a finite-dimensional F-module and Q : V — F is a quadratic
form on V. Let (Vi, Q1) and (V,, Q) be two quadratic spaces over F. A representation
of Vy into V, with respect to Q1 and Q, is a linear map o : V; — V, which satisfies

Q,o00(x) = Qi(x), forall xin V;.

When F = Q, every such function can be extended to a function o : V; ®; C —
V, ®z C by linearity. If 8, and 8, denote the bilinear forms associated with Q; and Q,,
respectively, then every representation o of V; into V, satisfies

B (o(x),0(y)) = B1(x,y) forall x,yin V.

An isometry of (Vy, Q;) into (V,, O,) is an injective representation of V; into V, with
respect to Q; and Q.

DerinrTion 1.19 (Isometry of lattices). Let L, and L, be lattices in (V;, Q) and
(V2, Q»), respectively. An isometry of L, into L, is an isometry o of (Vi, Q) into
(V2,0»), such that oL, C L,.

Fix any two Z-bases of L; and L, and let G| and G, denote the Gram matrices of
L, and L,, respectively. Let M denote the matrix of o~ with respect to these bases. The
relation O, o o = Q; implies that

MthM = G] .
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Hence, if T and U are change of coordinates maps for L, and L,, respectively, then the
matrix of o with respect to the new bases is equal to UMT~!. When tk(L,) = 1k(L,),
set det(o) := | det(M)|.

1.3. Jacobi modular forms

For the remainder of this chapter, assume that L = (L, 8) is a positive-definite, even
lattice over Z. In order to define the Jacobi group, we first need to define the Heisenberg
group. This group originates from quantum mechanics, more precisely in the descrip-
tion of one-dimensional mechanical systems. In number theory, it is intimately related
to theta series via its theta representation. For details on this topic, see [Mum07, §1.3].
We follow the exposition in [AjolS] and the reader can consult the cited text for details
and proofs.

DeriniTion 1.20 (Heisenberg group). The Heisenberg group associated with L is the
set

HER) :={(x,y,) : x,ye L&R,C € S},

equipped with the following composition law:

(X1, 1, §)(X2, ¥2, £2) := (X1 + X2, y1 + 2, {152e (B(x1,¥2))) .

The integral Heisenberg group is the subgroup HX(Z) := {(x,y,1) : x,y € L} of
HL(R). Drop the third entry from the notation for this group for simplicity. This group
is sometimes called the reduced Heisenberg group in the literature.

ProposITiON ([Ajo15, Prop 2.2.3]). The group SL,(R) acts on HXR) from the right
via
(5,3, 0,A) = (x,5, 0" := (X, DA, Les (B ((x, )A) = B(x,Y))) ,

where (x,y)A is the vector obtained by multiplying the row vector (x,y) with A.

DerinTioN 1.21 (Jacobi group). The real Jacobi group associated with L, denoted
by JE(R), is the semi-direct product of SL,(R) and H-(R). The composition law on this
group is

(A, h)- (A", ') = (AA", K I).
The following holds:
ProposiTioN ([AjolS, Prop 2.2.7]). The real Jacobi group acts on the left on the

space H X (L®C): if A € SLo(R) and h = (x,y,) € HX(R), then the action of (A, h) on
a pair (1,2) in H X (L ® C) is defined as
+ XT +
(A h). (1.2)) = (A, h)(T,2) = (Ar, u) .
JA,T)
The real Jacobi group also acts on the space of holomorphic, complex-valued func-
tions defined on $ X (L ® C).

DeriniTION 1.22 (Jacobi slash operator). Let k be a positive integer and let ¢ : $ X
(L ® C) — C be a holomorphic function. For every A = (¢ %) in SL,(R), set

_ b4 . &, [~BR)
PlerAT,2) = ¢(AT, j(A,T))](A’T) e(j(A,T))

and, for every h = (x,y,/) in HX(R), set
AT, 2) = d(r,z+ xt+y) - e(@B(x) + B(x,2)).
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The action of JX(R) on the space of holomorphic, complex-valued functions defined on
H X (L ®C) is defined as

(1.10) (6, (A, ) = Pl (A, h) = (BliLAILh.

Note that these actions of I and H%(R) do not commute.

The integral Jacobi group is the subgroup JX(Z) := SL,(Z) < HX(Z) of JXR). From
now on, drop the word “integral” from the language and the (Z) from the notation for
this group.

DeriniTION 1.23 (Jacobi form of lattice index). Let k be a positive integer. A Jacobi
form of weight k and index L is a holomorphic function ¢ : H X (L ® C) — C with the
following properties:

(1) for all y in J£, the following holds:
PlLy(7,2) = ¢(7,2);

(2) the function ¢ has a Fourier expansion of the form

(1.11) o(1,2) = Z cg(n,r)e(nt + B(r,2)).

neZ,reL#

n2(r)
The complex numbers cy(+, -) are called the Fourier coefficients of ¢.
For fixed weight and index, denote the C-vector space of all such functions by J; ;.

RemARk 1.24. Consider the lattice L, from Example@, (2); then Jy 1, 1s the space
J}.16 of Jacobi forms of weight k and matrix index %G defined in [BK93]. Consider the
lattice L, from Example @], (1); then the space Jyr is the space Ji, of Jacobi forms
of weight k and scalar index m defined in [EZ83].

It is also possible to define Jacobi forms of half-integral weight, of odd lattice index
or with multiplier system. We do not go into further details and instead refer the reader
to [GSZ18, §111.9]. The following useful result is [Ajo1S, Proposition 2.4.3]:

ProposiTioN 1.25 ([Ajo15, Prop 2.4.3]). If ¢ in Ji i has a Fourier expansion of the
form

b= D cynrer+pr2),

neZ,reL#

then c4(n, r) depends only on n—ﬁ(:)[;;)d onr mod L. More precisely, we have cy(n,r) =
cs(n',r') whenever r = ¥’ mod L and n — B(r) = n’ — B(r'). Furthermore,
co(n,r) = (=1)cy(n, —r).
Define the following set, called the support of L:
(1.12) supp(L) :={(D,r) : D € Q,r € L*,D = B(r) mod Z}.

Note thatif (D, r) € supp(L), then D € @Z. For every ¢ in J; i with Fourier expansion
(T-TT) and for each pair (D, r) in supp(L), set C4(D, r) := ¢4 (B(r) — D, r). Proposition

@] implies that every ¢ in J; ; has a Fourier expansion of the form
(1.13) s = Y CyD,re((Br) - D)t +B(r,2).
(D,r)esupp(L)

We will often use the interplay between these two Fourier expansions. In particular, use
the latter to define cusp forms:
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DEerintTION 1.26 (Cusp form). A Jacobi form ¢ is called a cusp form if C4(0,7) = 0
for all r in L* such that B(r) € Z. Denote the C-vector subspace of cusp forms in J; ; by
SkL-

DeriNtTION 1.27 (Singular term). For each ¢ in Ji;, define its singular term as the
series

Co(@)(7,2) := Z Cy(0, r)e (7(r) + B(r, 2)) .

rel*
B(rez

DerintTioN 1.28. Let 7 in L* be such that 8(r) € Z and define the function
8LA(7,2) == e (1B(r) + B(r,2))
on the space $ X (L ® C).
DEeriniTION 1.29. Set
J2={((31).O,w) :neZpuel).

We will show in Chapter [2| that JE is the stabilizer of the exponential functions
gr.,(-,-) in JE. Jacobi-Eisenstein series are defined in the following way:

DeriniTion 1.30 (Jacobi—Eisenstein series). Let k be a positive integer such that k >
rk(L)

——+2. For each r in Iso(Dp), define the Jacobi-Eisenstein series of weight k and index
L associated with r as

(1.14) Eipe=> >, gy

Define the subspace J,Ez of Ji as the set Spanc{E; ., : r € Iso(D.)}. The series
(L.14) converges under the imposed weight restrictions. It is possible to define Jacobi—
Eisenstein series for 1 < k < *& 12 by using “Hecke’s convergence trick”, however

we do not pursue this further. It was shown in [AjolS, §3.3] that
(1.15) Eirr=(D'Ecpp

Call E; 1 the trivial Eisenstein series. It is also possible to define “twisted” Eisenstein
series:

DeriniTioN 1.31. Let £ in N be such that £ > rk(zg + 2 and let r € ). For each

primitive Dirichlet character y modulo F with F | N, and y(—1) = (=1)¥, define
Eppry = Z X(DELar

X
A€z,

For k < rk(L) + 2, the character y has to be non-principal (i.e. F' # 1) for convergence
reasons.

For every x in L*/L, define the Jacobi theta series associated with x as the function
Ve HX(LOC) - C,

(1.16) I = ), @) +B(r2)
rzifﬁza L

and set

(1.17) ®y, := Spanc{d,, : x € L*/L}.

It was shown in [Boyl3, §3.5] that, for fixed L, the series ¥ ,(7,) (x € L*/L) are
linearly independent as functions of z. These functions are interesting in their own right
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and much can be said about them. We focus on their modular properties and refer the
reader to [Boy15, §3 and §4] for an in-depth discussion. Extend the definition of thg
|x..-action of I on holomorphic, complex-valued functions defined on $ X (L®C) to I'

in the following way: for every k in %Z and every A = (A, w(7)) in T, set
> Z o [—<B@)
A(T,2) = ¢|AT, —.
P2 ¢( ’ w(r)Z) Ho e( Wy

It was proved in [Boy15, §3.5] that, for every x € L¥/L and every A as above, the theta
series 1 , satisfies the following:

(1.18) ﬂg,xlrk@’ég = Z PL(A)x,yﬁL,y'

2
yeLl*/L

In particular, the set ® is a [-module. For each ¢ in J; ; with Fourier expansion (T.13),
define the following function on the upper half-plane:

BTy = Y. Cy(D,x)g ™"
DeQ
(D,x)esupp(L)

We will review the modular properties of A, in Subsection [1.3.2] Every Jacobi form
has a theta expansion:

ProposITION ([Ajo1S, Prop 2.4.7]). Every Jacobi form ¢ in Ji i can be written as
(1.19) o(1,2) = Z hy (T (T, 2).

xel*/L
Tueorem 1.32 ([BS19, Thm 2.3]). Let L, and L, be positive-definite, even lattices
over Z and assume that j : Dy, - Dy, is an isomorphism of finite quadratic modules.
Then the map

. ﬁ
UE Jk+r@1,gz Jk+r%1,g

defined by
D by DL 5D > > g (D, 10(T2)
xelt/Ly xeL}/L,

is an isomorphism.

Next, define a scalar product on S ;. Forevery rin Hand zin L®C, let v = u + iv
and z = x + iy be their decompositions into real and imaginary parts. In [AjolS, §3.2],
the author defines a JE(R)-invariant volume element on $ X (L ® C) in the following
way:

dVy ez = v Y2 dudvdxdy.
For every pair of functions ¢ and y which are invariant under the [ ;-action of a sub-
group A of JE of finite index, set

(1.20) g7, 2) = BT, DY(T, e PO
It is easy to check that w , is also A-invariant.

DerinttION 1.33 (Petersson scalar product). Let A be a subgroup of JZ of finite index
and let {5 denote a fundamental domain for the action of A on H X (L ® C). If ¢ and ¢

are two functions which are invariant under the |, -action of A and either one of them
is a cusp form, define

1
(1.21) (D, Y)n = ﬂﬁ Wy y (T, 2)AV (7).

SA
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The Petersson scalar product of two Jacobi forms does not depend on the choice of
fundamental domain, or in fact of the subgroup A. Thus, drop the subscript from the
notation and write (¢, ) := (@, ¥)5. Given a fundamental domain § for the action of I'
on $ and a fundamental parallelotope B for (L ® C)/(rL + L), choose as a fundamental
domain for the action of J- on $ X (L ® C) the set

Sr={1,2) e HX(L®C) : 7€ F zePB}/{id, 4,

where ¢ is the reflection map (7,z) — (7,—z). The Petersson scalar product can be
expressed in terms of theta expansions in the following way:

ProposiTion 1.34 ([AjolS, Prop 3.2.10]). Let
o= > hydp. and y= > hydp.
xel*/L xel*/L
be Jacobi forms in Ji 1 such that either one of them is a cusp form. Then

($y =277 det(L)* f > B (DY OV 2 dudly.

N\ ver#/L

In the proof of this Proposition given in [Ajol3], a scalar product is defined on ©,
by fixing a fibre 7 in $ in (I.21):

<Z L, Z d9L,) = f Z ¢ 91,(1,2) Z 9L o7, N RD2=4O ey,
P

rel*/L sel*/L rel*/L sel*/L
It was shown in [Ajol5, §3.2] that
(Y b Y diL) =V Qe L) T Y. e,
rel*/L sel*/L rel*/L
Let [-, -] denote the following normalization of the above scalar product on Oy
(1.22) [ by, Y, dbpdi= ) cdy.
rel*|L sel*|L rel*/L

This scalar product is non-degenerate.

1.3.1. Jacobi forms of scalar index. It is useful to have a background knowledge
of the theory of Jacobi forms of scalar index. The integral scalar Jacobi group is T :=
" = Z*. This group acts on the right on the space of holomorphic, complex-valued
functions defined on $ X C. Let k and m be positive integers. For every y = (A, h) with
A=(%%)inT and h = (x,y) in Z?, set

—c(z+ xT +y)?
ct+d

Olemy(T,2) :=¢ (AT, + 0T+ 2xz + xy) .
This action agrees with Definition[I.22)when L = L, (see Remark[T.24). The space Ji»
of Jacobi forms of weight k and scalar index m consists of all holomorphic functions
¢ : H x C — C with the following properties:

(1) for all (A, h) in IV, we have ¢|;.(A, h) = ¢;

(2) the function ¢ has a Fourier expansion of the form

(1.23) o(1,2) = Z by(n,r')e(nt +r'z), where by(n,r’) € C.

n,r’' €z
4mn—r"?>0
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Note that L, = 5-Z, det(L,) = 2m and lev(L,) = 4m. Substitute r" for 2mr in (T.I1)
and set by(n, ") := c4(n, ’—’;1), in order to obtain the same expression as above. A scalar

Jacobi form is called a cusp form if by(n,r’) = 0 whenever 4mn = r*.

ExampLE 1.35. Let k > 4 be an even integer. The Fourier expansion of the Eisenstein
series Err, 0 is computed in [EZ85| §1.2]:

(1.24) Eir, o(1,2) = Z erm(n,rie(tn + 2mrz);

1
neZ,reﬁZ

n>mr?

if n = mr?, then e, (n,r) = 1 if r € Z and it is equal to zero otherwise; if n > mr?, then

k

(-Dint:
mk=12620(k — 1)

(4nm — dm*r2y2 Z e Z eo(md ' %> = 2mrA + nd),

c=1 A,d mod ¢
(d,c)=1

exm(n,r) =

where d~! denotes the inverse of d modulo ¢. Note that we have made the substitution
r = 2ms and relabelled s = r in [EZ8S5, §1.2, (5)]. When m = 1, the above expression
simplifies to
L4(r2—n)(2 - k)

(G-20
where we remind the reader that Lp(s) := L(s, yp) for every discriminant D. When m
is square-free,

ex1(n,r) =

1
{33 = 2k)oy-1(m)

ek,m(”a r) = dk_lLétm(mngn) (2 - k)
d

d|(n,2mr,m)
and it is possible to obtain a similar expression for arbitrary m. We generalize these
results in Section

In general, write m = ab?, where a is the square-free part of m, and define

1 as? #2abs
Ek,m,s(Ta Z) = 5 Z q 42 b |k,m7’

yeJ&mr

where we remind the reader that g = e(7) and { = e(z). Then

2
" P = e(mf(f) + ZmZE) =8.;(1.2)

b b
and the following holds:
{g L s€ Z(b)} = Iso(Dy ).
To check that this is true, if - € L*/L, then BG) = ﬁ is an integer if and only if

4m | r*, i.e if and only if 4ab® | r*. This is equivalent to the condition that r = 2abs
for some s in Z. It follows that E;,,; = Ek,Lm,%- Twisted scalar Eisenstein series are
defined in [SZ88, §2] in the following way: for every divisor ¢ of b and every primitive
Dirichlet character y modulo F with F | ’;’ and y(=1) = (=1, set

Ek,m,t,)( = Z X(d)Ek,m,td~
d mod ?

The order of i in Li /L,, is equal to b/t and therefore

Eimiy = ), XdE, .

dmod N
b
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This does not agree with Definition [T.31] since the coprimality conditions are missing
in the summation.

ExampLE 1.36. It is also possible to define scalar Jacobi forms of half-integral weight
and half-integral index. An important example is the scalar Jacobi theta series

(1.25) 91, 2) = ZZ: (_74)6(7'%2 + %)

which has weight 1, index 1 and multiplier system

v(A, (x,)) := vy(A)* - (=)™

It can be used as a building block for Jacobi forms, together with the Dedekind 7-
function.

It was proved in [SZ88]| that there exists a Hecke equivariant lifting map between
Jacobi forms and elliptic modular forms. Let W,, denote the m-th Atkin—Lehner involu-

tion (2 ') and set

M;(m) := Spanc(f € My(m) : flkiW,, = &i " f},
where ¢ € {+, —}. Then
f e M{m) = Au(s, ) = eAn(k = s, f).

The space M;(m) has a (not necessarily unique) basis of modular forms whose L-series
have an Euler product. Every such modular form f is an eigenform of all Hecke oper-
ators T (/) with ([, m) = 1 and has the same eigenvalues for these operators as a unique
newform g in M;(m’) for some m’ | m. The quotient L(f, s)/L(g, s) is a finite Dirichlet
series with a product expansion of the form

CUTI PR
pl

L(g, s)

where Q,(s) is a polynomial in p~*. The completed L-function of g has a functional
equation under s — k — s and, provided f is an eigenform of W, so does A,,(f, s).
When this is the case, each of the Q,’s has a functional equation

Qplk = 5) = £p™ " IMEIQ (s),

Define Mt (m) to be the subspace of M (m) which is spanned by all f for which the sign
in the above equation is + for all p | 2% and set

N (m) = My(m) N M (m).

For the definition of Hecke operators acting on Jacobi forms of lattice index, the reader
can consult Definition [3.2] The following holds:

Tueorem 1.37 ([SZ88, Main Thm (2nd version)]). For k > 2, the spaces Jy,, and
N, _,(m) are isomorphic as Hecke modules.

The lifting map is given below:

THEOREM 1.38 ([SZ88, Thm 5]). Let A be a fundamental discriminant and let s be
an integer such that A = s* mod 4m. Then the map

yA,s : Jk,m - wtgk_z(m)’
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defined by
N Nt - 12 A— g !
P YOl e I
Amn—r"?>0

commutes with Hecke operators and with Atkin—Lehner involutions, it preserves cusp
forms and Eisenstein series and a linear combination of these maps is an isomorphism.

Special care needs to be taken when / = 0 in the above equation, however we omit
the details and refer the reader to [SZ88, §3] instead.

1.3.2. Jacobi forms and vector-valued modular forms. In this subsection, we
discuss the connection between Jacobi forms and vector-valued modular forms for the
dual Weil representation (see Definitions and [[.16). We remind the reader of the
theta expansion of a Jacobi form ¢ in Ji ;.

$T.2) = ) hy(T)IL(T,2).
xel#/L

It was proved in [Boy15, §3.7] that, for every x € L*/L and every A in T, the functions
hy . satisfy the following:

h¢,x|k_¥A = Z pL(A)x,thﬁ,y-
yeL*/L
These modular properties imply that the vector-valued function
heL(7) := Z hg(T)e,
xel*/L

is an element of M, _ A0 1) (see Definition . Moreover, as a result of (I.18), the

vector-valued function

O.(7,2) := Z U (T,2)ex

xeL*/L
is an element of M«w (o7). The main result in [Boy13S, §3] is the following theorem:
wPL

TueoreM 1.39 ([Boy15, Thm 3.5]). If L = (L,) is a positive-definite, even lattice
over Z, then the map

Qp:ip= hyp
is an isomorphism between Ji 1, and M, _ww (0} ).
L LPL

The results in [Boy15] hold over arbitrary totally real number fields, not only over
Q. A consequence of this theorem is that J; ; = {0} if k < rk(L)/2 and that the spaces Ji ;.
are finite-dimensional. When k € Z, it also gives a connection between Jacobi forms of
odd rank lattice index and half-integral weight elliptic modular forms, while for Jacobi
forms of even rank lattice index it gives a connection to integral weight elliptic modular
forms. For every fixed lattice L, the value k = rk(L)/2 is called its singular weight.
The value k = (tk(L) + 1)/2 is called the critical weight. Note that there also exists
an isomorphism between skew-holomorphic Jacobi forms of lattice index L and vector-
valued modular forms for p,. We do not go into further details and instead refer the
reader to [CS17, §15.2], for example, where the scalar case is treated.

Another important representation in the theory of vector-valued modular forms is
the Schrodinger representation. It is typically a representation of the Heisenberg group
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on the group algebra C[D] of some finite quadratic module D. Let H be the Heisenberg
group Z* with the following composition law:

(m,n,ym’,n", 'Y =(m+m',n+n",t+t + mn’ —nm').

DeriniTiON 1.40 (Schrodinger representation). Let L be a positive-definite, even lat-
tice over Z and let x € L*/L. The Schrédinger representation of H on C[L*/L] twisted
at x is the representation o, : H — Aut(C[L*/L]) defined by

o(m,n, ey ;= enP(x,y) + (t — mn)B(x)) ey_py.

We check that o, is indeed a representation: we have 0(0,0,0) = Iy and, for
arbitrary elements (m, n,t) and (m’,n’,t") of H, we have

(ox(m,n,)o (', 1’ 1)) ¢, =0 (m,n, e (W'B(x,y) + (' — m'n")B(X)) ey_px
=e (n'B(x,y) + (t' — m'n")B(x))
Xe (nlg(x’y - m’x) + (t - mn)lg(x)) ey—m’x—mx
=e((n +n)B(x,y) + (t + ¢ + mn’ — nm’
- (m + m')(n + n/))ﬁ(x))ey—(m+m’)x
=0, ((m,n,t)(m’,n’, 1)) e,.

Every element (m, n, t) of H can be written as a product
(m, 0,0)(0,n,0)(0,0,7).

We remind the reader that a representation 7 : G — Aut(V) is unitary if and only

if Tg)tzr(g) = Igimv) for all g in G. Let {y,..., Y4z} denote the elements of L*/L.
Then o(1,0,0)e,, = ¢,,_, and therefore the matrix of o (1, 0, 0) is a permutation matrix
(hence it is unitary). Furthermore, o (0, 1,0)e,, = e(B(x,y;))e,, and 0,(0,0, 1)e,, =
e(B(x))ey,, therefore their matrices are diagonal with diagonal entries of modulus equal
to one (hence they are unitary). It follows that o, is unitary.

Define the following right-action of I on H, for every A = (¢ %) inT:

(m,n,0),A) — (m,n, N := (ma + nc,mb + nd, t).

Lemma ([Will8, Lemma 4]). For every A inT and every (m,n, t) in H, the following
relation holds between the Weil and the Schrodinger representations:

(1.26) prA)~ o (m,n, DpL(A) = o ((m,n, 1)").

We include the proof, since it is not given explicitly in [Wil18]]:
Proor. Check that (T.26)) holds for the generators 7 and S of I':

pr(T) " ox(m, n, p(T)e, =p (T o(m, n, Ne(By))e,
=pr(T)"'e (nB(x,y) + (t = mn)B(x) + B(Y)) ¢y—ms
=e (np(x,y) + (t = mn)B(x) + B(y) — By — mx)) &y_px
=e((m+ n)B(x,y) + (t — m(m + n))B(x))ey_mx

=0, ((m,n, D" )e,.
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For S, it suffices to check that equality holds for the three generators of H. We include
the calculations in one of the three cases, since the rest can be treated analogously:

kL)
pr(8) (1,0,0001(8)e, =p1(8) ' ori(1,0,0——— > e(—B(y, e,

et(L)? 7,

)
I

det(L)*

=pr($)™'

Z e(_ﬁ(y’ S))es—x
sel*/L

1
det(L)

1
det(L)

D, D eBls—x,1) = B0, e,

sel*/Lrel*/L

D er=y,5) D e(-Bxre

sel*/L rel*/L
=e(—fB(x,y))e, = 0,((1,0,0)° )e,,

where we have used the fact that, for every y in L*/L, we have

D elp0,s) =

sel*/L

det(L), ify=0and
0, otherwise.

Since o, is unitary, its dual representation is obtained by complex conjugation:

Tim,n, e, = e (=nB(x,y) + (mn = DB(X)) &,

Taking complex conjugates on both sides of (1.26), we obtain the following relation
between the duals of the Schrodinger and the Weil representations:

prA) 1o (m,n, npi(A) = o ((m, n, 1)")

and therefore
(1.27) o(m, n, 1) = py(A)o((m, n, ) (A) 7
We will use the Schrodinger representation in Section to define an averaging oper-

ator on Jy 1.

1.3.3. Examples of Jacobi forms. We have seen some examples of Jacobi forms
of scalar index in Subsection [I.3.1] We list examples of Jacobi forms for some of the
lattices in Example[1.6] as given in [Gril8]. We remind the reader of the definitions of
the Dedekind n-function (1.6)) and the scalar Jacobi theta series (1.25)).

ExampLE 1.41. Forevery ninN, tin $ and z = (zy, ..., z,) in C", define
(1.28) Uz0(7,2) 1= W7, 21) ... KT, 20)-
For 1 < n < 8§, the following function is a Jacobi form of weight 12 — n and index D,:
Y12-np, (T, 2) := ()92 (1, 2).

When n = 8, this is a Jacobi form of singular weight for Dg. For n < 7, the function
Yi2-np, 1s a cusp form. It is well-known that D3 = A3 and hence we also obtain a cusp
form of weight 9 and index A;.

ExampLE 1.42. The function

Wan(1,2) = N1, 21) ... T 2T, 20 + - + 27)



20 1. PRELIMINARIES

is an element of J4 4, (we have written z = (zy, ..., z7)). Set
Wz, 2007, 22)0(7, 21 + 22)
n(7) '

O 4,(T,21,22) =

Then € J 4,(v3) and

Yo, := 11O 4,(T, 21, 22)
is an element of S 4,. We also have that

Wera,(T,2) = (0O 4, (T, 21, 22)O1 4, (T, 23, 24) € S624,
(where nA, = A, ®---® A,) and that
~— ————

n times

U334,(T,2) = O1.4,(T, 21, 22)O1.4,(T, 23, 24)O1 4, (T, 25, Z6) € J334,-

Examples and are part of the theory of theta blocks developed in [GSZ18].
Here is another example from [Gri]:

ExampLE 1.43. Bearing in mind the modularity properties of theta series (1.18)) and
the fact that Eg is a unimodular lattice, the theta series

(1.29) Ir(,0) = ) e(T% +(r, z))

reEg
is an element of J4 ,. This is a Jacobi form of singular weight for Eg. Furthermore, fix
an element x in Eg and set (x, x) = 2m. Then the following function defined on $ x C is
a Jacobi form of weight 4 and scalar index m:

ﬁEg,x(T’ Z) = ﬁEg (T9 ZX).
It has a Fourier expansion of the form

D (1,20) =1+ Z a(n, De(nt + I2),

n>0,leZ

where
an,l) =#{y € Eg : (y,y) =nand (x,y) = [}.

Note that the scalar Eisenstein series Ey4 ¢ 1s equal to ¢ Eg(bol):

In general, if L is an even, unimodular lattice, then

ILo(r,2) = ) e(BIT +B(r, 2))
reL

is a Jacobi form of singular weight rk(% and index L. The type of construction we

encountered in the last example can be extended to arbitrary lattices in the following
way: let ¢ € Ji; and A € L; for a variable z in C, the function ¢(t, z4) is a Jacobi form
of weight k and scalar index 3(A).



CHAPTER 2

Poincaré and Eisenstein series

In this chapter, we define Poincaré series for Jacobi forms of lattice index and show
that they reproduce the Fourier coefficients of cusp forms under the Petersson scalar
product. We compute the Fourier expansions of Poincaré and Eisenstein series and
give an explicit formula for the Fourier coefficients of the trivial Eisenstein series in
terms of values of Dirichlet L-functions at negative integers. For even weight and fixed
index, we obtain non-trivial linear relations between the Fourier coefficients of non-
trivial Eisenstein series and those of the trivial one. This result is used to obtain formulas
for the Fourier coefficients of Eisenstein series associated with isotropic elements of
small order.

Throughout this chapter, let k be a positive integer and let L = (L, ) be a positive-
definite, even lattice over Z. For every pair (D, r) in the support of L (1.12)), define the
following complex-valued function on the space $ X (L ® C):

8Lo.,(7,2) = e (T (B(r) = D) + B(r,2)) .
Lemma 2.1. The function g p , is invariant under the | .-action of J%. Furthermore,
8Lolkr(~1)(T.2) = (=1)'gLp (7. 2).
Proor. Lety = (({ %), (0, ) be an arbitrary element of J=. Then
8LolkrY(T.2) = gL, (T+n,z+ 1) = 81.p(7,2),
since e(n(B(r) — D)) = e(B(r,n)) = 1. For the second part, we have
8L (—D)(T,2) =(=1)Fe(x(B(r) — D) + B(r, —2))
=(=1)e(x(B(~r) = D) + B(-1,2)) = (=1)"gLp (T, 2). O
Note that the function gz ,(-, -) from Definition @ is equal to gz o,.(:, *).

2.1. Poincaré series

In this section, we define Jacobi—Poincaré series of lattice index and deduce some
of their properties, using the methods in [BK93].

DerintTION 2.2. Let the pair (D, r) in supp(L) be such that D < 0. Define the Jacobi—
Poincaré series of weight k and index L associated with the pair (D, r) as the series

@2.1) PirpAn2) = > goay(®2).

yelz\JL
As a consequence of Lemma the series (2.1) is independent of the choice of
coset representatives of Jo% \ JE. The same lemma also implies that
(2.2) Pirp—r =D Prip,

as was the case for Eisenstein series. The following theorem is the main result of this
section:

21
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THEOREM 2.3. Let k be a positive integer and let L = (L, ) be a positive-definite,
even lattice over Z. The Poincaré series Py 1 p, satisfies the following:

(i) If k > rkZ@ + 2, then Py p, is absolutely and uniformly convergent on compact
subsets of 9 X (L®C) and it is an element of S . Furthermore, define the constant

k(L) T k(L)
k— =
[+

/lk,I:,D = 2—2k+T*+2r

- 1) det(L)  (x|D) ™+,
For every cusp form ¢ in S with Fourier expansion

(2.3) 6@ = ) CoDre((Br) = Dyt + B, 2),

(D’,r")esupp(L)
the following holds:
(b, Prrpy) = Akr.pCo(D,1).
(ii) For every (D,r) and (D', r") in supp(L) such that D < 0, set

1, ifD=Dandr = d L and
2.4) 5D, D. )= | = Dand = rmod Lan
= 0, otherwise
and
’ 7 ’ ’ k ’ 7 27Tik
Girp, (D', 1) =6 (D,r,D", ") + (=1)"6(D,-r,D", ") + 1
‘ ‘ ‘ det(L)?
(2.5) D\ 4n(DD')}
. k(L) T 7
) g )
c>

X (Hye(D, 1, D', 1) + (=1 Hy o (D, =1, D', 1)),
where the function J, is the J-Bessel function of index « defined in (1.1)) and

H(D,r, D', r):= > e((Bd+r) D)
(2.6) dez| AeL]cL

+BF)-D)Yd + B ,A+7)).

The Poincaré series Py p, has the following Fourier expansion:
PipAn)= D GirpdAD',r)e((BF) = D) +B(r,2).
(D'.r)esupp(L)
D’'<0

Note that (2.2) follows from (ii). Furthermore, it is clear from the definitions of
0r(D,r,D',r") and Hy (D, r,D’,r’) that Py p, only depends on r mod L. As a conse-
quence of this fact and of (i), we obtain the following corollary:

CoROLLARY 2.4. The set
{Perps:reL*/L.D € Qu.f(r) = D mod Z)
generates Sy .
Proor. (i) Choose

{(A, (1.0)") : A € SLy(Z).\ SLo(Z), A € L}
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as a set of coset representatives for JO%\JL and note that (1,0)* = (ad, bA) for every
A = (%) in SL,(Z). The series (Z.1) can be written as

Z e(—cﬁ(z + (at + b))

PiipA(1,2) = po——

+ a*1B(A) + aB(A, z))

AeL(4 Z)EF“\F

X e ((ﬁ(r) _ D) Z IZ iy (r, W)) (et +d)*,

Using the fact that
a*1(ct + d) — c(at + b)? = ar — abet — b(ad — 1) = (at + b) — ab(ct + d)
and the following well-known identity for the modular action of I" on $:

aT+b_a 1

2.7 - -
2.7) ct+d ¢ clet+d)’

we obtain that

C8)  Pun(md= Y. (rrde[pE

AeL(¢ g)eroo\r

—c at+b B(4,2)
A
cr+d+'8( )CT+d+CT+d

at+b B(r,z) a‘r+b)

(B0 _D)CT+d * ct+d +ﬁ(r’/l)cr+d

_ B ar+b k i(z)
= Z e( DCT+d)(CT+d) e( )

ct+d
AeL(¢ Z)el"m\l"

y e(ﬁ(/l+ r)a7'+ b +ﬁ(/l+ r,z))

cT+d ct+d

= > e(=DAD) jA, 1) e[ | 9L, (A.2)),
A€l \I' ‘](A’T) N

after rearranging terms and where ¢ denotes the bottom-left entry of A in the above
equation. For every A = (¢%)inT, let A denote the canonical lifting (Vcr +d,A) to T
Using (I.18)), we obtain that

k(L) ~
Piip2) = ) e(=DAD) j(A, T )9 lue AT 2)

A€l \I'
k(L) ~
2.9) = Y e(=DAT) jA, T X p(A), 0L, 2).
A€l \T yeLl*/L

The image of p, is finite, by [BoylS, Theorem 3.4, (ii)]. It follows that the inner
sum in the above equation is bounded by above on compact subsets of $ X L ® C by a
constant which is independent of A (but dependant on the subset). Coset representatives
of SL,(Z)«\ SL2(Z) are well-known and given by matrices A = (¢5) with (c,d) = 1
and, for each pair (¢, d), choose a and b in Z such that ad — bc = 1. It is also well-known
that, for every lattice A in C, the series

|w![™
weN\(0}

converges absolutely for R(s) > 2 (see [CS17, Lemma 2.1.6], for example). Combining
this with the fact that

le(—DAT)| = exp 2nDJ(A71)) < 1
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for every D in Qy, we obtain that Py p, converges uniformly and absolutely on com-
pact subsets of $ x L ® C for k — rk(L) > 2.

Provided we show that each Pk,L,D,r is invariant under the |, ;-action of JZ, the fact
that it is an element of S ; follows from inspecting its Fourier expansion (ii). For every
din JE, we have

Perpdadm) = D uodersd®@ = > gro ()T 2)

yelS\JL yeJE\JL
Z 8Lory (1:2) = Prpp (T, 2),
yeIs\E

since right multiplication by ¢ is an automorphism of JO%\JL.

Let ¢ in S, have Fourier expansion (2.3)). Insert the definition of Py, p, into the
definition of the Petersson scalar product of ¢ and Py ; p , given in (I.21]) and interchange
the order of integration and summation, using the fact that the integrand converges
absolutely and uniformly:

(210) <¢a Pk,L,D,r) = f w¢,Pk,L,D,r(T’ Z)d‘/L,(T,Z) = Z f w¢7gL,D,r|k,I:7(T’ Z)dVL,(T,Z)

5L yeJk\gL v Ok

We claim that
wcb’gn,rlk,U(T’ 7) = w¢,gn_r(y(T’ )

for every y in JE. Suppose that y = (A, (4, u)), with A = (¢ %) in T and (4, p) in HX(Z).
Definition (T.20) implies that

—cB(z + AT + )
ct+d
~4nB(y)v!

+176(4) +B(4, Z))

Wpgp, 1y (T 2) =B(T, 2)(cT + d) e (

X gL, (y(T, ))'e

N
e + P ( S L B()) + B4, 2))
—4ﬂ/3(y)v ,

=¢(7,2)

X gL (y(T, ))'e

Since ¢ is invariant under the |, z-action of JE, (A1) = |ci(r2|2

AinT and le(2)]> = e @ for every z in C, it follows that

for every 7 in $ and every

W g 1ay(T 2) =T, )80, (¥(7, 2)) I(AT)*

X exp (—47r (ﬁ(y)v‘1 + 8(_Cﬁ(z FAT W)
ct+d

+7B(4) + B(4, z)))) -

For z;,z, in C, A1in L and z in L ® C, the following equalities hold:

I(2122) = R(z1)I(22) + B(z1) R(z2),
3(B(A,2)) = B4, I(2)),

R(B(2)) = B(R(2)) — B(I(z)) and
I(B() = B(R(2), 3(2)).
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Thus,

—cf(z+ AT + )
ct+d

Bow ' +3 ( +1B(4) + B(4,2)

XB(Bz+At+p)—cvlcu+d)B((Riz+ At +w), J(z+ At +,u)))

s[5

Substitute (7, z) for y(t, z) in (2.10). Since the volume element V, ) is invariant under
this change of variable, we obtain by the usual unfolding argument that

let + dP*B(y + vA) + AV B (R(z + AT + p)) — c*V?

<¢, Pk,é,D,r) = Z f ¢(T7 Z)gé,D,r(T, Z)vke_‘br’g(y)v_] dVL,(T,Z)

TTAVASLE

= $(1, 2D)8Lp (T, Ve PO AV, (o,
3L
where & L denotes a fundamental domain for the action of JO% on H X (L® C). Each
y=(({1),0,w) in JE acts on § x (L® C) via
(v.(m2) > (T+nz+p).
Therefore, choose
SL={12eHxLeC):0<u<lv>0,0<x<1lycL®R},

where we remind the reader that we write 7 = u+iv and z = x+iy. Itis straight-forward
to check that every pair (7/,7) in $ X (L ® C) can be written as y(t, z) for some y in Jfo
and some unique (7, z) in our chosen fundamental domain. Insert the Fourier expansion
of ¢ to obtain that

1 00
(@, Prrps) = f f f f Z Co(D', r)e((B(r') = D)t
0 Jo JIoNHE JRYD (A esupp(r)
+B(r, 2))e (B(r) — D)7 + B(r, )W L2 B0 dydxdvdu

1 00
= Z C¢(D/, r/) f f f f
0 0 [0,17%D) JRrkL)

(D', r")esupp(L)
xeu[(B(r') = D) = (B(r) — D)]) e~ BU)=D)=Er)-D)

XeB(r —r,x)+iB(r+7r, y))vk_rk@)_ze_“ﬁ(y)v_ldydxdvdu

=Cy(D, 1) f ¢~ 4mB(r)=Dyv k-rk(L)-2 f =4 BEI OV gy
0 Rk(@D)

In order to obtain the last formula, we have used the orthogonality relations for the
complex exponential function

1 .
1, ifn=n"and
@2.11) f e(u(n’ — n))du = fhn=mnan
0 0, otherwise

and the fact that a similar result holds in higher dimensions:

1, ifr =+ mod L and

2.12 '~ x)dx =
( ) L,l]rk@) eBr’ =, x)dx {O, otherwise.
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One way to prove (2.12)) is by writing the Gram matrix of B in Smith normal form, i.e.
write G = UDV, such that U = (u;;);j and V = (v;;); ; are matrices in GLy)(Z) and
D = diag(d,...,dww)), where d; | dy | - - - | d) are the elementary divisors of G. It is
clear that (2.11) implies that

f e(B(L, x))dx = 1.
[0,1]k@)

Every s # 0 in L*/L can be written as s = d;A, where d; is one of the elementary
divisors of G and A € L. It follows that

f e(B(s, x))dx = f e ([U's]D(Vx))dx
[0,1]k@)

[0,1]k@)

=det(V) [ | srme () (Yl
( ) p 27Tldi[Uts]l- ( ’)ldi[U sliVii

under the substitution X’ = Vx and where [Vi;, Vol = (Vi - -+, Vi) ([0, 1T*P). In
particular, V;; and V,; are integers for all i in {1,...,rk(L)}. When i = k, we have
d;[U's); € Z and therefore the corresponding term in the above product vanishes.

Since L is positive-define, its Gram matrix G can be diagonalized with a real or-
thogonal matrix, i.e. G = Q'ZQ for some Q = (g;;)i; in My (R) which satis-
fies Q'Q = Iy and some diagonal matrix & = diag(ay, ..., awuy). It follows that

T @, = det(L). Thus,

J=1

= f AT BED B gy, f e QI @20 g,
Rk RIKD)

— o@Dy + 37y DY) dy
2
RIKL)

under the substitution y* = Qy. Writing the exponents explicitly as functions of the
individual vector components and dropping the primes yields

k(L) k(L)

k(L)
I = f 6_4ﬂ(zj=‘ @+ Zj -2;)dy = rl (f e_2”a_/(2(Qr)_,yj+v—1y§ )dyf).
Rk@) R

j=1
Complete the square in the exponent and obtain that
k(L) k(L)
I = 1_[ (eZNQjV(Qr)§ fe—2ﬂ<YjV_1(yj+V(Qr)j)2dyj) — 1_[ (e27rajv(Qr)§ fe—Zmijly?dyj) >
j=1 R R

J=1

by a simple change of variable. Substitute x; for 2na jv‘l)%yj and use the standard
Gaussian integral to obtain that

rk(L) 1
k(L) | 2 1] 1l
I = I W@ T (_2V ) =27 det(L) HE 0,
j=1 a;j

Thus,

(L)

(b, Perps) =Co(D, 2" det(L) f e TPV 20y = Co(D, P Ao,
0
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as claimed. Thus, Jacobi—Poincaré series reproduce the Fourier coefficients of Jacobi
cusp forms under the Petersson scalar product up to a constant depending on the weight,
the index and the Poincaré series itself (note however that it does not depend on r).

(ii) Insert the standard choice of coset representatives of SL,(Z).\ SL,(Z) into (2.8)),
ie.

{(CCI Z) €I : (c,d) =1 and a, b are chosen such that ad — bc = 1},

and split this sum up into two sums, according to whether ¢ = 0 or ¢ # 0.
When ¢ = 0, we have d = =1, a = d = +1 and b can be any integer. Since r € L*
and A € L, we have that 5(r, 1), B(1) € Z and we obtain the following contribution:

> e BT+ BA.2) + (Br) = Dyr + p(r.2) + B(r, 1)

A€L
+ (=17 Fe(BT — B(A.2) + (B(r) = Dyt = B(r,2) + B(r, 7))
= > e (B +7) = D)) [e(BA+ 1,2)) + (=D*e(B(=(A + 1),2)] .

Ael

In order to express this as a standard Fourier expansion of a Jacobi form, set 7’ := A +r,
which implies that we are summing over all " in L* such that #/ = r mod L. Then
introduce an additional summation over all D’ in Q with D’ < 0 such that (D’,7’) €
supp(L) and impose the condition that D’ = D. The contribution becomes

E e ((ﬂ(r’) — D’)T +ﬁ(r”z)) [6£(D, r, D” r’) + (—l)k(SL(D, r, D” _r/)] ’
(D’,r’)és%pp(é)
D'«

where ¢, is defined in (2.4).

For the contribution coming from terms with ¢ # 0, Lemma @ implies that the
terms with ¢ < 0 are obtained from those with ¢ > 0, by multiplying their contribution
with (—1)* and replacing z with —z. Thus, concentrate on the former case. Set n :=
B(r) — D and use (2.7) to write the contribution coming from terms with ¢ > 0 as

Z Z(CT + d)_ke( cr_j dﬁ (z - %/l) + 621,8(/1)

>0 A€l
(c,d)=1

1 1 a a 1
+ﬁ(“ cr+d(2‘zﬂ)+z*)+”(z‘m))-

Write d as d” + ac, where d’ is the reduction of d modulo ¢ and @ € Z. As d runs
through Z with the condition that (d,c) = 1 in the above equation, the new variable d’
runs through congruence classes modulo ¢ which are coprime to ¢ (drop the prime from
the notation for simplicity) and « runs through Z. Similarly, write A as A" + uc, where A’
is the reduction of A modulo ¢L and p € L. The new variable A’ runs through the coset
representatives of L/cL (drop the prime from the notation) and u runs through L. We
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obtain the contribution

d \* -1 1 a
Z c* (T + -+ a) e(Tﬁ (z - —A- ,u) + =)
c>0,<1€Z,deZ(XC) ¢ T+ < ta ¢ ¢
peL,A€L/cL

+;,B(r —l/l— )+g,8(r/l)+n(g—;))
c(7’+%’+a) < c K c c 02(T+§+a)

= Z C_k Z €c ((ﬁ(/l) +ﬁ(ra /l) + I’l) d_l) Fk,L,c;(n,r) (T + C;Z, <= 1) ’

C
>0 deZ(XC),/IEL/cL

where d~! denotes the inverse of d modulo ¢. Furthermore, the function Fip . :
H X (L®C) — Cis defined as

- -1
FiLemn(T,2) = Z (t+a)*e (mlg(z — ) +

a€Z,ucl

IB(r"Z_M)_ n )

ct+a) Ar+a)
It has period Z in 7 and period L in z and hence it has a Fourier expansion of the form

Fk,L,c;(n,r)(Ta Z) = Z f(n,, r,)e (I’l,T + ﬁ(r', Z)) .

n'eZ.r el

Since Py p,, 18 absolutely and uniformly convergent in 7 and z on compact subsets of
HX(L®C), so1s Fi 1...nr- Hence, its Fourier coeflicients can be computed by integrating
it against an appropriate exponential function. For every fixedv > 0,yin L&R, min Z
and s in L*, we have

f f Frpenn(u+iv, x +iy)e (—mu — (s, x)) dxdu
[0,1] J{o,1pk@

= Z f' e (in'v + B(r,iy)) f e((n" — myu)du

nwezZ,rel? [0.1]

X f e(B(r' —s,x))dx = f(m, s)e(imv)e (B(s, iy)),
[0,1]7k@

using (2.11)) and (2.12)). Thus, evaluate f(n’,r’) as

—k —1 _ 1 ~
Z L,l] Lxurk@ (7+a) e(‘r + aﬁ(z o+ ot + a),B(r, 2= H)
n

f@',r)

a€Z,uel

B m)e(—n'T)e (=B(r', 2)) dxdu

[ e [ f e(‘—lﬁ<z>+iﬁ(r,z)—%—ﬁv’,z))dxdu,
. o oo T CcT c°T

where we write 7 = u + iv and z = x + iy as usual. Make the change of variable
I Z+ %r — 7r’. Expanding the integrand, the inner multiple integral is equal to

® < (-1 1 1
f f e(—ﬁ(z) + 5B+ TB() = —p(r ) - %)dx
o o T c’T c c*T

D\ [~ [ (-1
= o (B0, ) e (T80 + - f f e(—ﬁ(z))dx.
c°T —oo —oo T
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The multiple integral in x is standard and can be computed by diagonalizing 8 and using
the generalized Gaussian integral

= (] wmi\F (=il
f exp (Eiax2 + in) dx = (%) exp( 21a ), a,J eC.

We have

[ fLelmmooc [ o=

— e’;’ y'Gy f .. f exp (—(Qx)l@(Qx) + _(Qx)[@(Qy))

-~ o k(L) .
s —i 2r
= gTyGyf oo f exXp (Z ( T Q’jx + a/j(Qy)]x])]

J=t

= ”?ithy ” ﬂ + dx;
e nfwexp( " ozjx ozj(Qy), ) X;
k(L) \2 2na;
it | 2 (Q )
o[ 2] ool L2

=i A7 2
rk(L) } rk(L) l rk(L)

=P exp| T 3 /(0] 1—[(_) - da ! (5)

since [[; a; = det(L) and }; aj(Qy)ﬁ =B(,y). Set D’ := B(r') — n’. Thus,

T

f(l’l/, r/) = det(é)_%ec (_ﬁ(r,a r)) f (_)

Consider the cases D’ > 0 and D’ < 0 separately. We remind the reader that v = J(7) is
fixed.

If D’ > 0, then let R > 0 and consider the closed contour integral

1 D
(2.13) —— e D'(u+iv) + —|du,
k(L) 2
(u + V)7 c(u+iv)

over the contour C from Figure[I] formed by traversing the line segment
L={c:-R< o <R}

from left to right and the semi-circle
S={Re”:0<6<m)

in the counter-clockwise direction.
The integrand is holomorphic inside C and therefore (2.13) is equal to zero by
Cauchy’s Theorem. The integral we seek is

, D
T e(D7'+—2 )du
c*t

k(L)

1
(2.14) lim —e(D'(u+iv)+
1o Ju (u 4 vy

D
gy LU
c*(u +iv)
and hence we need to estimate the integral over § as R — oo. The estimation lemma
from complex analysis implies that its absolute value is less than or equal to

R max
ues

1
e LR
u 1A%

_Db
Au+iv))|
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4

o L o

Ficure 1. The contour C

With the chosen parametrization of u = Re® (0 < 6 < r), we have
R R B R

k(L) . k@ . k_ k(@)

+ T |Rcos@+ i(Rsind+v) T (R®+2Rvsin@ + 1)

For fixed R and v, the denominator reaches its minimum when sin 8 reaches its minimum
value of zero. Since k > rk(L) + 2 by assumption, we have

R
R=eo (R2 4 y2)27

Moving on to the exponential term, we have:
|e (D' (u + iv))| = |exp (27iD'R(cos 6 + i sin 6) — 2xD'v)|
= |exp (—272D'R sin €)| |exp(—2yrD'v)| ,

and the maximum of this expression is equal to exp(—2zD’v), since D’ > 0 and 0 <
sin@ < 1 for 0 < 0 < 7. For the final estimate, we have:

D 2miD
e —_—
c2(u +iv) c2(Rcos O + i(Rsin 0 + v))
27iDR cos 6 2aD(R sin 6 + v) )

= lexp

=le +
P c2(R?cos? 0+ (Rsinf +v)?)  c2(R%2cos?0+ (Rsinf + v)?)

2rD(R sin 6 + v)
¢2(R? + 2Rvsin 6 + 1?)

and the maximum of this expression converges to 1 as R — oo, by a similar argument
as above. Thus, the integral over S converges to zero as R — oo. Therefore, so does
(2.14)) and hence f(n’, r") vanishes when D’ > 0.

. i 172 . . L
If D’ <0, then substitute * (2) s for T and write s = o + it. Integrating in u from

= |exp

)

D/
—oo to co implies that we are integrating in ¢ from oo to —co and we obtain that
D\t e
1 ke kD *kD _p
£, 7y = det(L) Fe, (=BG, 1) i (5) (—1)f 5%

=D (D\'"?  (D)[i(D\? T
8 e(_ c (E) S+ c2 [z (E) S] )d[
= det(é)_%ec (—ﬁ(r', l")) l._kck_rk(zé)_1 (2’)2_4—2

X f T ) exp (—M(DD’)Z (s - s‘l)) dr.

C

(o)
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For fixed w > 0 and « > 0, the functions

£(8) = (5)5 Jo Nk, t>0,  and  F(s) = s, R(s) > 0,

K

are mutually inverse with respect to the Laplace transform, i.e.

1 T +ico
() = — f F(s)eds, T >0.
2ni Jr

—ioco

Taking ¢ = k = 222 and w = k — 22 jt follows that
2mi* o (D - 47T(DD')%
f(n/9rl) = T €c (—ﬂ(r',r))c I = Jk_M_l -
det(L)> D : ¢

(note that ds = idt) and the terms with ¢ > 0 give the following contribution:

Z Z €c ((:3(/1) + B(r, 1) + n) d! — B, r)) Z 2k C_rk;;L)_l

1
c>0 dEZ(f_),/IEL/cL W ez, el? det(L)z
B H<n’
k_rk@ _ 1 1
D\> + 2 4n(DD’): , d , A
X | —= J_ww_ | —|e|n’ (T+—|+B|r.z2— =]
D 2 c c c
Writing i~! = —i and substituting A — —A in the lattice sum, the above is equal to

271ik D\27 % "2 (L 4dn(DD’ 3
Z i - (_) Z C_%_l-lk,w,l (M) (-1
det(L)z \ D 2 c

(D’ ,r")esupp(L) >0

x> e(B=r) =Dy + B~ D)d +p(r, A1)

dEZZ,),/IEL/cL
Xe((B(r')— D)t +p(r,2).

Terms with ¢ < 0 give the same contribution, multiplied by (—1)* and with z replaced
by (—z) and therefore they give a contribution of

k_XLD 1 )
2ﬂ_.k D/ 274 2 (L 4]_[_ DD, 1
() ey (022
(D’,r")esupp(L) det(é)i >0 2 C

x> e(BU=r) =Dy +BC) - D)d + B, A1)

ez AeLfcL

X e((B(r') = D)+ B(r', —2))

k_tk(@D)_1 i
B 2n(=ik (D'\*"F 2 _kW 4dn(DD")?2
p det(L)} (3) 2, Mo |7

(D’,r")esupp(L) c>0

x> ee(Bu+r) =Dy + B=r') = D)d +B(=r p+ 7))

deZé),/.teL/cL
Xe((B(=r') =Dt +p(-r,2).
We have made the substitution g = —A. Substitute 7’ for —7’ in the above by abuse of

notation. The observation that H, .(D,r,D’,—r") = Hy (D, —r, D', r’) for every r and r’
in L* concludes the proof. O
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The lattice sum Hy (D, r,D’,r’") can be re-written in terms of Kloosterman sums

(L.2) as
H,.(D,r,D',r") = Z e B, A+rS@BF')-D',B(A+r)— D;c).

AeLjcL
As a consequence of Theorem the following estimates for the Fourier coefficients
of Jacobi cusp forms hold:

ProposITION 2.5. Suppose that k > tk(L) + 2. Let ¢ in Sy have Fourier expansion
(2.3). Then there exists an € > 0 such that

1k(L)? ww , \/?
C¢(D,, I"’) <<e,k (1 + 27+rk(é)+f det(é)e_;ll)’lz_‘—e)

1k 1 k) k)? k_tk@) 1
x det(L)? 22 BT DT (g, ).

This result is [BK93, §1, Proposition 1], under the substitutions G = 2m, r’ = G 'r
and D’ = 2(1_(329'

It is also possible to define Jacobi—Poincaré square series, which were studied
in [Will8]] for vector-valued modular forms for the Weil representation and used to
construct automorphic products. For every r in L*/L and every D in Q. such that
B(r) = D mod Z, define the Poincaré square series of weight k and index L associated

with the pair (D, r) as

OkLpy = § Pir.w2Dnrs

nez

k(L)
2

where Py 00 := Ej 0. This series converges absolutely for k > + 3 and, in view of

(2.2)), it can be written as
k
Owrpr=Erro+ Z (1 +(-1) )P kL2 Dnr-
neN

When £ is odd, equation (I.15) implies that Ey ; o vanishes identically and hence so does
OrLp,~ When k is even, we obtain that

Owrpr=Erpro+?2 E Pirn2Dpr
neN

and, using (I.4), that

% Z u(d) (Qk,;,dZD,dr - Ek,g,o) = Z u(d) Z Piran2p.dnr = Z Z M )P 2D

deN deN neN neN din
:Pk,L,D,r-

In other words, Poincaré series can be recovered from the Poincaré square series.

2.2. Eisenstein series

In this section, we prove analogous results to Theorem [2.3] for Jacobi-Eisenstein
series:

THEOREM 2.6. Let k be a positive integer and let L = (L, ) be a positive-definite,
even lattice over Z. The Eisenstein series Ey 1, satisfies the following:

(i) If k > D 12, then Ey 1., is absolutely and uniformly convergent on compact
2 L,
subsets of § X (L® C) and it is an element of Ji ;. Furthermore, it is orthogonal to

cusp forms. That is, for every ¢ in Sy 1, the following holds:
(¢, Errr) = 0.
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(ii) For every (D', r") in supp(L), set

*D

QO =D

Grr (D', 1)
- 2det(L)*T (k - =52)

2
x 2 (Huan 1 + (D Huor D),

c>1

(2.15)

where

216)  Hp(nD,r):= > e(pA+nd " +B0)=D)d+B0,A+7).

deZ(Xc),/leL/cL

The Eisenstein series Ey 1, has the following Fourier expansion:

1
Erp(1.2) =5 (01,1 2) + (= 1)'B1,_,(7.2))
+

G (D', r)e((B(r') = D) +B(r',2))
(D’ ,r")esupp(L)
D’'<0
where Uy, is a theta series as in (1.16)).

Note that H .(r, D', 1) = Hp.(0,r, D', r’) with the notation in (2.6) and that (L.15])
follows from (i7). Furthermore, it is clear from the definition of Hy .(r, D', r’) that Ey 1,
only depends on r mod L (this fact was also pointed out in [Ajo15]).

Proor. (i) The same arguments used in the proof of Theorem (i), imply that
the series defined in (I.14]) converges absolutely and uniformly on compact subsets of

HX(L®C) for k > g + 2. It was also shown that it is independent of the choice of

coset representatives of Jo%, \ JE and that it is invariant under the |r,.-action of Ji ;. The
fact that it is an element of Ji ;, follows from inspecting its Fourier expansion (ii).

We remind the reader that the Petersson scalar product of two Jacobi forms con-
verges if either one of them is a cusp form. The Petersson scalar product of Ej; , and
an arbitrary cusp form ¢ in §;; can be computed in the same way as in the proof of
Theorem [2.3] (i). Since ¢ is a cusp form, its Fourier coefficients Cy(0, ) vanish and
therefore so does (¢, E 1 ,)-

(if) This can be proved by following the steps in the proof of Theorem (ii), up
to a certain point. We pick up from where the differences arise. When analysing the
contribution coming from terms with ¢ = 0 in the Fourier expansion of E;; ,, set 7’ :=
A + r as before, which implies we are summing over 7 in L* such that 7 = r mod L.
Since D = 0 in this case, the contribution is equal to

! e (B0 (e (B, 2) + (=De (B(=1",2)) == I (1,2) + (=1)9,(7,2)),
2 2

rel*
r’=r mod L

as claimed. In the contribution coming from terms with ¢ # 0, the change arises in the
Fourier coeflicients of Fy ... They are now given by the equation

k(L)

£, 1) = det(L) Fe (=B(F, 1) f w(;) " ke (D'T) du,
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where 7 = u +ivand v > 0 is fixed. If D" > 0, then applying similar estimates to before
yields f(n’,r’) = 0. When D’ < 0, we need to compute the integral

00+1V T k(L)
2
I:= f (—) v%e(D'7) d1.
—cotiy 1

Substitute s for 27iD’t in order to obtain that

C—ico

I= il_k(—2ﬂD’)k_rk2®_1f s_(k_rk%))esds,
C+ico
where C := —2nD'’v is a positive constant. For fixed v > 0, the functions
f@) =" and F(s) =T(v)s™
are mutually inverse with respect to the Laplace transform. Taking v = k — rkz@ implies

that

k(L)
1o gosw_ (=2 f(1) Qo s
[=i""=2zD)>"" i@ = (=D

rk-%2) Tk-%2)

2

and hence

fo,r) = det(L) Ze, (—B(, ) "

Thus, terms with ¢ > 0 give the following contribution:

Yt Y e (BB +N =B ) Y it
>0 deZy AeLfcL n ez el?
BU)<n’
2 k_rk%) _D’ k—rk%)—l
><( i 1 ( rk()L) e(n,(7+c_l)+ﬂ(r,’z_/_l))
det(L)? (k- =& - 1)! ¢ ¢

k(L)

_ Z (2ﬂ)k‘¥ik(—D')k_ 7 Zc—k(_l)k Z

PR
' esuppry det(L)? (k - - 1)! >0 dez AeLfeL

X e (B = rd™ + (BG') = Dd + B, A= 1) e (B(r) = D)t + (. 2)).

Terms with ¢ < 0 give the same contribution, multiplied by (—1)* and with z replaced
by (—z) and therefore they give a contribution of

L) D |
2

=0 ke ry
Z (2n) i ( D)@) Zc_k Z

1
o Heppy  det(L)2T (k - >0 deZy AeLfcL
X ec (B = r)d™ + B4 = D)d + B(r, A= ) e ((Br) - D)t +B(r . —2))
k(L) k(L)
Qm = DY N -
= e D W CORS L
o Hesappy  det(L)20 (k - ) >0 deZy peLfcL

X e ((B(=r") = D)d + B(=r',p+ n)e((B(=r') = D)t + B(-r',2)).

We have made the substitution ¢ = —A. Substitute ’ for —7’ in the above by abuse of
notation, in order to obtain the desired result and complete the proof. O
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RemARrk 2.7. For k > rk(L) + 2, the non-singular Fourier coefficients of Ey;, can
be obtained from those of Py p,. Consider (D,r) and (D’,r’) in supp(L) such that
D,D’ <0 and let ¢ € N. We have

2t (DT e 471(DD’)%
C J k(L) _—
det(L)> \ D S W

ik _n\2""% 2 1w ot ot 2n+k—rk;9—
27 ( D) B0y (-1) (27T( D)z ( D)z)
= " c E

det(L)? \ =D Sinl(n+k-=2) c

1

ik Z (_ 1)n(2ﬂ.)2n+k—¥ (_D/)n+k— rk%—l (_D)nC—Zn—k

= I K(L
det(L)? 44 niT (n+k - =)
The J-Bessel function J,, is finite at the point x = 0 for positive @. Hence, view D as a
parameter in R and take the limit as D — 0 in (2.5)), using the above calculation:

ik(zﬂ.)k—y(_D/)k—rkgﬁ—l
lim Gy .p (D', 1) = ¢ *HL0,r,D',1).
b, 1 k(L) o
D0 det(L):T (k- 57) &

The singular term of Ey 1, as given in Theorem [2.6]is

1
2.17) ColErr)(1.2) = 5 (01,(7.2) + (~1)'BL_,(x.2)).
The following result was stated in the proof of [Ajo15, Lemma 3.3.14]:

Lemma 2.8. The Eisenstein series Eyr, are linearly independent for r in the set
Iso(Dp)/{+1}. Furthermore, if k is even, then Jf‘z is spanned by

{Eep, : r e Iso(Dp)/{£1})
and if k is odd, then J} is spanned by

(Exir:r € lsoDy)/ (1), r # ~rmod L}.
We include the proof:

Proor. Suppose that k is even. Equation (I.I5) implies that E;;, = Ej;_, and
therefore all Eisenstein series are represented by the set

{Erps: s e Tso(Dy)/{=1}}

The elements of this set are linearly independent, as a consequence of and of the
fact that theta series are linearly independent (see [Boy1S, §3.5]).

If k is odd, then (L.I5) implies that E;;, = —E; -, and therefore E;,;, = 0 if
r = —r mod L. Hence, all Eisenstein series are represented by the set

{Ek,é,s i s €lIso(Dp)/{1} : s # —s mod L}.

Linear independence is a consequence of the fact that theta series are linearly indepen-
dent. O

We would like to obtain a closed formula for (2.15]). The first observation regarding
the non-singular Fourier coefficients of Ey  , is that (2.16) can be re-written in terms of
the Kloosterman sums (I.2) in the following way:

Hyp (r,D',1r') = Z e B, A+rSPBr’)—-D',B(A+r);c)

Ac)
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One way to simplify (2.13) is inspired by calculations for scalar Jacobi-Eisenstein se-
ries from [EZ8S, §1.2]. Let b be a positive integer. For every quadratic polynomial
QO : L — Z, define the representation numbers

(2.18) Ry(0Q) := #{A € L/bL : O(1) = 0 mod b}.

For every r in Iso(D.), d in N and (D, x) in supp(L), define a quadratic polynomial
Orp.xa : L — Z by the formula

Qr,D,x,d(/l) = ﬁ(/l +dr + X) -D

and set Op  := Qo.p.rq- Furthermore, define

db =

— d'mod b, if(d,b)=1and
0, otherwise.

The following holds:
Lemma 2.9. If r € Iso(Dy) and (D, x) € supp(L) such that D > 0O, then

D HL D) = ) b Y N e (dQ, 5, (D)

5 19 c>1 b1 deZ, AL/bL
19 N A T ()
(k-tkD) )4 b

Proor. Set A’ := d~'1 on the right-hand side of (2.16)). Since (d, ¢) = 1, this change
of variables is an automorphism of L/cL. Change the notation of the pair (D', r") to
(D, x) and drop the prime from the new summation over A’ for simplicity. Use the fact
that r € Iso(Dg) in order to write e.(B8(1 + r)) = e(B(A + d='dr)) and e.(B(A, 7)) =
e.(B(A,d 'dr)). We obtain that

He(nD,x)= > e(d(BA+d"'r+x)-D))

d EZZZ) JA€L/cL

(note that this method would not work for Hy .(D,r,D’,r")). Remove the coprimality
condition between d and c using (I.4):

Hi (D)= > > u@e(d(B(d+der+x) - D)).
d€Zc),A€L/cL al(d,c)
Write ¢ = ab in order to obtain that

(2.20) Z ¢*H,.(r,D,x) = Z Z (";Ta))k Z Z eas (4 (B + dupr + x) = D)).
d

=1 a>1 b1 Z(ap) A€L]abL
ald

The condition that d € Z ;) and a | d is equivalent to the condition that ‘5’ € Zw). The
expression e, (‘Z’ (,8(/1 +dyr + X) — D)) only depends on A modulo b and therefore

Z ep (é (,8(/1 + dgpr + X) — D)) = g™ Z ep (é (ﬁ(/l + dgr + X) — D)) .
xérjabr V¢ b N4

Separate the term with ¢ = 1 from the rest in (2.20) and note that d,, = 0 in the sum
over a > 2, since a | d. Furthermore, substitute d for f in the latter sum by abuse of
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notation in order to obtain that

D HL (D) = b YT N (0, ,5,(D)

c>1 b>1 deZyy A€L/bL
,U(Cl) _
a>2 b>1 dEZ(b) AeL/bL
The following identity holds:
1
@21) 2 D, 2, edQn() = Ry(Qp.).
/lEL/bL dEZ(b)

To check that this is true, assume that A in L/bL satisfies Op (1) = 0 mod b. Then
ep(dQp (1)) = 1 and, as d runs through congruence classes modulo b, we obtain a con-
tribution of |Z,| on the left-hand side of (2.21)) from every such A. On the other hand,
if Ais such that b t Op (), then set M := (b, Op «(4)). The fact that 37 e.(dm) =
when (n,m) = 1 implies that

Ko
D edOp () =M ) ey (dQDM( )) = 0.

dEZ(b) dEZ( %)

In order to complete the proof of the lemma, combine (2.21)) with the following well-
known identity involving the Riemann zeta function:

u(n)
as) =25 .

n>1

2.3. Fourier coefficients of trivial Eisenstein series

Lemma [2.9) implies that Theorem [2.6] (ii) can be simplified in the following way
when r = 0:

Lemma 2.10. The Eisenstein series Ey 1o vanishes identically when k is odd. When
k is even, it has the following Fourier expansion:

Exno(t) =90+ ), GiroD,Me(Bx) = D)t +B(x,2)),

(D,x)esupp(L)

D<0
where
e EED T (Ri(@)
2.22 Gk Lo(D, x) = —
( ) kL,0(D, x) det(L)fF (k . rk;L)) £k — tk(L)) ; b1

Proor. It is clear from (2.17) that Cy(Ey ) is equal to zero if k is odd and to ¥,
otherwise. Set r = 0 in (2.19) and substitute this formula in (2.15)):

o ) oy Re(@0.)
1+ (=) —==,
2det(L)‘iF( - rk(L))((k — rk(L)) ;( +(=D ) pk—1

Giro(D, x) =

The result follows. ]
An element A in L/bL solves the modular equation
Op(A) =0mod b
if and only if (—2) solves the modular equation

Op-x(—=1) = 0 mod b.
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It follows that R,(QOp ) = R,(Qp.—,) and hence, in the notation of [BKO1], R,(Op ) =
N, _p(b) and the Dirichlet series

L(s):= ) b Ry(Qp.)
b>1

k(L)
2

continued meromorphically to R(s) > —= + 1, with a simple pole at s = rk(L).
In order to compute L(s), analyse the representation numbers

Ry, := Ry(Qpy)

in more detail. Set ¥ := N,x and D := N;fD. Then ¥ € Land D € Z (since D =
B(x) mod Z). Assume that (b,det(L)) = 1. Then (b, N,) = 1 and therefore

B(A+x)—D=0mod b & BN+ %) =D mod b.

The sets {N;A+ X : A € L/bL} and L/bL are in bijection. In other words, the following
holds when (b, N,) = 1:

(2.23) R, =#{1 e L/bL : B(1) = D mod b).
For arbitrary b in N, we have

BA+x)—D=0mod b & B(NA+ %) =D mod N?b

+ 1). This L-series converges for R(s) > rk(L) and it can be
k(L)

isequalto L, _p (s -

and (N, A + X) runs through representatives of the set
L/N.bLN{1€eL: A= Xmod N,L}
as A runs through L/bL. In other words,
R, = #{1 € L/N,bL : (1) = D mod N?b and A = ¥ mod N, L}.
The representation numbers R), satisfy the following:
LemMA 2.11. The arithmetic function b — Ry, is multiplicative.

Proor. Suppose that b = b;b,. If A in L/bL satisfies Qp (1) = 0 mod b, then A
can be viewed as an element of L/b,L such that Qp (1) = 0 mod b, and it can also be
viewed as an element of L/b,L such that Qp (1) = 0 mod b,. Thus, the map defined
by A — (A mod b, L, A mod b,L) gives the following embedding:

{1e L/bL : b | Qp()} —
{1 € L/biL :by | Qp (D)} X{A € L/DL : by | Qp (D)}

Conversely, suppose that (by,b;) = 1. Given A, in L/b,L satisfying b; | Op.(4;)
and A, in L/b,L satisfying b, | Qp (1), let A = (2!, ..., D) be the lattice element
whose coordinates are the unique solutions modulo b, b, to the rk(L) systems of modular
equations

(2.24)

x= A mod b, and
x = A5 mod b,

given by the Chinese remainder theorem. Then A = A; mod b,L and 1 = A, mod b,L
and therefore Qp (1) = 0 mod b, and Qp (1) = 0 mod b,. Since (b;,b,) = 1, this
implies that Op (1) = 0 mod b, b,. In other words,

{1 € L/b\L:by | Qp (D)} x {1 € L/DL: by | Qp (D)} = {1 € L/DL:b| Qp ()}

and, in view of (2.24)), equality holds between these two sets. In particular, they have
the same number of elements. m|
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It follows from Lemma [2.11]that L(s) can be written as an Euler product:

Ls)= || Ly,

p prime
where
(2.25) Ly(s)= > p"Ry.
1=0

Lemma implies that the Fourier coefficients Gy 1 o(D, x) are the values of the ana-
lytic continuation of

k(L)

Q)" =Dy
L
det(L)!T (k —rk(”)as—rk(L)H) ] 2

p prime

at s = k—1. Before we state the following result from [Sie3S] on representation numbers
of quadratic forms modulo prime powers, note that

B(x)—D=n < B(N.x,x)—2N,D =2N,n
and 2N,n and B(N,x, x) are integers, implying that 2N,.D is an integer.

Lemma ([BKO1, Lemma 5]). Let p be a prime and set w, := 1+ 2v,(2N.D). If
[ > wy, then the following recurrence relation holds:

Rpm = prk(é)_lRpl .

In other words, we have R« = p'™L-DR ., and therefore

Wp—

—Is PR p'r
l’(s) Z p R -p —(s—rk(L)+1)

Define the local Euler factor

(2.26) Ly(s) = (1= p o OD) L (s)

and note that L,(s) = L, _p (s rk(L) +1 p) in the notation of [BKO1]. Then

(2.27) L(s) = (s — k(L) + 1) ﬂ L,(s).

p prime

We remind the reader of Definition of xr. To compute the L,’s, use the following
result:

THeorREM 2.12 ([Sie3S| Hilfssatz 16]). Let p be a prime which is coprime to 2 det(L)
and set k := v,(D). If l in Z is such that | > k, the following holds:
(i) If k(L) is even, then
k(L)

—r _ k@) K K e -
plIT DR :(1 +xL(P)P' T+ (PP ))(1 ~xupp )

(ii) If tk(L) is odd, then write D = Dqf?, with Dy in Q. and f in N such that
(f,2det(L)) = 1 and v,(Dy) € {0, 1} for all primes € which are coprime to 2 det(L)
and set Dy := NJ%DO. Iftk(L) = 1, then

Ry = (x(Do, p) + x1(Do, p)*) p*”
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and, if tk(L) > 3, then

L " <o .
PR :(az_rk@ (P") = x1 Do P Flrs-y (9 1))

1 - p 1-rk(L)

1 = x(Do, p)p7!

X

rk(L)

If the rank of L is odd, then the decomposition of D into D = Dy f? can be refor-
mulated in an explicit way. Write D = %, with A and B coprime integers, A > 0 and

B < 0. Since N?D is an integer, the prime factors of B are among the prime factors of
N,. Define

@28  f= [| M ad  Dy=o=t [] » []

plA plA plA
pt2det(L) pl2det(L) pt2det(L)

where, for every prime p,
1, ifv,(A) =1 mod 2 and
e, :=
b 0, otherwise.

Then f and D, satisfy the conditions of Theorem [2.12] This theorem implies the fol-
lowing result:

Lemma 2.13. Let L,(-) denote the Euler factor (2.26). If tk(L) is even, then

- 1 f‘p(s)
L,(s) = K
k(L )
l:[ L(S - TJ + LXL) |2££<L) L= xu(p)p™==*

and if tk(L) is odd, then

rk(L) J)

L(s = 1™ | xo(Dy. ) 1 = xu(Bo. pp

n L) = = DD [[ —= PRSI

- plD det(L)

Proor. We remind the reader that D = N2D and that Dy = N2D,. Therefore, if
(p,2D det(L)) = 1, then w, = 1 and equation (2.26) can be reformulated as

Ly(s)=1- p kDD P’R,.
If rk(L) is even, then Theorem [2.12] (i) implies that

_ _kWw
R, = p™ 71— xu(p)p~ )

for every prime p which is coprime to 2D det(L) and hence

[TZ=[] (-x@p™®) T] L.
p

p2Ddet(L) pl2D det(L)

If k(L) is odd and p is coprime to 2D det(L), then write D = D, f? with the required
conditions and note that v,(f) = O (since Disa multiple of f) and)@(DO, p) e {x1}. If
rk(L) = 1, then Theorem , (ii) implies that R, = )@(f)o, p) + 1 and, if rk(L) > 3,
then

1 _ pl—rk@) (D)

rk(L) 1+/\/L(E0’p)p == J

P
|

1 - XL (Do, p)p7t
Thus,

rk(L)

L,(s) =1+ (Do, p)p“t=)
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and hence
1= —(2s—rk(9+l)

le&)J) 1—[ ZP(S)’

p2D det(L) 1 - XL L(DO’ pp- (s pl2D det(L)

[ [2:69) =
P
completing the proof. O

When rk(L) is even, write A(L) = df?, with d the discriminant of the quadratic field
Q(+/A(L)) and f in N. When rk(L) is odd, for every pair (D, r) in the support of L such
that D < 0, set Dy, := DoN? and write Do A(L) = dpf} . with by, the discriminant

of the quadratic field Q( 1/D0,xA(L)) and fp, in N. We remind the reader that Lp(-)

denotes the Dirichlet L-function of the quadratic character yp for every discriminant D.
The main result of this section is the following:

THEOREM 2.14. Let L be a positive-definite, even lattice over Z and let k be a positive,

even integer such that k > rk(L) + 2. Let the pair (D, x) in supp(L) be such that D < 0
and let G (-, ) denote the non -singular Fourier coefficients of Ej . If k(L) is even,
then

2~ (= D|b|>’<-£-l

fLy (1 —k+ 1‘k(L)) Zd”,u(d))(b(d)d 0'1 —2k+rk(L) (j_j)
L p(k—1)

Grro(D, x) =

(2.29)
X

k(L)

spbdeyy | —xL(p)p™ *

and if, k(L) is odd, then
s (tk(L) 22740 (1521 - k) (DD, (D)

rk(L)

GiLo(D, o
Boj k(-1 T0.10p. /T2
iy LSOR I
(230) X Loy, (1= k+T%21) ), e, (d= T
dfip.x
- k(L)
T« 1= x (Do, p)p" = 17
X 022k ( =) [ — = e Lotk = .
pID det(L)
Proor. Equations (2.22)) and (2.27) and Lemma [2.13]imply that
Y- k(Y-SR [ (k-1
Grpo(D, %) = 2m)* 2" (=D) Ly( )

rk(L)

det(L)%F(k - rk(L)) L(k — rk(), xo(, )) pl2D det(L) 1 - XL(P)P_(k_
if rk(L) is even and that

Q@m) % (=D)L (k = T, 1 (Do..n )

GiLo(D, x) = :
- det(L)*T (k = %52) £(2k — tk(L) - 1)
1= xu(Do. ppp T
1_[ 1 — p~@k-rkW-D Ly =1
plD det(L)
if rk(L) is odd.

Suppose that rk(L) is even and that the pair (D, x) in the support of L (D < 0) is
fixed. Then A(L) is a discriminant, i.e. it is congruent to O or 1 modulo 4, and hence

xo() = (A( )) is a quadratic character modulo |A(L)|. Write A(L) = df?, with d the
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discriminant of Q(+/A(L)) and f in N. It follows that y,(-) = (9) is a primitive quadratic
character modulo [d]. It was shown in [Zag77, §4] that the Dirichlet L-function of y.
satisfies the following:

231 Lis.xy) = Lb(s);u(d) Sla 30'1_25(;1),
Write Gy 10(D, x) = A x B, with
A e 2 (D) Lk-1)
Zdn’-,u(d)( )drk? T k(D) Zk(f) p2Ddet(r) 1 1= xo(p)p~t="
and
P

B :=

1 k(L) k@)
det(L)*T (k - %52) Ly (k - =2)
Since k and rk(L) are even, it follows that A is a rational number. Re-write the expres-
sion for B using functional equations of Dirichlet L-series (1.5)):
r (k—rk(é)/2+ah )

k=P ()
T n 2

:det(é)%r( rkﬁ) (k _ rk(L) XD)

b
1 k_rtk@) %y X\ k rk(L) + % ( rk(L) axb)

k—rk(é)/Z#—aXh

l%lblzm 1 2 [
det@fr(k - rkU) G(,\/D)A( ”“” X)
ol N
:det(é)fGQ\/h)Lb(l ko MO) (k- M) (T g MDY

since y, is a real character. We remind the reader that
AL) = (=D det(L) = i

and therefore d > 0 if rk(L) = O mod 4 and d < 0 if tk(L) = 2 mod 4. The Kronecker
symbol ( ) is equal to sign(n) and therefore

0, ifrk(L) =0 mod 4 and
a.,. =
© 1, ifrk(L) = 2 mod 4.

The Gauss sum G(y3) is equal to b2, since b is a fundamental discriminant (see [CS17,
§3.4.2] for a proof, for example), and

det(L)}G(xo) = (det(LD)* = (—1)F 2P} = i,

The Gamma function satisfies the following duplication formula:

1
(2.32) () (z + 5) = 217203 (27).
Thus,
r(4-52+%) 2T
k(L) - k(@) | 1-an\’
r(k-=2) r(4-=2+-52)
The Gamma function satisfies Euler’s reflection formula:
T
(2.33) I'1-29I'(z) = ——, z¢Z.
sin(7z)
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Furthermore, we have sin(w(n + 1/2)) = (—1)" for integer n. It follows that

(L) a k(L)

F(’g -0y ?) 21-(k=" )( l)k_@_m

= —1)2 4 ’
k(L) Itay, k k(L) : ‘
M) 5 l) A
Thus,
21l 50) (AT
B =

Ly (1 -k + 52

when rk(L) is even.
Suppose that rk(L) is odd. Then A(L) is congruent to 0 modulo 4 (see Remark

1.8)) and hence /\(L(Do, )= (M) is a quadratic character modulo [DyA(L)|. Write

DOA(Q = df2, with d the discriminant of Q( DOA(Q) and f in N. As before, the
L-function of )@(Do, -) satisfies the following:

LB = 10 Yo ) 1)
dif

The values of the Riemann zeta function at positive even integers are well-known:
tk(L)-1

(-1 "7 Byerkpy-12m

2I'(2k — k(L))

YRerk-1

{2k~ k(L) ~ 1) =

Write Gy o(D, x) = A X B, with

. k@4 k(D)4
N 2(=D)CT 17 Y e u(d) (E)df > Ko -2k (%)

k(L)

(-2 By -1
k-15E7)

Lyk-1)

H 1 = xo(Do, p)p
— p—@k=rk(L)-1)
plD det(L) I=r

and note that A is a rational number. Applying the functional equation (1.5 to y, yields
@)% (=D)IT (2K — k(D)) L (k — [%7)

2
det(L):T (k - rk(%) (2r)2h-rk(L-1

(-D)iG(xo)Ly (1 =k +[%27) T (52 - & + "2 1 2k - k(L)

2 2 2

4
. I KD o kDo k(L) K tk(D+l | a
rrae @2 TR T (e B (- T

We remind the reader that
DoA(L) = Dy(~D 712 det(L) = b

and Dy < 0 and therefore d > 0 if rk(L) = 3 mod 4 and d < 0 if rk(L) = 1 mod 4. It
follows that

0, ifrk(L) =3 mod 4 and
1, ifrk(L) =1 mod 4.

The Gauss sum G(y,) is equal to b2 and

~ \det(L) 2 f

1 KD~ NI ~ 11
G(x») _( 0 )2 _[DVT2Dg |7 % (=Dy)72>
det(L)? |
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The duplication formula (2.32) implies that
K(L)-1
rek-rw) Tlk-"5)

F(k _ @) C @k gt

Euler’s reflection formula (2.33) implies that
F(l va, k_tkD+ 1) :F(l ) (k rk(L) — 1 +2axh))

2 2 4 2 4
3 n
. k(L)—-1+2ay, rk(L)—-1+2ay,
sin(n(§ - ==5==))T (4 - =)
3 Vs
e e N (Cee N )
Finally, using the duplication formula, we have
kK tk()+1 a, k tk(L)-1+2a,,
N--——+ = |I'z-—=
(2 5 22 4
k rtk(L)+1 k rtk(L)-1 KL rk(L) + 1
=-I'f--—|II'|=——1|=2 T -
(2 z ) (2 z ) N S

and it follows that

o e ERICN (L)~
(e b SO k) D) r(k-=57)

4
k(L) k _ tk(@D+1 | ay fk<L>+3 kg ! tk(L)+1
(k- S2)r(k -2y ) gi-oewn Ir(k - 20

( 1)§_M (k _ rk(L)+1)

2

3y 2D

27
Thus,

1 (k- 1529) (Do) Ly (1 - k + [227)

Fork(L-2k+ 1 k-T2

(DT

when rk(L) is odd. Note that

- 1)er(_)J ROy 1, ifrk(L) = +3 mod 8 and
-1, ifrk(L) = 1 mod 8

and we remind the reader that

(2)_ 1, if p=+1mod 8 and
“|-1, ifp=+3mod8

for every odd prime p, which completes the proof. O
An important consequence of Theorem [2.14|is the following rationality result:
CoroLLARY 2.15. The Fourier coefficients of Ey 1 are rational numbers.

Proor. The values of L,(+) at negative integers can be expressed in terms of Bernoulli
polynomials (I.3) (see [Zag81, §1.7] for a proof, for example):

NE o]

(2.34) Ly(-n) = — +1m2xb( m) nﬂ(lm)
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Furthermore, when rk(L) is odd, we have

N2D? )5 _ -N.D
f? f
Every other quantity appearing in (2.29) and (2.30) is rational. The result follows. O

(DDo)* = (

While the formulas obtained in Theorem [2.14] are explicit, we want to investigate
the Euler factors L, at primes dividing 2D det(L). First, compute the product expansion
of the sum on the right-hand side of (2.31)). The following holds:

Lemma 2.16. If d is a fundamental discriminant and s is a complex parameter, then
the arithmetic function F; : N — C, defined by

F() := Z,u(d))(b(d)d_so-l—Zs (2) ,
d|f

has the following product expansion:

1 — -2
(2.35) F=]] (1 + (1= xalp)p*™) ﬁ)

pli

ProoF. Assume that @ and b in N are such that (a,b) = 1. Then every divisor d of
ab can be written as d = d,dj, with d, | a, d; | b and (d,, dy) = (£, 2) = 1 and therefore

b
Fuab) = Y uldayoda)dy o2, (di) > wdyaldy)dy oo, (d—b) = Fi@)F(b).

dola 4 dylb

since u(+), x»(+) and o_,4(-) are multiplicative functions. It follows that F; is multiplica-
tive. In particular, it suffices to prove (2.35) for { equal to a prime power, say f = p’ for
some prime p and some ¢ in N. We have

Fi(p') = a125(p) = xa(p)p~* 012, ).
Using the product expansion of the divisor sum, we obtain that
(t+1)(1-2s)
P -1
Fy(p") R —xo(p)p P

as claimed. m|

1(1-2s) _ | — pi1-29

P =1+ (1 —Xb(p)p“_l) 1

When p | b, we have x,(p) = 0 and Lemma[2.16)implies that

(vp(H+D(1-25) vp(H(1-25)

112" -1 ey 1=p”

Fs(M) = | | Pl ] | | (1 + (1 ~Xo(P)p ) Pl — |
pli.ptd

1 _ pvp(f)(12s))

pld
) n (1 + (1 —Xn(p)Ps_]) P2

pli.ptd

where g = [, p" .
Let b and { be defined as in the proof of Theorem [2.14, We compute their prime
decomposition. If rk(L) is odd, then Definition [I.9)and equation (2.28) imply that

DOA(L) =N§D0(—1)L¥J2 det(I:) — (_I)FLZ@'Izw(ﬁ)det(L)) l—[ pvp([)det@)) l_l pep_

pldet(L) ptdet(L)
p#2
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For every odd prime p | D det(L), define the constant

)L, if vp(D det(L)) = 1 mod 2 and
&r = 0, otherwise.
We remind the reader that a fundamental discriminant is an integer which is either
congruent to I modulo 4 and square-free, or equal to 4n, for some square-free n which
is congruent to 2 or 3 modulo 4. It follows that the sign of DyA(L) is important and we
must distinguish between the cases where tk(L) = 1 mod 4 and rk(L) = 3 mod 4. Write
D = %’ with A and B coprime integers, A > 0 and B < 0 and set
S:={p=3mod4:(plA,p1det(l),e, =1) or(p|det(L),g, =D}
If rk(L) = 1 mod 4, then DyA(L) is negative and therefore

1, if va(2Ddet(L)) is even and |S| is odd,
D=-— l_[ per l_[ psr x 34, if v,(2Ddet(L)) and |S| are even and

plaatl) - pldetly 8, ifvy(2Ddet(L)) is odd
and
vo (2D det(L)) . -
=2, ifvy(2Ddet(L)) even and |S| odd,
LM ] vy (D det(L)/2) . -
f= 1—[ p 2 X427 —, ifv,(2Ddet(L)) and |S| even and
peesr) 225592 if vy(2D det(L)) is odd.

On the other hand, if rk(L) = 3 mod 4, then DOA(I:) is positive and therefore

1, ifv,(2Ddet(L)) and |S| are even,
D= ﬂ P ]_[ p%r x {4, ifvy(2Ddet(L)) is even and || is odd and

p*gg‘@ Plif;‘z@ 8, if v,(2Ddet(L)) is odd

and

vo (2D det(L))
2

, ifv,2D det(L)) and |S| are even,
_ L"p(f’dﬁ@) ] vy (D det(L)/2) . -
f= 1—[ p 2 X327 —, ifvy(2Ddet(L)) even and |S| odd and

plderl 2559 if vy(2D det(L)) is odd.
It follows that, when rk(L) is odd, the primes that divide both d and { are those odd
primes dividing det(L), which have odd valuation greater than or equal to 3 in D det(L),
and possibly the prime 2. Primes that divide d, but not f, are odd primes dividing D,
but not det(L), which have odd valuation in A, odd primes dividing det(L), which have
valuation equal to 1 in D det(L), and possibly 2. Lastly, primes that divide f, but not d,
are those odd primes dividing det(L), which have positive, even valuation in D det(L),
and possibly 2.
In the case where rk(L) is even, Definition [I.9]implies that

k(L)

A(L) =(=1)7 det(L) = (1) @ pv2(det(L) rl pvp(det(L)) .

pldet(L)
p#2

It follows that we must distinguish between the cases where rk(L) = 0 mod 4 and
rk(L) = 2 mod 4. For every odd prime p | det(L), define the constant
)1, ifv,(det(L)) = 1 mod 2 and
&r = 0, otherwise.
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Let S denote the set of primes {p = 3 mod 4 : p | det(L), g, = 1)}. If k(L) = 2 mod 4,
then A(L) is negative and therefore
1, ifvy(det(L)) is even and |S| is odd,
b=-— H pr x 14, if vy(det(L)) and |S| are even and

pl;l;tgé) 8, if vy(det(L)) is odd
and
M, if vo(det(L)) is even and |S| is odd,
f= n prJ X zw, if vo(det(L)) and |S| are even and
pldet(L) 225 ifvy(det(L)) is odd.

p#2

On the other hand, if rk(L) = 0 mod 4, then A(L) is positive and therefore

—_—

, if vp(det(L)) and |S| are even,
b= n pr X 34, if vy(det(L)) is even and |S| is odd and
pldet(L) 8, if vy(det(L)) is odd

p#2

and

vp(det(L))

, if vy(det(L)) and |S| are even,
_ L\'p(det@) | vy (det(L)/4) . . .
f= rl pt 7 X272, ifvy(det(L)) is even and |S| is odd and

vy .
Py 25T if vy(det(L)) is odd.

It follows that, when rk(L) is even, the primes that divide both d and f are those odd
primes dividing det(L), which have odd valuation greater than or equal to 3 in det(L),
and possibly the prime 2. Primes that divide d, but not {, are those odd primes dividing
det(L), which have valuation equal to 1 in det(L), and possibly 2. Lastly, primes that
divide f, but not d, are those odd primes dividing det(L), which have positive, even
valuation in det(L), and possibly 2.

ExampLE 2.17 (Eisenstein-series of index L,)). The lattice L, = (Z,(x,y) +— 2xy
has rank one and its dual is %Z. It follows that its determinant is equal to 2 and its
level equals its discriminant A(L,) = 4. The discriminant module of L, is D, =

({O, %} ,x — x? mod Z) and hence Ji¥ = CEj,0 1s a one dimensional vector space
'L —

over C. The theta series in the singular term of Erp,o1s

VU, 0(1,2) = Z e (xzr + 2xz) ,

X€Z

which is one of the four classical Jacobi theta functions. The Eisenstein series Ey 1, o
has the following Fourier expansion:

Eip,0(0) =010t + ). Gig oD, x)e((x* - D)7 +2xz)

x€1Z,DeQ
D=x?> mod Z

=, 0(1,2) + Z G, 0(D, x)e ((x2 - D) T+ 2xz)
xe€Z,DeZ
+ Z Gk,LI,O(D, X)e ((x2 - D) T+ 2xz) .

XEZ+ % ,DE% mod Z
D<0
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The Fourier coefficients Gy, o(D, x) can be computed using (2.30). If x € Z, then
N, = 1. Write D = D, f?, with

vp(D)
f= 1_[ pliT and Dy = =2"D l_[ D;

pID is odd pID is odd
vp(D) is odd

it follows that D = D and Do,x = Dy. The discriminant of Q ( \/4D0) is

%, if vo(D) is even and #{p | Dy : p = 3 mod 4} is odd,
D:i=Ddp, = %, if vo(D)and #{p | Dy : p = 3 mod 4} are even and
8Dy, if vy(D) is odd.

D) >
and therefore
232 ifvy(D) is even and #{p | Dy : p = 3 mod 4} is odd,
fi=fpy= 2%1)), if vo(D) and #{p | Dy : p = 3 mod 4} are even and

vy(D)-1

27z, ifvy(D)is odd.

The bad primes dividing det(Ll)D are 2 and the odd primes dividing D. The quadratic
character (Do, ) is equal to (ﬂ) and therefore y,, (Do,2) = 0 and XL, (Do, p) = x»(p)
for all odd primes. Thus, when x € Z, we obtain that

221 (k — 1) (DDy)> D2 Lo(k—1
(k= 1) (DDy): L2 — k) x 2(k—1)
Boy_of[b[! 1

175
1= xalp)p'™ -
X Z,u(d) (5) d" o3 (2) l_[ %Lp(k - D.

dff pID.p#2

Gip,0(D, x) = —

Lemma [2.16|implies that

_ 9n((B-2k
Zﬂ(d) (g)dl—km_zk (;1) =1+ (1 _XD(2)2k_2) %

dff
Combining this with (2.34)), we obtain that

—2 ol 2k-3 7
fiDk2 m\ 2%k - 1)
Gz o(D, x) = > B | | X ——55—
D0 =y g ) T
1 — 2n(hE-20 1—xyo(p)p'*.
k2 o\p)p

x(1+(1 D ) = Lok = 1.

pl|D is odd

When x € Z + % its order is equal to 2 and D € %(42 +1). We have D = D, f?, with

F=]]p™ and po=-; [] »

plaD plaD
vp(4D) is odd

it follows that D = 4D and DO,X = 4D,. The discriminant of Q ( \/4E0) is

bi=dp=Do=- []| »p
plAD
vp(4D) is odd
and therefore fp, = 2. This is because 4Dy = 4D = 1 mod 4. The bad primes dividing
det(L,)D are 2 and the primes dividing 4D. The quadratic character y , (D, -) is equal to
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(16D 0) and therefore y, (Dy,2) = 0 and XL, (Do, p) = xap,(p) for all odd primes. Thus,
when x € Z + 5, we obtain that

2%-2 (k — 1) (4DDy)? D2 Lk-1)
G D,x)=- L 2-k
kL, 0(D, X) By o lADyf apy (2 — k) ———- [
_ _ 1- (p)p' -
X (1 + 277 — yup,(2)2 k) 1_[ 1)(400 £2f Ly(k—1)
PID B
ka_z [4Do|

Xapy (M) Bi_y ( z )(1 + 277 — yup,(2)2472)

By p— 14Dy
Lyk—1) 1 = xap,(p)p'* ..
X 1 — 22-2% 1 — p22 Ly(k—=1).
pl4D

It follows that

p2[ & Lyk—1
ot <tateae 3 G| S i) 2

xeZ.DeZy - 2k=2

m=1

X (22k—3 + (1 = xa(2272)

X l—[ %Zp(k - 1)]e ((x2 - D)T + 2xz)

pID,p#2

1 — 2m(MG-20
1 —23-2 )

ka—2 [4Dg|
2%k-3 k2
' ” 12_:1 B [Z:;X4D°(m)3k_l (I4D |)(2 + 1= xap,(2)2 )
X€Z+5,D=3 mod Z m
D<0
Lok =) 11 L= xan )™ ; 2
8 1 —2%2% 1 — p>2 Lytk=T)le ((X - D)T + 2xz).

pl4D

In the following subsection, we discuss an alternative method for computing the
Euler factors ﬂp, which also works for the bad primes p | 2D det(L).

2.3.1. Igusa zeta functions and representation numbers. A different method to
compute the Euler factors is based on results from [[CKW17] on calculating
the Igusa local zeta function (see Definition [I.T). We remind the reader of the defini-
tion (2.18) of the representation numbers R,(Q). For every quadratic polynomial f in
Zp[Xy, ..., Xuw], the following holds:

—-pU(fipis) —I(s+1k
e _ ;}:sz(f)p (s+rk(L)

in other words

P —L(Qpaipss - rk(L))
ps rk(L) _ 1

(2.36) L,(s) =

A quadratic form Q : Z)) — Z, is said to be unimodular if the determinant of its Gram
matrix is invertible in Z,,. By the direct sum of two quadratic forms Q, : Z; — Z, and
0> : Z} — Z, we mean the quadratic form 0, & O, : Z’;,*’” — Zp,

O1® Oo(X1s e s X Vis e o5 Ym) = OQ1(x1, oo, x0) + OQo(Vis oo, Vm)-
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A quadratic polynomial Q is said to be in normal form if Q = @iy p'Q; + ¢, where
each Q; is a unimodular quadratic form over Z,, and c is a constant in Z,. It was shown
in [CKW17, §4.9] that every quadratic polynomial f as above is isospectral at p to a
polynomial Q which is in normal form, meaning that R,(f) = R(Q) for ever [ in N.
For every prime p and every integers a, r and d, define the following helper function:

e if ris odd, then

-1
(1- P_S_r)p—_s, rla,
pP—p
co fadenE\| =11 (ud(—l)f51) ,
[1+p 2 ( r )]p—p‘s pr plal » pa

L(r,d)(s) =

e if ris even, then

r -5 r -5 - 1
o (o s e
p—-p

r -5 - 1 r -5
[1 -p? ((_IL Zd)] [pp_ pehl (—(_”p ”)], pta.

Tueorem 2.18 ([CKW17, Thm 2.1]). Let p be an odd prime and Q = ®;cnuio)p' Qi +
¢ be a quadratic polynomial over Z, which is in normal form, where each Q; is a
unimodular quadratic form of rank r; and discriminant d; over Z, and c is a constant in
Z,. Set k :=v,(c) and, for every jin N U {0}, set

L,(r,d)(s) :=

o= P o d(j) = disc Qi = [ ] ds
=) o2 =) o2
()= k@) = Y p(j) = posa®.
= o2
fher Iy (r(D. (D) (5) !
c/p! r ’ S —Ls —KS
Qs pys) = O;K L o0 p+ PTG

When p = 2, the Igusa zeta function {(2; s) can be computed using [CKW17, Theorem
2.3].

Set {(p;s) := {(Opy; p;s) for simplicity. Let us redo the calculations for L,(s)
at good primes p using (2.36) and Theorem 2.18] We remind the reader that, when
(p,2det(L)D) = 1, (2.23) implies that
(2.37) Ry =#AeL/p'L:26(1)-2D =0mod p'} = R, (28(1) - 2D),

and the quadratic polynomial 23(1) — 2D is in normal form. Since x = 0 in this case, it

follows that
_ 155 (10), d(0)) (5) N 1

i) p(0) P’
We have
d(0) =d, = det(L), 7(0) =ry = tk(L),
p(0) :po =1, p(1) :pr(O) _ prk(I:).

If rk(L) is even, then

)

k) p—1 _w
1,5 (r(0),d(0)) (s) = (1 -p 2 XL(p))(p , +p 2 )(L(p))
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and Theorem [2.1§]implies that

rk(L

k(L)
L=p-p7 7 xt(p)+p77 " xu(p)
p7-p
after a straight-forward calculation. It follows from (2.36)) that

{(p;s) =

—(s— er —=—(s—r
p kL) (p+p xu(p) —p T k(L”)cL(p))—

(p=G-%D) = p) (1 — p~G-kDy)
preTRL) _ 14 pmt Ty () (1 _ (s—rk@))
(p=Gk@+D Z 1) (1 — p~G-k)

1= xu(p)p(=5*)
1= plstk@D+D)

Lp(s) =

and these calculations lead to the same result as Lemma2.13]
If tk(L) is odd, then —2 det(L)(— 1)r 21 = = A(L) and Dy f? = D and hence

—2D(—1)sz@1det(L) _ ~
=D = yi(Dy, p).

Thus,

—rk(L) XL(DOa p)
L

k(L) . -1
L (O, dO) (5) = (1 + T (B, p)) L= -
p—Dp pf 2|

and hence
- |.rk(L).|
= 1+ x1(Do, p)p' T2 1(p™ = 1)
p—p°
after a straight-forward calculation. It follows that
k(L)
p—p *E (p + x1(Do, p)p! T2 (pD) — 1))
Ly(s) = (p — p-o—*D)) (] — p-G-kD))
—(s—T M LR T —(s—T
_(1 —pC k(L)))_,_XL(DO,p)p r=21- +ku(1 —p k(;)))
(1 = p=G=k@W+D) (1 — p=G-1kL))

1+ x(Dy, p)pC~13)
- 1 — pG—rk@D+D)

{(p:s) =

and these calculations lead to the same result as Lemma

If p is a prime such that (p, 2 det(L)) = 1, but v,(D) > 0, then (2.37) still holds and
Theorem[2.18|can be used to compute L,(-). We illustrate this method in the case where
rk(L) is even.

ProposiTioN 2.19. If tk(L) is even and p is a prime such that (p,2det(L)) = 1 and
K= vp(ﬁ) > 0, then the following holds:

(D) k+1
(XL(P)P 2 ) -1

o) =xatp o) (1t
xup)p’™ 7 -




52 2. POINCARE AND EISENSTEIN SERIES

Furthermore, set g := [ ,p pr2derr) pVP(D). Then

L,(k-1)

oy =@y ot Csa, @)

a0 1 =xo(p)p” (
p2det(L)

Proor. Consider Q = 23 — 2D in Theorem Then

det(L), [=0mod?2, rk(L) /=0mod 2,
d(l) = - r() = _
1, l=1m0d2, , l=1m0d2,

p() = prk(L)fﬂ

for every positive integer .
Suppose that « is odd. Then

Lopype (r(k), d(k)) () = Iyp),x (0, 1) (s) =0
For every 0 </ < «, we have p | (-2D/ p') and hence, if [ is odd, then
(2.38) Lypyp (r(D), d(D) (s) = 15,0 (0, 1) (s) =0

and, if / is even, then

Lopyp (r(D, d(D) (5) =12, (tk(L), det(L))(s)

(2.39) a0 0 p-
=[1 -p XL(p)HHp > xu(p) —.
p—-p
Theorem [2.18]implies that
{pys)= ), Lapm (tk(D), det(D)) ()p™ ™2
o<i<st
+p rk(L) Z I 25 (0, 1)(S)p—l(rk(L)+23) +p ( rk()) k(D)
O<l<l( 1
it k@) D — 1 —I(1] s
[1 ~xu(pp Hl +x(ppT T ] —— > pny)
p-p o<i<i5t
4 p_K(»H' rk(ZQ )_ rk(ZQ .

The geometric progression sum in the above equation can be computed using the for-
mula

t Tt
(2.40) o=
0<I<T p-1

In order to apply (2.36), we need to compute {(p; s — rk(L)). We have

=25 rk<L>) k(L) rk@)_rk@ —(K—l)(s—“‘@

z_p_K(S_z > —p 2)_1+p
(1 _ p—(s—rk(é)+l)) (pZS—rk(Q _ 1)

rk(L)
S_rkz@)_rk;g :p (K+l)( ) 1

p
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and

[1 xu(p)p~ E Hl +x(p)p™’ rk(m]p—_l Z p—l(zs—rk@)

p — p—s+rk(é) 3
0<i<'5~
= (1 - p—(s—rk@ﬂ))_l ( Pk 1)‘1 [ PERD) p—(K—l)(s—“‘%)) _ stk
—(k— 1)( rk(L)) - k(L) ( k@) rk(L)—l
+p +xu(P)p” T —x(p)p”™” - xu(p)p’
—is— D) 95— KL — ka k(L) o 3rk(L)
+X£(p)p ( 2 ) I—X (p)p 2 +XL(P)P ( 1)( ) - +XL(P)P2 -1
_M _M_ o il =R _ kD) . _ » s—ﬁ e
—x(p)p™* (=) I e I G 1].
Note that
(2.41) ok o P T - D )

(1 — pG-kD+D) (p2s-1kD) _ 1)

The above calculations combined with (2.36) imply that

_ —(k— S_rk(l,» - k(L) k(L) k@)
Ly(s) =(p* ™0 - p= D) 4y (o™ = ™) =y - p

k(L)

+xu(p) p—K(s— )1, p—(K+1)(s—rk<29)—1) ( 1 — p—(s—rk(;)ﬂ))‘ (pzs—rk(g _ 1)‘1 .

-1

It follows from (2.26) and from writing

k(L) k(L)
@42 P 1 = (o 1) [t 1)

that

=y ~(e+D)(s=52)-1

xL(p)p*~ 2 )(L(p)p( pl+p

Z‘p(s) = i
xu(p)p 2 -1
e -1
( ( ) k(L) (K+]) 1
xu(p)p’™ ) _
—ifs— D & L
=xL(P)p (=75 )(1 —xL(p)p (s +1)) ) |

xu(pp~ -1

as claimed. We have used the fact that y,(p)**' = y.(p)*"' = 1 when « is odd.
Next, suppose that « is even. Then

Loy (r(K),d(K)) (8) =1_op/,x (tk(L), det(L)) (s)

rk(L)

=[1- " )| [pp

rk(L)

-+p 7 xup)|.




54 2. POINCARE AND EISENSTEIN SERIES

Theorem [2.18| and equations (2.38)) and (2.39) imply that

{pis) = ) Lopym (tK(L), det(L)) ()p ™ E*2

0<i<%
k(L)
n p—s—rk@ Ly (0,1) (s)p ~ITk(L)+2s) D —k(s+ 552 )-rk(L)
0<i<s32
i _-RD P~ 1 ~I(r s
[1 xL(p)p~ HH)(L(p)p : ]p_p_s D, prw)

-2
0<i<f5=

_ k@) -1 IRON . (0
* (1‘)@(19)19 ’ )pp_ o +xL(p)p ]p (=55,

since I_,p,,2+ (0, 1) (s) vanishes for every [ in the second sum. We need to compute
L(p; s — k(L)). We have

_ k@) p—1 W | D)

[(1 —xL(p)p 2 )m*‘)ﬂ(?)l’ 2 ]P (-57)
(s— -1 o Lo e _rk<L> (ke rko .00

_ (1 —p¢ rk(;)+1>) (pz k(L) _ 1) (p k=-2)(s—=5) _ P 2)(s-552)- ' p (s-52)

k(L) )

+ p—K(S—T

- k25— O _ -
Lt (pp @)y (pyp b
k(L) _ k(D) k(L)

_/\/L(p)p_K(S—T)_T_l +X£(p)]7 (K+l)(¥ 7) 1)

rkL)) 1

and, using (2.40),

[1 - xL(p)p” 2 Hl +xu(p)p”* rk(L)]pp;l Z p—l(zs—rk(g)

— p—s+k(D)
p 0<i<452
_ ( - rk(L)+l)) ( 25-1k(L) _ ) ! I:p2s—rk(é) _ p—(K—z)(s—'k%)) _ ik~
L) k(L) k(L) k(L
+ e 2)(s-ME)- 1+X PP~ D —x(p)p «-D)(s-5F) —x(p)p ©_)

(K 2)( rk(L) )_ rk;é)

—(K—l)(s— ) _ rkz(L

*xup)p xu(P)p* T + xu(p)p”
k) (s BDY RO

+x(p)p> 7 = xi(p)p™ s=")" 1 _ kD)

—(k— 1)( rkL))_rk;L) + ps—rk@—l _p_(K 1)( _M)_M_l].

+p

Equation (2.36) and the above calculations imply that

k(L) k(L) |

= S—— K— Nl rk(L) —K|S— rk(L) - -
Ly(s) =(p* ™0 + x (p)p*™ " —xu(p)p <) = p )y (pp T - !

-1 +xu(p)p” (k+1)(s=552)- 1)(1 _ p—(s—rk(;)ﬂ))‘ (pzs—rk(g _ 1)‘1 .

k(L) )

+ p_’((s_ 2
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It follows from (2.26)) and (2.42) that

¥ (5= - (k1) s— D _
7 (PPt = p ) — gty (pyp )
L,(s) = o
xu(pp~= -1
k(D) _ RN
(XL(P)PS‘Z -p 1)(1 —xu(p)p < ))
) )
x(pp~=2 -1

) (k+1)
B

= xu (P (1 —xu(pyp ) 12

k(L)

xu(pp~ 7 -1

We have used the fact that y,(p)“*? = x.(p)<? = 1 when « is even.
We remind the reader that y(p) = x»(p) for those primes which do not divide A(L).

Hence, if we set § := [T 15 pr2der "D then

L—1)

(k=D _ k@ _
iy =@ ) )

b 1 —Xn(p)lf(k_ 2 dls
pf2det(L)

as claimed. O

ExawmpLE 2.20. If L is unimodular, then the only bad primes arising in (2.29) are p =
2 and the primes considered in Proposition [2.19] In this case, we have rk(L) = 0 mod 8
and det(L) = 1. The latter implies that N, = 1, that d = f = 1, that D = D and that xo(*)
is the trivial character. Combining this with (2.34)), we obtain that

(2k - rk(L))O-k—@_l(_D) Zz(k _ l)zvz(D)(k—y—l) (2k_rk;L)_1 _ 1)
G D, X)) =— 2 % .
k,é,()( ) Bk_rkzg) (1 _ 2@_]() (Z(VZ(D)+1)(k—rk§L)—1) _ 1)

2.4. Fourier coefficients of non-trivial Eisenstein series

In this section, we use the notions discussed in Subsection [1.3.2]in order to obtain
non-trivial linear relations between the Fourier coefficients of non-trivial Eisenstein se-
ries and those of the trivial one. As an application of this result, we obtain formulas for
the Fourier coefficients of Eisenstein series associated with isotropic elements which
have small order in the discriminant module of the lattice in the index.

Let ¢ denote the isomorphism between Jacobi forms and vector-valued modular
forms from Theorem[1.39)and let o, denote the Schrodinger representation twisted at x
from Definition[T.40} Define an averaging operator on Ji;, in the following way:

DeriniioN 2.21. For every x in L*/L and every ¢ in J; 1, set

1
A pT) =5 D ¢ mn 0p(@).).

X
(mmeZ 2

ReMARK 2.22. This operator was defined for vector-valued modular forms in [Will8,
§11]. The action of the Schrodinger representation (and implicitly Av,) can be defined
directly on theta series. However, we continue to work with vector-valued modular
forms, since it is easier to prove modularity in this context.

The following holds:
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Lemma 2.23. The operator Av, is well-defined (i.e. it does not depend on the choice
of representatives of Zyz2)) and it maps Jip to Ji L.

Proor. For all integers u and v, we have

o(m+ uNi, n,0)e, = o (m,n + vNﬁ, 0)e, = o (m, n,0)e,

and therefore Av, is well-defined. To show that Av, ¢ is an element of Ji, it suffices

to prove that ¢ (Av, ¢) is an element of M, _«w(p}). Set F(7) := ¢(¢). For every pair
~ ~ 2 -

(m,n) in (Z(N%))2 and every A in I', the following holds:

o (m, n, 0)F(AT)

(0m,n, O)F) |, _sw A(7) ()22
=w(r)y 2 gy (A)ors (., 0o (A) ! F(AT)

=p(A)o((m,n, 0))F (1),

using (1.27) in the middle line. Thus,
P (A)o((m, n, 0Y)F(r)

2

- 1
(A, ¢)|k—¥A(7) N2 Z

(I?l,n)E(Z(N%))
1 E * ro_
(2.43) =% D, PDom . 0)F()
T n)EZ 2
=pL(A)p(AV(P))(T),

O

with the change of variable (m’, u’) = ((m,n)A) (which is an isomorphism of (Z/N%Z)z,
since A € I). Since clearly ¢(Av,(¢)) is holomorphic, it follows that it is an element of

M T (py) and applying ¢! to it completes the proof.

ProposITION 2.24. For every x in L* /L, we have

AV Eipo(t) = ) Expmd©2).

(2.44)
mezZ ( N% )
mpB(x)eZ

Proor. Note that, if mB(x) € Z, then S(mx) = m*B(x) € Z and hence mx € Iso(Dy).
Thus, the right-hand side of (2.44)) is well-defined. A similar argument to the one used

to obtain (2.9) implies that

1 ~ -
(2.45) Bl =5 Y Vi swd@ ) pud),d(2).
A€l \I' yeL*/L

The fact that p; is unitary implies that pZ(A)_l = pL(A)t and therefore

AT\

1 . 1 L
AV B =rs ) ¢lolmn 0z > 1l s Amp ) e,

X 2
(mmEZy2))
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Equation (1.27) implies that

Z o (m, n, 0)p(A) e = Z Pi(ﬁ)‘lai((m,n,O)A_l)eo

(mn)ez, (mmeZ y2))?*

= > e (m ', 0)e

(m’ .n")e(Z

2
w2)

2
<N§>)

= Z e(mnﬁ(X))pZ(A)_l €_mx

(mmeZ 2,

= > A e Y e mB)).

mez nez

N3 (N2)

In the second line, we have substituted (m’, n") for ((m, n)A‘l). The inner sum in the last
line is equal to N? if mB(x) € Z and to zero otherwise. Thus,

Av, Ek,L,O(T» 2)

iy KOy (A
2. ¢35 2, Neswd@pden

meZ(N)% A€l \I'
mpP(x)eZ
= Z Ek,L,—mx(Ta 7) = Z Ek,L,mx(T’ 2). a
mEZ(N%) mEZ(N%)
mB(x)eZ mp(x)EZ
2
Note that both N)% and m are multiples of lev(x). Set M, := leljw — 1; then the
conditions in the above summation can be re-written as
M
(2.46) Av, Ek,L,O(T ,2) = Z Ep L jleviox-
Jj=0

When £ is odd, equation asserts that Ey; , = —FEj 1 _y; on the right hand-side of
(2.44), every element m in Z 2y satisfies mB(x) € Z if and only if —mpB(x) € Z and hence
the right-hand side of (2.44) vanishes.

We want to determine whether it is possible to obtain all Eisenstein series on the
right-hand side of (2.46) without inputting an isotropic element on the left-hand side.
In other words, for every r in Iso(D.), does there exist an x in (L*/D)\ Iso(Dy) such that

AVx Ek,L,O = Ek,é,r + Z Ek,é,s?

SEr

We give an example where the answer is no. We remind the reader that Dy is a finite
quadratic module. Suppose that Dy =~ A;,l for some odd prime p, some even positive

integer n and some integer ¢ which is coprime to p (see Theorem|1.12). Then tr?/p" € Z
if an only if p" | > and therefore

Iso(A},) = {sp% :5€{0,1,...,p? - 1}}.

Each non-isotropic element of A;,, is equal to sp2~/, for some positive integer s which is
coprime to p and some positive integer / such that/ < 7. Such an element has level equal
to p?! and hence every jlev(x)x on the right-hand side of is a multiple of p2*/ and
hence, for example, the isotropic element p? is never achieved on the right-hand side.
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For the remainder of this section, suppose that k is even. Let h,, denote the y-th
component of the theta expansion of Ey; ., as given in (2.45)):

1 . -
hy(@ =5 D oAyl swA().
A€l \T

Taking x to be an isotropic element in Proposition [2.24] leads to the main result of this
section:

ProposiTioN 2.25. Suppose that k is even and that x € Iso(Dy). Then

(2.47) D B = >0 (D] hoyen®)ILy(x,2),

mEZ(NX) yEL#/L mEZ(NX)
B(x.y)eZ

which implies the following identity:
Giro(D,y +xm), ifB(x,y) € Z and
D GepmdD,y) = {nez

MEZ(Ny) 0, otherwise.

Proor. Insert the definition of Av, on the left-hand side of (2.44)) and expand:

1
AV Erpo(na) =550 D0 D elmnB() = nBxy)hoy (D)

X 2 yel#
(m,n)e(Z(N%)) yeL*/L

:$¢—1 S hoy® Y e Y enBx.y)

yeL*/L meZ(N%) neZ(N%)
_,! 2‘ E: = N § E
=@ hO,y(T) Cy—mx = INxp hO,y(T) €y—mxs
)’EL#/L mEZ(N)%) yGL#/L ’neZ(Nx)
Bx.y)eZ B(x.y)eZ

since ¢y, only depends on m mod N,. Set y’ := y — mx and drop the prime from the
notation. Then the last line can be written as

-1
AVxEk,L,O(T’Z) :NxSD Z ( Z hO,y+mx(T))ey
yel* /L mMEZwy)
B(x.y)eZ

=N D (D] hoyem@)Py (3.2

yel*/L  mEZ(y)
B(x,y)EZ

On the other hand, if x € Iso(Dy), then mB(x) € Z for every m in Z:, and thus the
right-hand side of (2.44) is equal to

Z Ek,é,mx(T’ Z) = Nx Z Ek,L,mx(T, Z)’

mezZ mEZ(NX)

(65
since Ey;, only depends on r mod L. The identity involving the Fourier coeflicients
follows immediately. O

We list some examples in which Proposition[2.25]|can be used to compute the Fourier
coeflicients of Eisenstein series indexed by elements x in Iso(D;) of small order.

ExampLE 2.26. Suppose that x is an isotropic element of order 2. Then Proposition
[2.25]implies that
Eipo(t2) + Erpo(n ) = > (hoy + o) (0FL,(7,2),

yeLl*/L
Bx.y)EZ
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in other words

Giro(D,y) + Grro(D,y + x), if B(x,y) € Z,

Giro(D,y) + G (D,y) = '
k£0(D,Y) + Gi (D, y) {0, otherwise,

for every (D,y) in supp(L). Hence, the Fourier coeflicients of Ey,; , are given by the
formula

Giro(D,y+ x), if B(x,y) € Z and

Grrx(D,y) = i
kLx(D,y) {—Gk,L,O(D’ y), otherwise.

ExampLE 2.27. Suppose that x is an isotropic element of order 3. Then Proposition
[2.25]implies that

Erro+ Expx+ Expoc = Z (hO,y + hoyx + hO,y+2x) Vpy.

yel*/L
B(x,y)EZ

The fact that Ey ; . = Ei ;- when k is even implies that the Fourier coeflicients of E; ; ,
are given by the formula

H(Grro(D.y + x) + Gro(D.y + 2x)), i B(x,y) € Z and

G X D’ = i
kLx(D,y) {_ % GrLo(D.y), otherwise.

ExampLE 2.28. If x in Iso(D,) has order 4, then

Erro+2Ep,+ Erpoe = Z (hO,y + hoyex + hoyioe + hO,y+3x) Oy

yeLl*/L
Bx.y)EZ

Since 2x has order 2, Example [2.26|implies that

Grro(D,y +2x), iff(2x,y) € Z and

Grr2:(D,y) = i
kL2:(D,y) {—Gk,L,O(D’y)’ otherwise.

Note that 5(x, y) € Z implies that B(2x,y) € Z and hence G (D, y) is equal to

H(GrroD.y + %) + Grro(D.y +33), if x.y) € Z,
—% (Gk,L,O(D, ¥) + Grro(D,y + 2x)) , if B(2x,y) € Z and B(x,y) ¢ Z and
0, if B(2x,y) ¢ Z.
ExampLE 2.29. When x has order 6, Proposition [2.25| gives a formula for
Erro+ Expy+ Expox+ Expse+ Expax + Egpse
Since 3x has order 2, Example implies that

Giro(D,y+3x), if B(3x,y) € Z and

Gir3:(D,y) = '
kL3x(D, ) {—Gk,L,O(D’y)’ otherwise.

Since 2x has order 3, Example implies that

L (Grpo(D.y +2x) + G po(D.y + 4x)),  B(2x.y) € Z and

G X D, = 1
kL2x(D,y) {_ LGiro(D.y), otherwise

and note that Ey ;4 = Eipo.. If B(x,y) € Z, then f(2x,y) € Z and B(3x,y) € Z. If
B(x,y) ¢ Zbut B(2x,y) € Z, then B(x,y) = a/2 for some odd a and therefore S(3x,y) ¢
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Z. Similarly, if B(x,y) ¢ Z and B(3x,y) € Z, then f(2x,y) ¢ Z. Since E; 1, = Ex sy, it
follows that Gt (D, y) is equal to
L (GrroD.y + ) + Grro(D.y +5%),  if fx.y) € Z.
~1 (Grpo(D.y +2x) + G po(D.y +4x)), if f(2x,y) € Z and B(x.y) ¢ Z.
—%Gk,L,O(D,y + 3x), if B(3x,y) € Z and B(x,y) ¢ Z,
1GrLo(D,Y), if B(2x, y) and B(3x, y) ¢ Z.

If x is an isotropic element of order 5, then we obtain a formula for the Fourier
coefficients of Eyy  + Ei oy

|
5 (Gr.L.o(D,y+x)+Gy. 1.o(D,y+2x)
7(GkL, L
+Gr,,0(D,y+3x)+Gr L,0(D,y+4x)), ﬁ(x’ y) € Z and

(Grrr + Grpas) (DY) =
_EGk’ o(D,y), otherwise.

In general, if x in Iso(D;) has odd prime order p, then we obtain a formula for
Ek,L,x + Ek,£,2x + Ek,L,Sx + -+ Ek
When x has order 8, Proposition gives a formula for

Eiro+ Expy+ Expox+ Expsc+ Expac+ Expse + Exper + Expix

=
L5 x

and we can compute the Fourier coeflicients of Ej ;4. and Ej o, (which is equal to
Ey 1.6x) using Examples and respectively. However, we then obtain a formula
for the Fourier coeflicients of Ey; . + Ej 3. only. Note that this method resembles a
sieving technique.

Let £ be a primitive character of conductor F | N,. We remind the reader of Defini-
tion[I.31] of the twisted Eisenstein series,

Ekaévxvf = Z g(d)Ek,L,dX‘

X
deZ(NX)

This resembles the left-hand side of (2.47)). Define
1 *
AV d2) =5 ) Em) (¢ olimn,0)p) ¢(r.2).

X 2
(t?z,n)e(Z(N%))

This expression is independent of the coset representatives of Z 2, however

- 1 ‘0 7
PV Dl A =55 ), Emp e (mn, O)F()
¥ mme(zZ )
Y, Sl OF(D),

X ’ 2
(m' n")&(Z 2))

In other words, if we were to twist Av, by &, then Av, . ¢ fails to be modular, due to the
fact that the change of variable (m’,n’) = (m,n)A made in (2.43)) does not preserve &.
We have also made this change of variable in the proof of Proposition hence we
cannot simply define Av,, on Eisenstein series directly.



CHAPTER 3

Hecke operators and the action of the orthogonal group

In the future, we would like to establish a precise correspondence between Jacobi
forms of lattice index and elliptic modular forms. One of the key ingredients going into
the proof of Theorem [1.37|1s the theory of newforms developed in [EZ8S] for Jacobi
forms of scalar index. In this chapter, we study Hecke operators and the operators
arising from the action of the orthogonal group of the discriminant module associated
with the lattice in the index. These families of operators were both defined for the first
time in [Ajo15]. In the final section, we study the correspondence between Jacobi forms
for the root lattices of type D, (n odd) and elliptic modular forms for small weights.

3.1. Hecke operators and lifting maps

We review the main results in [Ajo15]]. The reader can consult the cited text for the

proofs. Let L = (L,3) be a positive-definite, even lattice over Z and let k > rkég be an
integer.

3.1.1. Definition and properties of Hecke operators. Set
N, :={neN: (n,lev(L)) = 1}.

Hecke operators were defined in [Ajo1S, §2.5] as double coset operators:

DerintTioN 3.1. For every [ in Ny, define the following operator on Ji ;:

To(D)p = 2D Z Pl

L LI_IO)A
geJ\J(O O

The operators T(-) are well-defined, in other words, they do not depend on the
choice of coset representatives of JL\JL(IE)l ?)JL. Furthermore, they map J; 1, to itself
and they preserve the subspaces of cusp forms and Eisenstein series. This can be seen
from their action on the Fourier coefficients of Jacobi forms ([Ajo15, Proposition 2.5.6
and Theorem 2.6.8]). They are primitive Hecke operators, in the sense that the I'-

. —1 . . e e
component of every set of coset representatives of JE\JE ( h ‘l)) JL is given by primitive
matrices, i.e. matrices whose entries are coprime.

DerintTioN 3.2 (Hecke operators). For every [ in Ny, define the following operator
on Ji:

e if rk(L) is odd, then

3.1) T = Y s2k—rk(L)—3TO( < ) "

2
s2|1,s>0 §
e if rk(L) is even, then

k(L) l
(32) o= ) XL(S)(Sd2)k_2_2T0( )¢.

sd?
d,s>0
sdzll,s square-free

61
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Equation (3.T)) matches the relation between Hecke operators for elliptic modular
forms of weight 2k — rk(L) — 1 and the corresponding operators defined with primitive
matrices. For every /in N, set

(3.3) M() :={A € My(Z) : det(A) = I}.
A complete set of coset representatives for I'\M(/) is given by the set
A:={A=(4%):a,b,de€Z,a,d>0,ad =1and0 < b < d}.
For every matrix A = (¢ %) in My(2), set gcd(A) := ged(a, b, ¢, d). Define
A ={A e A : ged(A) = 1}

The |, -action of matrices in GL](R) on holomorphic, complex-valued functions de-
fined on $ X (L ® C) is defined as

1
34 .M M = —M].
(3.4 (¢, M) = Pl ¢|k,L( = )
The following holds:

Lemma ([AjolS, Lemma 2.6.6]). Let ¢ be an element of Ji . For every | in Ny, the
action of To(l) on ¢ can be written as

(3.5) Tohg = 12740 X" %" glu(Ah).

hel?/I1L2 Ac % A
I

Lemma 3.3. Let ¢ € Jiy, [ € N and s* | I Then

l l
(3.6) BliL(A, (A, w) = @l (A, (/1 + ?ena#)) = Plr (A, (/L,U + ;en))

for every A in Y—;Apﬂr and every nin {1, ...,tk(L)}.

s4

Proor. We have

2 2 2
S pr S a b\ B [ B
TAﬁ_T{(O d).a,b,deZ,a,dZO,ad—F,O$b<d,(a,b,d)—1}
and therefore

2

d -k
Pl (A, (4, )(7,2) = (S—) e (BT +B(4,2) ¢ (

ar+b l(z+/lT+,u))
l

d ~’ s2d

for some a, b and d as above. On the other hand,

2 1\~ k
OliL (A, (/1 + izen,,u)) (r,2) = (E) e (ﬁ (/1 + Lzen) T+0 (/1 + izen, z))
= s ) s s

[ar+b Z(Z‘F(/H' sizen)T—l':u)]
X ¢

d ’ s2d

(s2a\" olasLe)esp(as at+b e+ dr+p) P
S\ ¢ 2" 2t ¢ d ’ s2d s

s2d\ ™" l !
= (_l ) e (,8 (/l + —zen) T +,8(/l + —en, z))q’) (t',7 +dt’e, — be,),
s s
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LlT+b l (Z+/17'+/1)

where we have made the substitutions 7 = and 7 = and we have used the

fact that ad = i—i Since ¢ € Ji and de,, be,, € L, we have
¢ (7,7 +dt’e, — be,) =¢ (1", + dt’e, — be,) | (—de,, be,)
=p(1’, 7 )e(r'B(de,) — B(de,, 7 + dt’e, — de,))

s at+b l(z+ At + p)
- d = sid

l(z+ AT+ ,u)))

A

e (—d(aT +D)B(ey) — B (en,
and we obtain that
l
¢|k,L (Aa (/l + ?en’ /.l)) (T9 Z) = ¢|k,I:(A’ (/l’ ,Ll))(T, Z)a

as claimed. We include the calculations in the exponential term for the sake of com-
pleteness:

e (,6’ (/l T ien) T +,6’(/l L ) ~ d(at + b)B(e,) —ﬁ(en, K“j—;“‘)))

—e((ﬁu)w( en)+ﬁ( Sl ))HW Z>+ﬁ( em)

I I I
— Blen)adt — Bley)db - (en, —2) - ﬁ(e,,, —2/1) T-p (en, —2;1) )
S A A
= e(B()T + B(z, D).

We also have

)
Plicr (A, A p+ —2en)) (1,2)
s
2d\7* ar+ b l(z+/l‘r+(,u+s—lzen))
=7 e(B(D)T + B, Z))¢( T 2
s2d\ " P ar+b l(z+ At +p)
=\7 e(BT + B(A,2)¢lL (0, %en)( Y 2] )
24\ b l(z+1
=Z5) etwevr+ sz (“T; e o “)),
since ¢ € Ji L and en e L. O

We use the last two lemmas to obtain a new formula for Hecke operators:

ProposITION 3.4. Let ¢ be an element of Jy 1. For every l in Ny, the action of T(l) on
¢ can be written as

T(hg = 17740 3 s 57 S lhuAh)

sl AG%A”; hel?/IL?
I

>0 =
.Y4

if tk(L) is odd and as
T =120 N @) Y Y dhuAh)

d,s>0 Acsd® APr - hel?[IL?
sd?|Ls square-free ! 2

s2d*
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if tk(L) is even.
Proor. Suppose that rk(L) is odd and insert the expression for T(l) given in (3.5)

into (3.1):
T(l)¢ — lk—2—2rk(I:) Z S3rk(£)+l Z Z ¢|k,L(A9 h)

2 52 2/ L2
T
&
Fix a Z-basis {ey, ..., ey} of L. Two elements A and A’ of L lie in the same congruence

class modulo /L if and only if each of their rk(L) coordinates lie in the same congruence
class modulo . It follows that |L/IL| = I'*¥) for every [ in N. Combining this with

implies that
DD ety =D NN gl(Ah)

AE#A‘% hel?| 512 AG%A‘% hel?/IL?
for every s such that s | [. Thus, the proof is complete for odd rank lattices.
When rk(L) is even, equations (3.2)) and (3.3) imply that

T =120 N )T Y A,

d,s>0 sd2 Apr hel? 1 12
Aesd=A €L/ =5
sd?|l,s square-free ! 2 sd?

s2d*

The arguments used in the case of odd rank lattices yield the desired result. O

We remind the reader of Definition of yr(+,+). For every D in Q< such that
lev(L)D € Z and every a in N, define the function
(D) = fXL(%’ f%) , if (lev(;)D, a) = f? for some f in N and
= 0, otherwise.
The following two theorems describe the action of Hecke operators on the Fourier co-
efficients of Jacobi forms:

THeEOREM 3.5 ([Ajol1S, Thm 2.6.1]). Let L = (L, B) be a positive-definite, even lattice
of odd rank. Let ¢ be an element of Ji i with a Fourier expansion of the form (L.13)), let
l € Ny and let

T(D¢(t,z) = Z Crapy(D, r)e ((B(r) = D)t + (1, 2)) .
(D,r)esupp(L)
Then
o ro
3.7) CraeD,r) = > a5 uyD, a)C¢(;D, la r),
all?

a*|I>lev(L)D

where, for every a as above, a’ is an integer such that aa’ = 1 mod lev(L).

THeOREM 3.6 ([AjolS, Thm 2.6.3]). Let L = (L, ) be a positive-definite, even lattice
of even rank. Let ¢ be an element of Ji; with a Fourier expansion of the form (1.13),
let | € Ny and let

T(D¢(r,z) = Z Crayg (D, r)e((B(r) — D)t + B(r, 2)).
(D,r)esupp(L)

Then
k— k(L) 2

! ,
Crae(D, 1) = Z a~ T 1)@(61)@, (;D, la r) ,

all?lev(L)D
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where, for every a as above, a’ is an integer such that aa’ = 1 mod lev(L).

Remark 3.7. It is pointed out in [AjolS], if lev(r)D is square-free, then (3.7) sim-
plifies to

2
- k-T%521-1 Fol
Craw(D,r) = Z”“ T (D, a)C, (;D, —r).
We include the short proof, which is not given in [Ajo13]. Since a | > and (1, lev(L)) =
1, we have

a’ | Plev(L)D = a* | Plev(r)D.

Hence, if lev(r)D is square-free, then the conditions on a simplify to a | [. Since
ur(D,a) = 0 unless (lev(L)D,a) = 1, it follows that p; (D, a) = x(D,a). For a’ such

that aa’ = 1 mod lev(L), we have la’ = = L' mod leV(L) and hence la'r = ér mod L

(since lev(L)L* C L). Thus, we have C, (’—zD la’ r) (’22 D, ﬁr) and the argument is
complete.

The fact that To(/) maps Jy ., to itself for every / combined with the above two theo-
rems imply that the operators 7'(-) map J; ; to itself and that they preserve the subspaces
of cusp forms and Eisenstein series. Furthermore, they are Hermitian under the Peters-
son scalar product. Hecke operators also satisfy the following multiplicative relation,
for every m and n in Ny

> arwr (), if rk(L) is odd and
dlm,n

Tm)T(n) = |
3 aE XL(d)T(@), if k(L) is even.
dlm2 n? d

In particular, they commute with each other.

DEerintTioN 3.8 (Hecke eigenform). An element ¢ of J ; is called a Hecke eigenform
if, for every / in Ny, there exists a constant A4(/) in C such that T'(/)¢ = A,()¢.

The notion of “eigenform” is usually applied to cusp forms. However, the following
holds:

THeoreM 3.9 ([Ajol5, Thm 3.3.18]). The series Ey .., where r runs through i,
and x runs through all primitive Dirichlet characters modulo F, with F'| N, and (- Dk =
x(=1), form a basis of Hecke eigenforms of Jff More precisely, define

TN ()} if tk(L) is odd and

ALk, L, x) := Y0} X{Lk(“ (B),ifrk(L) is even.
2
Then
T(DEiLry = ALk, L X)Ei L1y
for every lin Ni.
Note that ™% kX 2D = X(Do2—ny-2(D), since y is a Dirichlet character of modu-

lus dividing lev(L) and (/,lev(L)) = 1.

It is possible to attach an L-series to every Hecke eigenform. Using the multiplica-
tive properties of Hecke operators, this L-series can be written as an Euler product. This
fact was used in [Ajol5S, §2.7] to indicate a correspondence between Jacobi forms and
elliptic modular forms.
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DerintTion 3.10 (L-function of a Hecke eigenform). Let ¢ be a Hecke eigenform in
JiL, such that T ()¢ = A4(1)¢ for every [ in N;. The L-series of ¢ in s is defined as

(3.8) L(s,¢) := Y A(DI™"

IENL

ProposiTioN ([AjolS, Prop 2.7.15]). If tk(L) is odd, then L(s, ¢) has the following
product expansion:

-1
L(s,¢) = l_[ (1 _ p—3/1¢(p) + ka—rk(L)—2—2s) '
pENA

ProposrTion 3.11 ([AjolS, Prop 2.7.8]). For each prime number p in Ny, set

rk(L

_kb
8s(p) := A(p) = P77~ xu(p).
If tk(L) is even, then L(s, ¢) has the following product expansion:

s _w_y_o\7!
n(l—g¢(p)p‘+p2(" 2 1‘)) :

pENL

rk(L
Lieypy(s —k + % +1,x1)

L(s,¢) =
) = L2k kD + 2, %)

The following remarks was made in [Ajol5, §2.7]:

REMARK 3.12. If a Jacobi form ¢ of odd rank lattice index lifts to an elliptic modular
form f of weight 2k — rk(L) — 1 with trivial character and suitable level N, then L(s, ¢)
should be equal to the L-series of f (up to a finite number of Euler factors). This is
indeed consistent with (I.8).

RemArk 3.13. When rk(L) is even, we expect that there exist lifting maps from
M, _sw (N, &x L) to Ji (for every Dirichlet character £ and suitable level N), such that
< L L

T(I?) on the elliptic side corresponds to &(I)T(I) on the Jacobi side. If f is a Hecke
eigenform in M, _nw (N, §x) with eigenvalues a(l), then

(3.9) D EDaP™ = L(s, )

ZGNA

if we replace A,(p) with &(p)a(p?).

We check that (3.9) holds in the following paragraphs. Set k, := k — rk%) and
insert the Euler products of all of the L-functions in the expression for L(s, ¢) given in
Proposition [3.11]in order to obtain that

1—xu(p)’p
e pl;r[L (1 = xL(p)p~ R D)(1 = go(p)p~ + p~2s=har)’

—2(s—ky+1)

On the other hand,
D EDa = [ | D e ™.
leNg, PEN m>0

Let T denote a formal variable and set

g(T) := ) a(p™T*" and

m=0

h(T) ::Za(p2m+l)T2m+l-

m>0
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Set @ := &(p)x(p)p**~! for simplicity. Then the power series F(T) := g(T) + h(T) =
Yomso a(p™)T™ satisfies
1
1 —a(p)T +aT?
in view of (I.8)) and the fact that f € M k_rkE;L)(N, &x). The Hecke eigenvalues a(n)
satisfy the following recurrence relation for every m > 2:

(3.10) F(T) =

a(p™) = a(p)a(p"™") - aa(p"™?).
It follows that
g(T) —-1= Za(pZm)TZm — a(p)TZa(pZm—l)TZm—l _ (ITZ Za(pZm—Z)TZm—2

m>1 m>1 m>1
=a(p)Th(T) — aT?g(T)
1+a(p)TF(T)
"1+ a(p)T + aT?

after rearranging and using the fact that /(T) = F(T) — g(T). Equation (3.10) implies
that

— g(T)

1+ aT?
(1 +aT?)? - a(p)*T?

and, substituting 72> = £(p)p~* in the above, we obtain that

g(T) =

1+ ( ) ko—1—s
D ap™Epp™ = e —
=0 (1 + x(p)p*=1=5)2 — a(p»é(p)p~*

L+ xu(p)p'™
1- (a(p)zéTp) - ZXL(P)pkz‘l)p‘S + p—2(s—k2+1)

Since a(p?) = a(p)* - a,
a(pyé(p) — 2x(P)P™ ™" = 2(p) — P x(p) = 84(p),

with A4(p) = &(p)a(p®). Hence, equation (3.9) holds.

It is well-known that the Eisenstein subspace E(N, ) of elliptic modular forms of
weight k > 2 with character € for ['y(N) is spanned by twisted Eisenstein series (see
[Ste07, Theorem 5.9], for example). Let y and ¢ be primitive Dirichlet characters with
conductors L and R, respectively, such that LR | N and y(—1)y(=1) = (=1)¥, and define
the rwisted Eisenstein series

Eu() = o+ ) ol (mg’,
n>1
where

_ B
2k

The generalized Bernoulli numbers By, are defined by the following identity:

R )
Y(n)xe"™ xk
Z—; eRv—1 ZB""”H'

k=0

0, if L>1and
Co =
0 otherwise.

The series Ey, ,(t7) (with LRt | N and yy = &) form a basis of Ei(N, ). It follows that
Theorem [3.9]is consistent with Remarks and
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3.1.2. Lifting maps. Suppose that L is a positive-definite, even lattice of odd rank.
The following maps were defined in [AjolS, §4.1] on the space Sy ;:

DeriniTioN 3.14. For every ¢ in S, with Fourier expansion (T.13)), x in L* and D in
Q<o such that D = B(x) mod Z, set

= ik P 1
IpAP)(T) = Z{Z S D, a)c¢( D, x) }ql

=1 \ |l
and, for every Dy in Q, set

T D@ = > EW(Ipyunl®) ® EIW),

u mod N,
Do=B(ux) mod Z

where &,() = (( DN ) and .“p (¢) ® &, denotes the function obtained from .7 ,(¢) by

multiplying its /-th Fourier coefficient with &,(/) for every /.

We recover the scalar index lifting maps .#, ; from Theorem by substituting
= 5-and D = - in Definition m The following holds:

THEOREM 3.15 ([AJOIS, Thm 4.1.4]). Assume that 2k — rk(L) > 3 and that N>D,
is a square-free, negative integer. Then yg;’x maps S .1 10 Moy _nr)-1 (m(;)Nf-) and, if

2k — k(L) > 3, then it maps cusp forms to cusp forms. Moreover, we have

T(p)S5: ($) = L(p).S 3 (T (D)D),
for all primes p in Ny.

The proof of this theorem relies on the connection between Jacobi forms of odd
rank lattice index and modular forms of half-integral weight given by theta expansions
(T.19). The lifting maps are induced by the Shimura correspondence between half-
integral weight and integral weight elliptic modular forms.

RemMARK 3.16. We remind the reader that the space M7 (m) was defined in Subsection
[1.3.1} It was conjectured in [AjolS §6.1.1] that, when rk(L) is odd, there exists a
Hecke-equivariant isomorhism J ;. > NG, (- dev(L)/4), where € is — if rk(L) =
or 3 modulo 8 and & is + otherwise. We verify this conjecture on an example in Section
3.3

We remind the reader of Definition |1.18|of stably isomorphic lattices.

THeOREM ([Ajol5, Thm 4.2.4]). If the odd rank lattice L is stably isomorphic to the
lattice (Z,(x,y) — det(L)xy), then there exists a Hecke-equivariant isomorphism

Jer = My (ev(L)/4).

This result is a consequence of Theorems and (note that the isomorphism
in Theorem commutes with the action of Hecke operators). In general, the follow-
ing holds:

Lemma 3.17. Let L, and L, be positive-definite, even lattices of odd rank which
are stably isomorphic. Let j denote the isomorphism between Dy, and Dy, and let I;

denote the isomorphism between J, R and J, ALy from Theorem Let
¢ € J, L) and let x € L% and Dy € Qg such that N)%D is a square- free integer.
Then

1.L,

I @) = S5 (@),
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Proor. First, note that

5 ( rk(L,)

k+ rT1) —rk(L) - 1=2 (k SLICEY

1) —rk(L,) — 1 = 2

and that j preserves the orders of elements and the levels and determinants of the lat-
tices, since it is an isomorphism. We have
- P

_ 2% 1 !
yD,j*‘(r)(Ij((ﬁ))(T) = ; {Cl XL, (D, a)C1_,(¢) (;D, 5] (”))} q

(o)

2

[ l
= Z {aZk)(LZ(D, a)Cy (—D, ;J' ° j_l(r))} q' = SpA$)

2
I=1 a
for every r in L’; and every D in Q< such that 8,(r) = D mod Z. The result follows. O

For the remainder of this subsection, suppose that L is a positive-definite, even
lattice of even rank. Furthermore, assume that det(L) = p for some odd prime p. In this

case, we have (—1)¥p = 1 mod 4 and the map

a - x(a) = xi(a) = (%)

defines a Dirichlet character modulo p. Furthermore, there exists an isomorphism
) ~ ax?
] DL - (Z(p),x = —)
B p

for some integer @ which is coprime to p.

DeriniTioN 3.18. For every ¢ in {£1} and every positive integer k, define the subspace
M;(p, x) of elliptic modular forms f of weight k for I',(p) with nebentypus y whose
Fourier expansions is of the form

f@= ), awg"
n>0

X(—=n)#—t

k(D)
2

THEOREM ([AjolS, Thm 5.1.2]). Let k be an even positive integer, set ky := k —
and let W, denote the p-th Fricke involution. Then the maps

k(L)
¢ = (=1)7 hyoli, W)
and

1
fros o D OnduA

Aelo(p)\SL2(2)
where
07.L(7,2) := (flie Wp)(D)F1L0(7, 2),
define maps ./ : Ji — Mj;(”)(p,)() and S* : Mga)(p,)() — Ji, which are mutually
inverse isomorphisms.

This theorem agrees with Remark The Fourier expansion of . (¢) is given in
[AjolS, §5.1]:

k(L) kp-1 -1
(3.11) S =i fpzz{ >, @(;x)}ql.

=0 xel*/L
’?1 =B(x) mod Z

In fact, the following holds:
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ProposiTioN 3.19. The modular form .7 () has the following Fourier expansion:

—tk(D)  kp-1 -/
@@ =27 pT Y ¢, (?, xl) d.

>0

for some x; in L* /L such that 5(x;) = _;1 mod Z and Cy(-,-) = 0 when no such x; exists.

Proor. Consider the Fourier expansion (3.11)) of .7 (¢). Fix [ and suppose that x and
y are elements of L*/L such that x # y and B(x) = B(y) = ‘?l mod Z. We remind the

reader that there exists an isomorphism j : Dy - (Z(p),x - "sz) Set X = j(x) and
Y = j(y). We have

X? Y?

Y hodZ = aX2-Y)=1p

p p
for some integer t. Since (a,p) = 1, it follows that p | X?> — Y?, implying that p |
X—-Y)orp| (X+Y). Since x # y, it follows that 8(x) = S(y) mod Z if and only if
x = (=y) mod L. Thus,

k(D) ky-1 -1 -1
ST =i pT Z {C¢ (; Xz) +Cy (; —Xz)} q,

>0

for some x; € L*¥/L such that 5(x;) ‘;1 mod Z and where the Fourier coeflicients
are equal to zero for / such that no such x; exists (the latter happens if and only if

(‘7“’) = —1). Since Cy(D,r) = (—1)"C¢(D, —r) and k is even, we obtain the desired

result. O

It was shown in [Ajol5, §5.1] that
T(n).7*(f) = (T (n*)f)

for every n in Ny. Since . and .%’* are mutually inverse isomorphisms, this implies
that

T(n*).S(¢) = (T ()

for ever n as above.

3.2. The action of the orthogonal group

We remind the reader that, if L = (L,() is a positive-definite, even lattice, then
its discriminant module D, = (L*/L, 3 mod Z) is a finite quadratic module (Definition
. The following operators acting on J; ; were defined in [AjolS, §3.1]:

ProposiTioN 3.20. The orthogonal group O(Dy) acts on Ji from the right in the
following way:
(5,0) = W (s),
where, if ¢ in Ji . has theta expansion
6.2 = D heD)L(T,2),
xel*/L
then

GW(S)(T,2) 1= ) g (DT, 2).

xeLl*/L
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Proor. Clearly, pW(e) = ¢ for every ¢ in J; 1, where e denotes the identity element
in O(Dy). Furthermore, for every s; and s, in O(D) we have

OW(s1 0 (1,0 = D By siono(DIL(T,2)

xel*/L
= D Bewens@ILAT) = gW(s) o W(s2)(1, 9. O
xel*/L
Remark 3.21. In [AjolS, Proposition 3.1.1], the author claims that O(D;) acts from
the left on J; ;. This is not the case, as can be seen above.

It follows that ¢W(s) has the following Fourier expansion:
(3.12) PW(s)(t,2) = Z Cy (D, 5(r)) e (B(r) — D)t + B(z, 1)) .
(D,r)esupp(L)
In particular, the operators W(-) preserve cusp forms and Eisenstein series.
ProrosiTion 3.22. The operators W(s) are unitary with respect to the Petersson

scalar product. In other words, if ¢ and y are elements of Ji 1 such that at least one of
them is a cusp form, then

(3.13) (BW(s),¥) = (p, yW(s)™).
Proor. Suppose that (7, z) has a theta expansion of the form
W)= Y hy(DPLT2)
xel*/L

and apply Proposition[I.34]to the left-hand side of (3.13)):

(@W(s),0) =27F det(L) " f D gy (O 2y
Ny

xel*/L

=277 det(L)"? f D b @y i OV 2 dudy

T\ ver#/L
=, yW(s™)) = ($,yW(s)™),
since
W (s) o W(s™')(1,2) = gW(s 0 s) = ¢(7,2)
for every ¢ in Ji . |

ReMark 3.23. In the proof of [AjolS, Theorem 3.2.13], the author claims that
Proposition implies that the operators W(s) are Hermitian. This is not the case
in general, since W(s) = W(s)™! < s = s7! and not all elements of O(D.) need
satisfy this property. When s = s~!, say that s is an involution.

It was proved in [Ajo15, §3.1] that the action of O(D.) commutes with Hecke op-
erators, i.e.

T(D(¢W(s) = (T(DP)W(s),
forall ¢ in Ji 1, lin Nz and s in O(Dy). It follows that W(s)¢ and ¢ have the same Hecke

eigenvalues if ¢ is a Hecke eigenform. Furthermore, a well-known result from linear
algebra implies the following:

TueorEM ([Ajo15, Thm 3.2.13]). The space S has a basis of simultaneous eigen-
forms for all operators T(l) (I € Np) and W(s) (s € O(Dp)).
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Proor. The proof of [AjolS, Theorem 3.2.13] should be slightly different, in light
of Remark[3.23] In the lemma from linear algebra which the author quotes, it is enough
to consider a sequence of operators which are diagonalizable and commute with each
other in order for the result to hold. By the spectral theorem, the operators W(s) are
diagonalizable for all s, since they are unitary and therefore normal. |

We analyse the action of O(D_) on twisted Eisenstein series:
ProrosiTiON 3.24. For every s in O(Dy), the following holds:
Ek,I:,r,)(W(s) = Ek,L,S‘l(r),,\('

Proor. We remind the reader that J,E‘LS is invariant under the action of W(s) for all s
in O(Dp). On the other hand, Eisenstein series are uniquely determined by their singular

terms. Equation (2.17)) implies that

Co(Er . W($)(T.2) :%( oD Y e+ A

* reL*

s(r)=x mod L s(n=—x mod L
:%( ZL (-1 ZL Jetsr +pr,2)
re re
r=s~1(x) mod L r=—s"'(x) mod L
=5 (P10 + (DD i0) (0.0

=Co(ErLs1(x)(T,2)

and therefore Ej; \W(s) = Ej1(v- Since automorphism preserve the orders of ele-
ments, we obtain that

Ek,é,r,)(W(S) = Z X(d)Ek,I:,s‘l(dr) = Ek,I:,s‘](r),)(a

X
dEZ(Nr)

as claimed. O
CoroLLARY 3.25. For every involution s in O(Dy), the following holds:

Ei 1 W(s) = Ep L sy

For the remainder of this section, we investigate the action of specific elements of
O(Dp) on Jacobi forms.

It is well-known that multiplication by an integer which is coprime to the order of a
finite abelian group A is a group automorphism of A. Since the determinant and the level
of a positive-definite, even lattice share the same set of prime divisors, multiplication

by fis an element of Aut(D;) for every f in Zﬁev@)).

X

LemMma 3.26. For every f in Z(lev@),

and only if f> =1 mod lev(L).

multiplication by f is an element of O(Dyp) if

Proor. If B(fx) = p(x) for all x in Dy, then ( f? = 1) is a multiple of lev(L) by
definition. Conversely, if (f? — 1) is a multiple of lev(L), then B(fx) = 5(x). O

Lemma 3.27. If k(L) is odd, then f in Zﬁev@)) satisfies f> = 1 mod lev(L) if and only
if there exists some n || (lev(L)/4) such that f ‘is uniquely determined modulo lev(L)/2
by the modular equations f = 1 mod 2n and f = —1 mod (lev(L)/2n).
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Proor. We remind the reader that 4 | lev(L) when rk(L) is odd. On the right-hand
side of the “if and only if”” statement, solutions are indexed by n || (lev(L)/4) and there-
fore there are 2¢0V@W/Y golutions. On the left-hand side, a classical result in modular
arithmetic asserts that the polynomial equation x> — 1 = 0 mod lev(L) has the following
number of solutions:

200V i 8| Tev(L).

If 4 || lev(L), then w(lev(L)/4) = w(ev(L)) — 1. If 8 | lev(L), then w(lev(L)/4) =
w(lev(L)). Hence, there are twice as many solutions on the left-hand side.

Suppose that 2 = 1 mod lev(L). Then it is straight-forward to check that f mod
lev(L) is odd, say

{2w<lev@>, if 4 || lev(L) and

(3.14) f=2d+ 1 mod lev(L).
Ifd =0, then f = 1 mod lev(L)/2 and f = —1 mod 2. When d > 0,

lev(L)
4

for some K in Z. It follows that d(d + 1) = K'lev(L)/4 and (d,d + 1) = 1. This induces
a decomposition of lev(L)/4 into lev(L)/4 = < - %, with KK, = K and 4, ¢ ¢ 7.

f?=1modlev(L) = 4d* +4d = 4K

K K1’ K>
Clearly (% ‘%1) = 1 and we can choose n = %. Thend = Omodrn and d + 1 =
0 mod lev(L)/4n and (3.14) implies that f = 1 mod 2n and f = —1 mod lev(L)/2n, as

required.
Conversely, let n || (lev(L)/4) and set ¢ := lev(L)/(4n). By the Chinese remainder
theorem, there exists a unique d,, modulo lev(L)/4 such that

d, = 0 mod n and
d,=-1mod?t.

Set f, = 2d, + 1. Then (4, f,) = 1 and above modular congruences imply that (n, f,)
(t, f,) = 1. Hence, (f,,lev(L)) = 1 and

> =4d,(d, + 1)+ 1 = 1 mod 4nt,

i.e. f, is a solution of the modular equation f> = 1 mod lev(L). Furthermore, f, is
uniquely determined modulo lev(L)/2 and f,, = 1 mod 2n and f, = —1 mod 2t.

Note that
leviD)\* lev(L®
f+ 2_ =f"+ flev(L) + T_ = f“ mod lev(L)
and therefore each n || lev(L)/4 gives rise to two solutions modulo lev(L). O

For every f in Z(Xlev( ) such that f2 = 1 mod lev(L) and every x in L*/L, set s/(x) :=

fx. Then (s/)™'(x) = fx = s/(x), in other words s/ is an involution in O(Dy). Proposi-
tion [3.24]implies that

ExpnW(s) = > X@Eirapr = Y xeNEirer = X(DEiLry

X X
de€Ziy, €Zn,)

where we have made the change of variable df = e and we have used the fact that
N, | lev(L). Note that y(f) € {£1}.
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ExampLE 3.28. Let m be a positive integer and consider the scalar lattice L, =
(Z,(x,y) — 2mxy). Forevery ¢ || lev(L,)/4 and every ¢ in Ji,, with Fourier expan-

sion ([.23)), set
1 1
Wi(r.2):=— > ol (;r) (7,2).

reZ? /17?2

Then it was proved in [Sko88|] that W,¢ € J;,, and, furthermore, it has the following
Fourier expansion:

Wb = D by(n, r)e(nr +1'2),
n,r’' €z
Amn—r"2>0

where A, is the modulo 2m uniquely determined integer which satisfies 4, = 1 mod
2t and A, = —1 mod 2m/t. The operators W, are called Atkin—Lehner involutions in
[SZ88], because they play the role of Atkin—Lehner involutions for elliptic modular
forms on the side of Jacobi forms. More precisely, the following holds:

te(T() o Wi, Jim) = te(T (1) o Wi, My, (m)),

It was shown in [Boy15, §1.2] that the orthogonal groups of cyclic finite quadratic
modules over number fields consist entirely of such operators W,.

Lemma implies that W, = W(s%) for every ¢ || m and, conversely, that every
operator W(s’) (> = 1 mod 4m) is equal to W, for some # || m (the reader can consult
the forward direction in the proof of the lemma for the precise recipe for finding n).

3.3. Jacobi forms of index D, and elliptic modular forms

In this section, we compute Hecke eigenvalues of Jacobi forms of weight k and
index D, for small values of k and odd n and we compare them with those of elliptic
modular forms. We remind the reader of the definition of D,,:

Dn = {(XI,...,Xn)EZn:XI ++anZZ}
It is straight-forward to check that
Dﬁ:{x:xeznorxe(%+2)n}

and therefore

er+:---+e, 61 +---+e,-1—¢€
Dz/Dn = {O’em - - . )

2 ’ 2

where {e;}; denotes the standard basis of Z". Thus,

/D, ~ Z/4Z, if n is odd and
nT T 222 X 222, if nis even.

Suppose that n is odd. Then the discriminant module associated with D, is isomorphic
to

2
(Z/4Z, r o % mod Z
and lev(D,) = 8. It follows that D, is stably isomorphic to D,, for every odd m and n

such that n = m mod 8 and, in view of Theorem that Jyir21.p, = Jksrz2yp, for such
m and n. Hence, it suffices to consider n = 1, 3,5 and 7 in this subsection.
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In the following paragraphs, we introduce some building blocks for Jacobi forms.
The Dedekind n-function was defined in (I.6). It is well-known that

G PO =5 3 ()t =3 Y 1r@n+ g™

nez nez

The scalar Jacobi theta series (7, z) was defined in (I.25]) and the Jacobi theta series
¥7:(1, z) was defined in (1.28)). We remind the reader of the definition of the unimodular
lattice Eg from Example @, (5) and of that of the Jacobi theta series ¥, (7,z) from
(L.29). Let E (k > 4) denote the Eisenstein series of weight k for I,

2k
E() = 1= 5 ) o',

nx1
and let E, denote the quasi-modular Eisenstein series of weight 2 for I,
Ex(t):=1-24 )" o(n)q".
n>1

The discriminant modular form, denoted by A, is a cusp form of weight 12 for I'. It has
the following Fourier expansion:

A@) = ) T,
nx1

where 7(n) is the Ramanujan tau function.
The differential operator 0 : Jip — Jiio 1s defined in [BS19] for every ¢ with theta

expansion (I.19) as
d 1 k(L
(3.16) I¢(1,2) = XGLZ#/L (q@hm(ﬂ) px(7,2) — D (k - r;__)) Er(T)p(7, 2).

If f(1) € My, (') and ¢(t,z) € Ji, . with Fourier expansions },.oas(n)q" and (L.13),
respectively, then it is easy to check that f(7)¢(7,z) € Ji, 44, and that

L=D]

(3.17) f(De(t,2) = ( Z Cy(D +n, r)af(n))e((ﬁ(r) — D)t + B(r, 2)).

(D,r)esupp(L) * n=0

Forn =1,3,5 and 7, let @, denote the following isometric embedding of D, into Eg:
(x1,...,x) > (0,...,0,x1,...,x,).

This map can be extended in a natural way to the underlying complex spaces. Its pull-
back on spaces of Jacobi forms of weight k is the map «, : Jy g, = Jip,

@, ¢(1,2) = ¢(1, ,(2)).

3.3.1. Generators and their Fourier expansions. The generators of the spaces
Jip, (n = 1,3,5 and 7) over the graded ring of modular forms M.(1) := @z Mi(1)
were listed in [BS19]. We compute their Fourier expansions in this subsection.

We remind the reader that the Jacobi forms ¢,_, p, were defined in Example m
Set

Esp, =, 0%,
E¢p, := O0E4p, and
Egp, := 0Esp,.
Let o3 denote the following isometric embedding of Dj; into Z*:

(x,y,z)|—>%(x+y—z,x—y+z,—x+y+z,—x—y—z)
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and denote its pullback on spaces of Jacobi forms of weight k by o73.
THeOREM 3.29 ([BS19)). The following holds forn = 1,3,5 and 7:
(3.18) Jok+1.0, = Magsn-11(D)Y12-0.0,-

Forn=1,5and7, we have

(3.19) Jokp, = Moy-4(1)Es p, ® Ma—6(1)E6.p, ® Ma—s(1)Es p,
and, lastly,

(3.20) Jokpy = Mo-s(1)Es p, & Moy—6(1)E6 p, & Moy—s(1)n' 2050

By definition,

2 2
4 Pyt et T2
2 (1,2) = g (rl...r,,)e(l T+ S r"z")

rezn
and therefore, using (3.15)),

1 2 2 2 2
— § -4 nytetng Amytetn mizi+-+myz,
'Jllz_n’Dn (T’ Z) - (nl ---Ng—piMy...Ny ) nl e ng_ne ( 8 T+ 2

8—
2 " ni,...,n8—p
mi,...,my€Z
re(3v2)" (1)

xe((% + @)T+(r,z))

= Y Conp@.0e((%L - D)7+ (n2).

reD},DeQq
@—DEZ
where
0, if reZ" and
(321) Cl//]z,n,Dn (D, r) — Z (_l)rl+-..+rn+x1+~.-+x3_,,x1 e Xgens 1f re (% " Z)n .
xe(%+Z)8_”
~p=159
We have made the substitutions x; = 7 and r; = 3. The value of the expression
(=) x, ... x, does not change under the substitution x; = —x; and therefore
0, if r € Z" and
C‘/’12—n,Dn (D,r) = 2 Z (=Rt Xxg o, AfFE (% + Z)n .
xe(%+N)8_"
—D=&
We have

E4p,(1,2) = Z e(%‘r t7rgp+121 o0 7’82;1)
reEg

z : z : P2 hetrE P el
- e(( 8—}'z+l2 8 + 1 5 8-—n T

(F8—p+15eees rg)EZ”U(%+Z)n (r1 7-~~,r8—n)ER8

X e(rg_pi12) + -+ 132,)

=p,0(T,2) + Z Cyn(D,r)e ((? - D) T+ (r, z)) ,

reDf,DeQo

@)
5 -DeZ
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#{erg_”:—2D:xf+~~-+x§_n}, r € Z" and
C4,n(D7r) =

n
#{xEZB_”:—2D:x%+x1+~~-+x§_n+x8_n+¥}, re(%+Z) .

Equations (3.16) and (3.17) imply that

Esp(t)= ). (=D)Cin(D,ne((%2 - D)7+ (r,2)

reD¥,DeQ«o

) _pez
- 82—4n Z Cy.(D,r)e (((rr) D)T + (r, z))
reD¥,DeQ«
%) _Dez.
+@B-m Y g D, CanD,e((H - D)7+ (2)
I>1 reD¥,DeQ«
@—DEZ
:n2_481913m0(7, )+ Z Cen(D, r)e (((”) D)T + (r, z)) ,
re(DZf,DeQd)
2 -DeZ

where

8 [-D]
Con(D, 1) := (D + 7) Cin(D, 1) + (8 = n) Z Can(D + 1, ) (D).

Equations (3.16) and (3.17) imply that

Esp(t)= ), (=D)CouD,ne((5 - D)7+ (1,2))

reD¥ DeQ<

%—DEZ
- 122;11 #Z Cen(D,r)e (((”) D)T+(r,z))
reD;,DeQ«o
(%’)—DEZ
+(12=m Y oihd D CouD.rre((% - D)1+ (1,2)
121 reDf,DeQ<o
&) _pez
SOy, o+ Y CoDoe(( - D)r+ (),
reD¥,DeQ
%) _pez

where

12 - ‘&
Csn(D, 1) = — (D s )C6,,(D "+ (12 =n) IZ; Con(D + 1, )i (D).
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We have

1 P24 22 et m2
N (T)o592(1,2) =— Z LTI ,,146(%T)

ny..N4m1 ...1M4 8
16 nyna,

mi,...,m4€Z

mp+my—ms3—m. mp—mp+ms3—m. —m)+nmp+m3—m.
Xe( 1 24 3 4Z1+ 1 24 3 4Z2+ 1 24 3 4Z)

2 2,2 2
§ X[ X T AT
(_1)x1+ +X4+r1+ +r4x1 .. Xg€ (#T)

2
X e X4,
rl,...,r4e%+Z

ri+r—r3—r. ri—=ra+r3—r. —ri+r+r3—r.
X€(1223 4Z1+1223 4Z2+ 1223 423)

— Z (_1)x1+'~~+X4+2(m1+m2+m3)x1 Xy

1
X1 ,...,)C4,I‘4E§+Z

(my,m2,m3)€Z> or (%+Z)3

X e ((m1 +mp+r)2+(my +n123 +r4)2+(ma+mz+r4)? T)

x%+-~~+xi+r§
Xe TT + mz1 + myzo + msz3

= > Cup (D.me((2 - D)7+ (m.2)).
meD¥,DeQ<
) _Dez,

where

(j{//&D3 (D, l’l’l) =16 Z (_1)x1+~--+X4+2(m1+m2+m3)x1 . Xg

XoXs€ S N g€l 42

—2D=(mj+my+m3 +2r4)2+x%+~-~+xi

We have made the substitutions x; = %, r; = 5 and m; = A=S8n,

3.3.2. Computation of Fourier coefficients. Equation (3.18)) implies that

J16-n.0, = CEs 120, J18-n0, = CEg¥12-.D,
J20-np, = CEg¥12-nD, J22-np, = CE10¥12-nD,
Jou-np, = CE¥12-np, ® CAY12-np,

and (3.17) implies that

[=D]
2t
E@Wi0,® = ) (Conn D)= > Conn (D + LD)Tr(D)
I =1

reD¥,DeQ
(nr)
T—DEZ

X e((%r) - D)T+ (r,z)),
L=D]

AW ap, D= D Y Cypn D+ LryeDe((%2 = D)7+ (,2)) and

reD¥,DeQy =1
(rr)
—-—DezZ

) [-D]
E(D)Esp,(1,2) =0p,0n 0+ ). (Can(Dr)— Et D Can(D+ 1,101 (D)

reD* DeQ. T=1
% —DeZ

xe((@ —D)T+(r,z))
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79
for every positive integer ¢ > 2. It follows from (3.19) that

Ey(T)E4p,(7,2) — %Es,pn (1,2)

[-D]

_ 576

62 " Z (CanD, 1) = G2 Can(D, 1) +240 )" Can(D + 1, r)ors(D)
reD¥,DeQ =1
%—DGZ
X e((@ — D)T+ (r,z))
is a cusp form in Jg p, when n = 1,5 or 7. Equation (3.17)) implies that
n-8 2%
E/(1)Eep,(.2) = —=0p,0(r. )+ ng (ContDr) - 5 ZZ] Cou(D + 1)1 (D)
reD;,DeQg
o) _Dez
X e((% — D)‘r+ (r,z)).
It follows that
8—n
7 E6(T)E4p,(7,2) + E4(T)E6 p, (7, 2)
8—n ‘&
(3.23) = #Z [ 24 Cyn(D,r) + Cou(D,r) - Z ((8 —n)21Cy,(D + L, r)o5(1)
reDf,DeQo =1
&) _pez

= 240Ceu(D + 1, )ers (D) e (42 = D) 7+ )

is a cusp form in Jy¢ p,. Equation (3.17)) implies that

_8=nm(12-n) 2t
E(7)Esp,(1.2) =z o——10,0(T.2) + Z (ContD) - 5
reD;,DeQg
") _pez
L-D]

X Y CanD+ Lo (D)e (%2 - D)7+ (1,2)).
=1
It follows from (3.19) that

8—n

7 Eg(t)E4p,(1,2) + E¢(T)Es p, (7, 2),

576
8—-n)(12 —n) E(T)Eg p,(7,2) and

Eg(T)E4p,(7,2) —

12—-n
2 E¢(t)Esp,(7,2) + E4(T)Es p,(7,2)

are cusp forms in Jy, p, when n = 1,5 or 7. The matrix

8=n 0
[ 214 O _ 576 ]
(8—n)(12—n)
0 L 1

24

576

Lo - (8—3)4(12—@

0 1 T .
0 0 0

has echelon form
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In other words,
576
8 -=n)(12 —n)

E6(T)E6,p,(T,2) + o nE4(T)E8,D,,(T, z)
form a basis of S 15 p,. It follows from (3.19) that

8—n

1 Eo(T)E4p,(7,2) + E3(T)E¢ p, (T, 2),

576
8 -=n)(12 —n)

Eg(t)E4p,(1,2) — E4(7)Es p,(7,2) and

(3.24)

E(t)Esp,(1,2) —

12-n
24
are cusp forms in Jy4 p, when n = 1,5 or 7 and, by the same reasoning as above,
576
®-n)(12—n)

Es(T)Es p,(7,2)

E¢(t)Es p,(7,2) and

E3(T)Eep,(1,2) + E¢(T)Es p, (T, 2)

Eo(T)Esp,(1,2) — Es(T)Eg p,(7,2) and

(3.25)

Es(T)E¢p,(7,2) + ]
—-n

form a basis of S 4 p,. Equation (3.17) implies that
L-D]

ADEp, (@)= Y > CuD+Lrre((%2 - D)7+ (r2).
e
2 -De

It follows from (3.19) that
-n

8
A(T)E4 p, (T, 2), WEIZ(T)EALDH (1,2) + E10(7)E6 p, (7, 2),
576

E(T)E4p,(T,2) — 8- m2—n

12—-n
2 Eo(1)E¢p,(7,2) + Eg(T)E3 p,(T,2)

are cusp forms in Jy6 p, when n = 1,5 or 7 and, by the same reasoning as above,
576
B8 —-n)(12 —n)

Eg(T)Es p, (T, z) and

E(7)Esp,(7,2) — Es(T)Eg p, (1, 2),

(3.26)

E(1)Eep,(T,2) + E3(T)Eg p,(1,2) and A(T)E4 (7, 2)

12 -n
form a basis of S 16 p, .
We computed the Hecke eigenvalues of Jacobi forms of index D,, using the fact that

T (D¢ = A(D¢

for every Hecke eigenform ¢ and by implementing the results from this section in Sage-
Math [Thel]. Values of Fourier coefficients and Atkin—Lehner eigenvalues of elliptic
newforms are available on the LMFDB web page [Thel3|]. Let ¢ be an element of J; p,
(n = 1,3,5 and 7). The eigenvalues of Jacobi forms of weights 4,6, 8,10 and 12 and
index D, were computed for odd positive integers / using the pair (-1, (0, ...,0)) in the
support of D,. The eigenvalues of Jacobi forms of weights 12 —n,16 —n,18 —n,20-n
and 22 — n and index D, were computed for odd positive integers / using the pair

(—%,(%, o, %)) in the support of D,, unless (,n — 1) > 1. In the latter case, we
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replaced —% with —2, where m is the smallest positive integer in the congruence class

of n — 1 modulo 8 which is coprime to /. For every odd, positive integer / and every
negative integer D which is coprime to /, equation (3.7) implies that

_rnq_ _1l3! lz
Craon (D.(0.....0) = Y dT¥ 1(%)@(?& (0,...,0))
d|l

and for every negative rational number E such that £ = ¢ mod Z and (8E,l) = 1,
equation (3.7) implies that
1 1 n 14 2 1(1 1
Craw|E 55> 3 ]| = d"—fﬂ—‘(ﬂ)c —E,~(=....2|]-
T(W( (2 2)) ; d Ne2™a\2 72

3.3.2.1. The lattice D,. 1Itis straight-forward to check that Dy =~ L,. Theorem

implies that

Jip, = N, ,(2).
Since M{(m) (¢ € {+,—}) denotes the subspace of M,(m) which is spanned by modular
forms with eigenvalue &i’ with respect to Atkin—Lehner involutions, the space 95, ,(2)
is spanned by modular forms with eigenvalue —1 with respect to Atkin—-Lehner involu-
tions when k is odd and by modular forms with eigenvalue +1 with respect to Atkin—
Lehner involutions when & is even.

Equation (3.19) implies that J4 p, = CE,p, and this space is mapped to Ms(2). In
particular, the Jacobi form E, p, is a Hecke eigenform. We have checked that the first
13 Hecke eigenvalues of Ey4 p, at odd positive integers match the Fourier coefficients of
—E¢/504.

Equation (3.19) implies that Js 5, = CEg p, and this space is mapped to My(2). In
particular, the Jacobi form Es p, is a Hecke eigenform. We have checked that the first
13 Hecke eigenvalues of Eg p, at odd positive integers match the Fourier coeflicients of
—E19/264.

Equation (3.19) implies that

J&Dl = (:E‘4E'4’D1 D (CE'&]_)1
and this space is mapped to M4(2). Equation (3.22)) implies that

576
Y3 p,(7,2) := E4(T)E4p,(1,2) — WES,DI (t,2)

is a Hecke eigenform in Sg p,. The first few Fourier coeflicients of 11y p, are listed in
Table The space M,4(2) contains precisely two newforms:

fia(T) =q — 64¢* — 1836¢° + 40964 + 39904° + 117504¢° — 4334324" — 2621444"
+1776573¢° — 2553604'° + 16197724¢"" — 75202564'* + O(¢"*) and

214(7) =q + 64¢> + 12364° + 40964" — 574504° + 79104¢° + 642324" + 2621444"
— 66627¢° — 36768004 + 24645724"" + 50626564'* + 0(q").

The first 13 Hecke eigenvalues of 5 p, at odd positive integers match the Fourier coef-
ficients of fi4 and this newform is an element of M,(2).
Equation (3.19) implies that

JIO,DI = CEv6£?4,Dl &) CE4E6,D1
and this space is mapped to M;3(2). Equation (3.23)) implies that

7
Yiop,(7,2) := ﬁE6(T)E4,D1(T’ 2) + Ey(7)Ee p, (1, 2)
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is a Hecke eigenform in S 0 p,. The space M;5(2) contains precisely one newform:
fis() =g + 25647 + 6084¢> + 65536¢" + 12551104° + 15575044° — 224659124’
+167772164° — 92125107¢° + 3213081604'° + 1723996924"" + O(¢'?),

which is an element of M{(2). According to the LMFDB, the space S 3(2) contains
precisely two oldforms,

Fis(1) =q — 528¢% — 42844° + 147712¢" — 10258504° + 2261952¢° + O(q")

and F3(27). We have checked that the first 13 Hecke eigenvalues of ¢ p, at odd
positive integers match the Fourier coefficients of Fg.

Equation (3.18) implies that Jy; p, = Cyq;p, and this space is mapped to Myy(2).
In particular, the Jacobi form ¢, is a Hecke eigenform. The space M,y(2) contains
precisely two newforms:

foo(T) =g + 5124 — 530284° + 2621444* — 55569304 — 271503364° — 444964244’
+1342177284% + 16497073174° — 28451481604'° + O(¢'") and
220(T) =g — 512¢* — 130924° + 2621444* + 65467504° + 67031044° + O(¢").

We have checked that the first 13 Hecke eigenvalues of ¥, p, at odd positive integers
match the Fourier coeflicients of f> and this newform is an element of M, (2).
Equation (3.19) implies that

.]12’01 = CE8E4,D| &) CE6E6,D| &) CE4E8,D1
and this space should be mapped to M»,(2). Set

1 576

ﬁ12,1 ::E8E4,D1 — 7E4E8’D1 and
5 24

ﬁ]Z,l ::E6E6,D1 + ﬁE4E8,D1'

Equation (3.24)) implies that these functions form a basis of S, p,. The matrix of 7(I)
on this space (which we denote by 7'(/) as well by abuse of notation) satisfies

T(DBy, 1) (ﬂl
=10 1*).
(T(l)ﬁ%u %2,1
Set T(l) = (uj“ zj‘z ) We compute this matrix by solving the following two systems of
21 722
linear equations:
-1
(aill) _ [CB;M (-1,0) Cg (-1, 0)) (CW;“ (-1, 0>) -
alz Cﬁ}Z,l (_2, 0) Cﬂ%Z,l (_2, 0) CT(Z)ﬁ:Z,l (_2, 0)

-1
Cﬁ{z,l (_2’ O) C'B%Z,l (_2’ 0) CTU),B%z,l (_2’ 0)

a

a»

Using Sage, we obtain that

_ 1458756 9953280)

_ 1 77
TQ3)= ( 65520 829116
7] ]

and this matrix can be diagonalized as

-1
1 1)(71604 0 11
0% 3 )& &)
s LI\ 0 -128844)\88 T

283 240 288 24
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It follows that the two Jacobi forms ¢, p, and ¢, p, defined by the system of equations

-1
Yoo\ _ (1 1 21 _ — 5358121 T 2B
dp ) \2 L f 2B — 53387
1 288 240 12,1 319/712,1 2233/712,1
are Hecke eigenforms of 7'(3), with eigenvalues 4,,,, (3) = 71604 and 44,,, 3) =
—128844 respectively. The space M»,(2) contains precisely two newforms:
foo(T) =g — 10244% + 716044> + 10485764 — 286937704° — 733224964°
— 8532023924’ — 10737418244® — 5333220387¢° + 0(¢'°) and
g0(1) =g + 1024”7 + 593164° + 10485764" + 49753504° + 607395844°
+ 14274258324 + 10737418244° — 69419653474° + O(¢'°).

We have checked that the first 13 Hecke eigenvalues of 1, p, at odd positive integers
match the Fourier coeflicients of f» and this newform is an element of M,(2). The
space S 2,(2) contains precisely two oldforms,

Fa (1) =q — 288¢% — 1288444° — 20142084" + 216409504° + 371070724¢° + O(q")

and F(27). We have checked that the first 13 Hecke eigenvalues of ¢, p, at odd
positive integers match the Fourier coefficients of Fy;.

Equation (3.18) implies that Jy3 p, = {0} and this space is mapped to Mp(2). The
latter space contains precisely one newform:

fou(T) =q — 20484% — 5059084° + 41943044* — 90135570¢° + 10360995844°
+ 68722550964 — 85899345924 + 1617997256374° + 0(¢'°),

which is an element of M7,(2). This agrees with the fact that Jy3 p, = 9, (2).
Equation (3.19) implies that

Jiap, = CE0Esp, ® CEgEsp, ® CEGEs p,
and this space should be mapped to Mys(2). Set

576
ﬁi4,1 :=E10E4p, — FEﬁE&D. and
5 24
ﬁl4,1 ::E8E6,D1 + HE6E8,D1-

Equation (3.25) implies that these functions form a basis of S 14 p,. Following the same
argument as in the weight 12 case, the two Jacobi forms 14 p, and ¢4 p, defined by the

system of equations
-1
=l st 2
P1a.0, 162 432 14,1

are Hecke eigenforms of 7'(3), with eigenvalues 4,,,, (3) = 97956 and 4,,, 3) =
—195804 respectively. The space Ms(2) contains precisely three newforms

fos(T) =g — 40964> + 979564° + 167772164" + 341005350¢° — 4012277764° + O(q"),
226(T) =g + 40964° + (189924 — B)g* + 167772164 + O(¢°) and
2,6(T) =q + 40964 + (189924 + B)q* + 167772164 + O(g),

where 8 = 4800 V106705. We have checked that the first 13 eigenvalues of ¢4 at odd
positive integers match the Fourier coefficients of f>¢ and this newform is an element of
M;(2). The space S,6(2) contains precisely two oldforms,

Fae(T) =q — 4847 — 1958044° — 335521284" — 7419898504° + 93985924° + O(q")
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and F6(27). We have checked that the first 13 Hecke eigenvalues of ¢4, at odd
positive integers match the Fourier coefficients of Fye.

Equation (3.18) implies that J,5 p, = CEq . p, and this space is mapped to Mpg(2).
Set ¥1s5.p, := Es11p,. In particular, this Jacobi form is a Hecke eigenform. The space
M>g(2) contains precisely two newforms:

fos(t) =g + 819247 — 10163884 + 671088644" — 33411974104° — 83262504964°
—51021361384q’ + 5497558138884" — 65925529184434° + 0(q'") and

223(T) =g — 8192¢% + 39848284° + 671088644" — 28518892504° — 326437109764°
+ 368721063704 — 5497558138884® + 8253256704597¢° + O(¢'°).

We have checked that the first 10 Hecke eigenvalues of 5 p, at odd positive integers
match the Fourier coefficients of f,g and this newform is an element of M. (2).
Equation (3.19) implies that

J16,D1 = CAEA‘,’DI &) CE12E4’D1 ) CE10E6,D1 &) CEgE&Dl

and this space should be mapped to M3,(2). Set

576
ﬁ}(),l '=EpnEsp, - FESES,DH

> 24 d
Bie1 =EwEep, + 11E8E8,D1 an
Biei :=AE4p,.

Equation (3.26) implies that these functions form a basis of S ;¢ p,. The matrix of T'(])

on this space satisfies
T, Ble
T(l)ﬁ%(),l = T(l) '3%6,1 .
T(l)ﬁ?ﬁ,l ﬁ?(ﬁ,l
Set
dyy by, diy
T(l) = | ay ay ay |.
dyy ay, dy

We compute this matrix by solving the following three systems of linear equations:

Cq (1,00 Cp (-1,0) C5 (-1,0\"! /C
Bl6,1 Bie,1

al, Blo. : TWBle,

] —| C -2,00 C -2,0) C -2,0 C -2,0
4 | = ﬁ}G,l( ) ﬁ%o,l( ) ﬁ?ﬁ,l( ) T(I)ﬂlﬁ,l( '
dls ot 40 Cp  (40) Cp  (~4.0) Crap -40)
d Cﬁ}a 1(_1’0) Cﬁ%s 1(_1’0) Cﬁ?s i 10! Cm)ﬁ%e 1(_1’0)

21 : s . s
@, | = C/j{(),l 20 Cﬁ%é‘l(—Z,O) Cﬂ?e,l(_z’o) CT(l)ﬁ%é,l(_z’O) and
al, Cpp (40 Cp (40) Cpy  (~40) Crop, (40)
d Cole, TH0 G, T Gy L0 - Crag, M0

31 : : . .

! —| C -2,0) C -2,0)0 C -2,0 C -2,0
a]32 =] Al 20 Ao 20 Bls.1 20 T(l)ﬂ?ﬁ,l( :
a3, Cﬁ}é,l (-4,0) Cﬁ%o,l (-4,0) Cﬁ?ﬁ,l (-4,0) CT(’W‘?@I (-4,0)

Using Sage, we obtain that

27196229844 _ 1516424509440 8998059438489600
53207 77481

T ( 3) — 45758160 _ 215457444 8874947450880
- 11 11 691
4848 5699964924
2625 -3 ooT
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and this matrix can be diagonalized as

1 1 1
—179786453 ¥51349+207180739619 179786453 ¥51349+207180739619 24185
T(3) = 292431960720 292431960720 349512

=5252201 V51349 | 328902871 525229151349 , 328902871  _ 11747
1403673411456 ' 438647941080 1403673411456 ' 438647941080 ~ 50329728
—52992 V51349-2483820 0 0
X 0 52992 v51349-2483820 0
0 0 —-2792556

292431960720 292431960720 349512

—5252291 V51349 328902871 5252291\/5I349+ 328902871 _ 11747
1403673411456 438647941080 1403673411456 438647941080 50329728

1 1 1 -1
( —179786453 ¥51349+207180739619 179786453 V51349+207180739619 24185 )

It follows that the three Jacobi forms 6 p,, ¢16.p, and 056 p, defined by the system of
equations

2
292431960720 292431960720 349512 '8164,1

—5252291 V51349 |, _ 328902871 525229151349 , _ 328902871 11747 Vi
16,1

016,0, + + _
1403673411456 T 438647941080 1403673411456 T 438647941080 " 50329728

- 1
Y160, 1 1 1 ! Bl
4 —179786453 V51349+207180730619 179786453 V51349+207180739619 24185
160 | :=

are Hecke eigenforms of 7'(3), with eigenvalues /lwlwl (3) = =52992 V51349-2483820,

g1, (3) = 52992 V51349 — 2483820 and As1, (3) = —2792556, respectively. The
space M3((2) contains precisely two newforms:

Fio(T) =g — 16384¢% — 27925564° + 2684354564 + 66518564704°
+457532375044° + 1432518476648¢" — 43980465111044® + O(¢°) and
230(7) =q + 163844” + 47829964° + 2684354564" + 60658417504 + O(q°).

We have checked that the first 13 Hecke eigenvalues of 6,6 p, at odd positive integers
match the Fourier coeflicients of f3y and this newform is an element of M (2). The
space S 39(2) contains precisely four oldforms,

F0(T) =q + (4320 — B)g”* + (—2483820 + 5528)q° + (44976128 — 86408)4*
+ (—8738894250 — 1160008)g° + (271954378368 + 48684608)¢° + O(q"),
F30(7) =q + (4320 + B)¢* + (—2483820 — 5528)q° + (—44976128 + 86408)q* + O(4°),

F30(27) and F3(27), where B =96 V51349. We have checked that the first 13 Hecke
eigenvalues of ¢¢p, and Y6 p, at odd positive integers match the Fourier coefficients
of Fsy and Fsp, respectively.

Equation (3.18) implies that J,7p, = CEgy ;. p, and this space is mapped to Mz,(2).
Set Y17.p, := Es¥11.p,- In particular, this Jacobi form is a Hecke eigenform. The space
M3,(2) contains precisely three newforms:

Fio(T) =q + 32768¢% — 199842124° + 10737418244* + 429517087504°
— 6548426588164° — 168353589975764" + 351843720888324% + O(¢°),
g3(7) =q — 327684% + (8358252 — B)g* + 10737418244* + O(¢°) and
23,(1) =q — 327684” + (8358252 + B)g° + 10737418244" + O(¢),
where 8 = 960 V987507049. We have checked that the first 10 Hecke eigenvalues of
Y17.p, at odd positive integers match the Fourier coefficients of f3, and this newform is
an element of M3, (2).

Equation (3.18) implies that J19 p, = CEsi11 p, and this space is mapped to M3e(2).
Set ¥19.p, 1= Eg¥11p,. In particular, this Jacobi form is a Hecke eigenform. The space
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M;¢(2) contains precisely two newforms
fio(T) =g + 1310724 + 1599338524 + 171798691844" — 2838742578690
+209628498493444° — 782281866962344q" + O(¢®) and
236(7) =q — 13107247 + 364947484 + 171798691844 + 3890708587504
— 47834396098564° — 1296893694908564" + O(g%).

We have checked that the first 10 Hecke eigenvalues of 19 p, at odd positive integers
match the Fourier coefficients of f3s and this newform is an element of M7,(2).

Equation (3.18)) implies that J,; p, = CE}oi11.p, and this space is mapped to M4p(2).
Set Y21.p, := E1o¥11.p,. In particular, this Jacobi form is a Hecke eigenform. The space
M y(2) contains precisely three newforms:

fio(T) =g + 5242884 — 7354582924 + 2748779069444* — 162261789832504°
— 3855919569960964° + 160500657758878644 + O(g®),

240(T) =q — 5242884% + (143709132 — B)¢° + O(q),

240(T) =q — 5242884% + (143709132 + B)g° + 2748779069444" + O(q°),

where 8 = 960 V4202094647521. We have checked that the first 10 Hecke eigenvalues
of Y51 p, at odd positive integers match the Fourier coefficients of fi, and this newform
is an element of M (2).
Equation (3.18) implies that
Jip, =821 =CEnyiip, ® CAY1p,

and this space should be mapped to My4(2). Set
Bz :=Entip, and
,353,1 =AY1p,.
The matrix of 7'(/) on this basis satisfies
T()B;3 1) (ﬂl
s — T(l) 23,1
(T(l)ﬁgm %3,1

and it can be computed following the same reasoning as before. Consequently, the two
Jacobi forms ¢35 p, and ¢, p, defined by the system of equations

1/l
Yaup | 1 | LBl
.— 477481 V1589985537001 _ _ 192561338303 _ 477481 V1589985537001 _ _ 192561338303 2
¢23’D1 2659891394160000 1329945697080000 2659891394160000 1329945697080000 231

are Hecke eigenforms. The space M44(2) contains precisely four newforms:
fua(T) =g + 20971524 + (=11170817028 — a)q> + 43980465111044" + O(q°),
Fau(T) =q + 209715247 + (=11170817028 + a)g” + 43980465111044"* + O(¢°),
gua(T) =g — 2097152¢° + (—6490815492 — B)q* + 43980465111044* + O(¢°) and
2 (1) =q — 2097152¢% + (—6490815492 + B)q° + 43980465111044" + O(g),

where a = 17280 V1589985537001 and 8 = 21120 V97578078049. We have checked
that the first 10 Hecke eigenvalues of ¢35 p, and ¢,3 p, at odd positive integers match

the Fourier coefficients of fy4 and f44, respectively, and these newforms are elements of
M7, (2).
44
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3.3.2.2. The lattice D5. For the lattice D3, Remarks[3.12)and[3.16|suggest that there
exists a lifting map

Jk,D3 — M2_k—4(2)'

Note that M;,_,(2) is spanned by modular forms with eigenvalue —1 with respect to
Atkin—Lehner involutions when k is even and by modular forms with eigenvalue +1
with respect to Atkin—Lehner involutions when £ is odd.

Equation (3.20) implies that Jsp, = CE4p, and this space should be mapped to
M4(2). In particular, the Jacobi form E, p, is a Hecke eigenform. We have checked
that the first 25 Hecke eigenvalues of E4 p, at odd positive integers match the Fourier
coefficients of E4/240.

Equation (3.20) implies that Js p, = CEgp, and this space should be mapped to
My(2). In particular, the Jacobi form Egp, is a Hecke eigenform. We have checked
that the first 25 Hecke eigenvalues of Eg p, at odd positive integers match the Fourier
coeflicients of Eg/480.

Equation (3.20) implies that

J&D3 = CE4E4,D3 (&) Cn120_§024

and this space should be mapped to M,(2). Set yYsp, := 77120;1924. In particular, this
Jacobi form is a Hecke eigenform in S p,. The first few Fourier coefficients of y5 p, are
listed in Table[A.2] The space M;,(2) contains no newforms. The space S 12(2) contains
precisely two oldforms, A(7) and A(27). The first 25 Hecke eigenvalues of v p, at odd
positive integers match the Fourier coefficients of A.

Equation (3.18)) implies that Jop, = Cyyp, and this space should be mapped to
M,4(2). In particular, the Jacobi form ¢ p, is a Hecke eigenform. The first few Fourier
coeflicients of g p, are listed in the second column of Table [A.3] We have seen that
M,4(2) contains precisely two newforms and the first 25 Hecke eigenvalues of g p, at
odd positive integers match the Fourier coeflicients of fi4.

Equation (3.20) implies that

J10.0; = CEsEy p, ® CE4E¢ p,
and this space should be mapped to M,¢(2). Equation (3.23)) implies that

5
Y10.05(7,2) = ﬁE6(T)E4,D3(T ,2) + E4(T)E6 py (7, 2)
is a Hecke eigenform in § o p,. The space M;4(2) contains precisely one newform:

fio(T) =g — 128¢> + 62524° + 163844* + 905104° — 8002564° + 564"
—2097152¢% + 247385974° — 115852804'° — 958899484'! + 0(¢"%),

which is an element of M{(2). The space S 15(2) contains precisely two oldforms,
Fi6(T) =q + 2164* — 33484 + 138884" + 521104° — 7231684¢° + 28224564 + O(¢®)

and F6(27). We have checked that the first 25 Hecke eigenvalues of ¢ p, at odd
positive integers match the Fourier coefficients of Fe.

Equation (3.18)) implies that J;; p, = {0} and this space should be mapped to M 5(2).
We have seen that the latter space contains precisely one newform, which is an element
of Mi(2).

Equation (3.20) implies that

J]z,D3 = CE3E4’D3 ) CE6E6,D3 D CE47]120'§1924
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and this space should be mapped to M,,(2). It follows that

5
Bi23(T:2) =0 Ex(T)E4 p,(T,2) + Eo(1)Eqp, (7, 2)
[=D]

5
= D0 |3CuD + Coa(D.r) + Y (100Cs5(D + n.ryora(m)

reD%.DeQ n=1
@ —-DeZ

~ 504Cs3(D +n, r)as(n))]e (%2 -D)r+r2)

is an element of S5, On the other hand, set Bl = Ea'?0y9z+. Equation (3.17)
implies that
[-D]

2t
E@n" 0@ = ) (CupDr) = ) Cupyp (D +n.0Tis(m)
! n=1

reD# DeQ
% —-DeZ

Xe(((%’) —D)T+(r,z)).

The Jacobi forms g}, and 7, form a basis of S5, and the matrix of 7(/) on this
space satisfies
T(DB}, 3) (ﬁl
3 =1 (P13,
(T(l)ﬁ%s T3

~29988 403200
T(3)_(4608 27612)

and this matrix can be diagonalized as

11 2 11\
T(3):(l 2)(50(6)5 —53?028)(1 2)'

5 735 5 735

Using Sage, we obtain that

It follows that the two Jacobi forms ¢/, p, and ¢, p, defined by the system of equations

-1 /1 2l 35 02
Y12.p; . 1 1 312,3 _ §:812,3 +3 12,3
) L _2 2 - Z,Bl _ 3532
12.D3 5 35 12,3 9”123~ 9P123

are Hecke eigenforms of 7'(3), with eigenvalues 4y,,, (3) = 50652 and 4,,,, (3) =
—53028, respectively. We have seen that M,,(2) contains precisely two newforms and
we have checked that the first few Hecke eigenvalues of ¢, p, match the Fourier coef-
ficients of f5( at odd integers. The space S ,(2) contains precisely two oldforms,

Fao(T) =q + 456¢% + 50652¢° — 316352¢" — 23774104° + 230973124¢° + O(¢")

and F,)(27). We have checked that the first 19 Hecke eigenvalues of ¢, p, at odd
positive integers match the Fourier coefficients of Fy.

Equation (3.18) implies that J,3 p, = CE4i9 p, and this space should be mapped to
M (2). Set Y13 p, 1= Eag p,. In particular, this Jacobi form is a Hecke eigenform. We
have seen that M»,(2) contains precisely two newforms and we have checked that the
first 19 Hecke eigenvalues of 3 p, at odd positive integers match the Fourier coeffi-
cients of f»;.

Equation (3.20) implies that

.]14’[)3 = CE]()E;LD3 &) CE'gE‘G’D3 &) CE6‘/’8,D3
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and this space should be mapped to M4(2). Set

5
Bias(T,2) = ﬁE 10(T)E4,py(7, 2) + Eg(T)E6 py (7, 2)

and 8}, ; := EeYs.p;. Equation (3.17) implies that 8}, and 7}, , form a basis of S 14 p,.
Following the same argument as in the weight 12 case, the two Jacobi forms 4 p, and
¢14.p, defined by the system of equations

-1
1
Yiaps) . 1 1 14,3
b1 = _Viaa169-247  \144169-247 2
14.D3 1100 1100 14,3

are Hecke eigenforms of 7(3). We have seen that M,4(2) contains precisely one new-
form. The space §,4(2) contains precisely four oldforms,
Fou(t) =q + (540 — B)g” + (169740 + 488)q> + (12663328 — 108083)¢*
+ (36534510 + 150408)g° + (—904836528 — 1438208)4°
+ (=679592200 + 9858248)q" + (24729511680 — 48579208)4"
+ (—=17499697083 + 162950408)q° + 0(¢'*),
Fau(7) =q + (540 + B)g” + (169740 — 48B)q° + (12663328 + 10808)¢* + O(¢>),

F>4(271) and f24(2‘r), where 8 = 12 V144169. We have checked that the first 19 Hecke
eigenvalues of Y14 p, and ¢4 p, at odd positive integers match the Fourier coefficients
of Fo, and Foy, respectively.

Equation (3.18)) implies that J,5 p, = CEg9 p, and this space should be mapped to
M>(2). Set s p, := Eeio p,. In particular, this Jacobi form is a Hecke eigenform. We
have seen that the space M,4(2) contains precisely three newforms and we have checked
that the first 19 Hecke eigenvalues of ¢5 p, at odd positive integers match the Fourier
coefficients of f5.

Equation (3.20) implies that

Ji6.p; = CAE4p, ® CEEy p, ® CE 0Eg p, ©® CEgirs p,

and this space should be mapped to Mg(2). Set

5
Bios(T.2) 1= 57 En(DEqp,(1.2) + Ero()Eep, (7. 2).

t63 = Estsp, and B 5 := AE, p,. Equation (3.17) implies that these functions form

a basis of § 16 p,. Using Sage, we obtain that

7481
T3) :( 642816 2882628 270566400

1127316852 2874009600 _ 36453937766400
691 691 47
816 726564492
B s A <

on this basis and this matrix can be diagonalized as

1 1 1

—76701 VI8209-8332078 76701 VI8209-8332078 691
T(3) = 15791545 15791545 990
477481 V18209+71530247 477481 V18209+71530247 691
68219474400 68219474400 9504

—20736 V18209-643140 0 0

X 0 20736 V18209-643140 0

0 0 —-1016388

15791545 15791545 990

477481 V18209+71530247 —477481 V18209+71530247 691
68219474400 68219474400 9504

1 1 1 \°!
X( —76701 V18209-8332078 76701 V18209—-8332078 691 )
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It follows that the three Jacobi forms 6 p,, ¢16.p, and 06 p, defined by the system of
equations
1 1 1 \“L/g
WIG’DZ’ —76701 V18209-8332078 76701 V18209-8332078 691 56’3
1605 | 1= 15791545 15791545 990 Biss
616 D 477481 V18209+71530247 —477481 V18209+71530247 691 3 ’
"3 68219474400 68219474400 9504 ﬁl6,3

are Hecke eigenforms of 7'(3), with eigenvalues A4, 6.5 (3) = -20736 V18209 — 643140,

Agiop,(3) = 20736 V18209 — 643140 and 45, ,,, (/) = —1016388, respectively. We have
seen that M,g(2) contains precisely two newforms and we have checked that the first
19 Hecke eigenvalues of 6,6 p, at odd positive integers match the Fourier coeflicients of
J2s. The space S,3(2) contains precisely four oldforms,

Fas(T) =q + (—4140 — B)g* + (—643140 — 1928)¢> + (95311648 + 82808)g"
+ (2721793950 — 1472008)q° + (43441436592 + 14380208)¢° + O(q"),
Fag(7) =q + (4140 + B)g”* + (643140 + 1928)g° + (95311648 — 82808)g* + O(4>),
F»3(27) and Fa5(27), where 8 = 108 V18209. We have checked that the first 19 Hecke

eigenvalues of Y16 p, and @16 p, at odd positive integers match the Fourier coefficients
of Fyg and fzg, respectively.

Equation (3.18) implies that J,7p, = CEsiyg p, and this space should be mapped to
M5y(2). Set y17.p, := Egyg p,. In particular, this Jacobi form is a Hecke eigenform. We
have seen that M3((2) contains precisely two newforms and we have checked that the
first 19 Hecke eigenvalues of 7 p, at odd positive integers match the Fourier coeffi-
cients of f3.

Equation (3.18) implies that Jy9p, = CE 09 p, and this space should be mapped
to Mz4(2). Set Y19 p, := Eio¥9 p,. In particular, this Jacobi form is a Hecke eigenform.
The space M34(2) contains precisely three newforms:

faa(T) =g — 655364% — 133005564¢° + 42949672964* + 5387991325504°
+ 87166526423044° — 333473110517684" — 2814749767106564° + O(4°),
234(T) =g + 655364 + (4178244 — B)g’ + 42949672964" + (—2666238330 — 39968)g°
+ (273825398784 — 655368)¢° + (66359547937928 + 8962388)q” + O(¢®),
234(1T) =q + 655364% + (4178244 + B)g> + 42949672964" + O(q),
where 8 = 10560 v79829689. We have checked that the first 19 Hecke eigenvalues of
Y19.p, at odd positive integers match the Fourier coefficients of f34 and this newform is

an element of M7,(2).
Equation (3.18) implies that

Jo1.py = 8213 = CEnipo p, ® CAyg p,
and this space should be mapped to M3g(2). Set

1.

B3 :=E12¢9 py and
2

1821,3 '_Aw9,D3'

The matrix of 7'(/) on this basis satisfies

T(l)ﬁél,g)_ (ﬂém)
(T(l)ﬁim =T g2
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and it can be computed using the same reasoning as before. Consequently, the two
Jacobi forms ¥, p, and ¢, p, defined by the system of equations

1
Yoips\ ._ I 1 1B
t= 477481 V3026574721 _ 10009989767 _ 477481 V3026574721 _ 10009989767 5
¢21,D3 188339617065600 94169808532800 188339617065600 94169808532800 213
,

are Hecke eigenforms. The space M3g(2) contains precisely four newforms:

fis(7) =q — 26214447 + (211535604 — a)q® + 687194767364 + O(¢°),
Fas(T) =q — 262144¢% + (211535604 + a)q® + 687194767364" + O(q°),
233(T) =q + 2621444* + (-250843404 — B)q° + 687194767364" + O(¢’) and
23:(T) =q + 2621444% + (-250843404 — B)g’ + 687194767364" + O(q),

where a = 17280 V3026574721 and 8 = 1920 V223572801841. We have checked that
the first 19 Hecke eigenvalues of ¢ p, and ¢, p, at odd positive integers match the

Fourier coefficients of f33 and ?38, respectively, and these newforms are elements of
M3 (2).

3.3.2.3. The lattice Ds. For the lattice Ds, Remarks and[3.16|suggest that there
exists a lifting map

Jk,D5 d M;k—G(z)'

Note that M3,_(2) is spanned by modular forms with eigenvalue —1 with respect to
Atkin—Lehner involutions when k is even and by modular forms with eigenvalue +1
with respect to Atkin—Lehner involutions when k is odd.

Equation (3.19) implies that Jsp, = CE4p, and this space should be mapped to
M>(2). In particular, the Jacobi form E,4 p, is a Hecke eigenform. We have checked
that the first 41 Hecke eigenvalues of E4 p, at odd positive integers match the Fourier
coeflicients of —F,/24. Note that M,(2) = C(E, (1) — 2E»(27)).

Equation (3.19) implies that Jsp, = CEgp, and this space should be mapped to
Me(2). In particular, the Jacobi form Egp, is a Hecke eigenform. We have checked
that the first 41 Hecke eigenvalues of Eg p, at odd positive integers match the Fourier
coeflicients of —FE4/504.

Equation (3.18)) implies that J; p, = Cy7p, and this space should be mapped to
Mj3(2). In particular, the Jacobi form ¢/ p, is a Hecke eigenform. The first few Fourier
coeflicients of 7, are listed in the fourth column of Table [A.3] The space M;(2)
contains precisely one newform:

fo(1) =g — 847 + 124 + 644" — 210¢° — 964° + 10164" — 5124 — 20434°
+16804'° + 10924 + 7684'% + 13824¢"* — 8128¢" — 25204"° + 0(4'%).

The first 41 Hecke eigenvalues of ¢ p, at odd positive integers match the Fourier coef-
ficients of f3 and this newform is an element of Mg (2). In addition, f3(7) = n(t)3n27)8
is an eta product.

Equation (3.19) implies that

J8,D5 = CE4E4,D5 D CES,D5

and this space should be mapped to My(2). Equation (3.22)) implies that

192
Vs (1,2) 1= E4(T)E4 py(7,2) — TES,D5 (,2)
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is a Hecke eigenform in Sgp,. The first few Fourier coefficients of g p, are listed in
Table The space M,y(2) contains precisely one newform:

fio(T) =g + 16¢°> — 1564° + 2564* + 870¢° — 24964° — 952¢" + 40964° + 46534’
+139204'° — 561484'" — 399364'% + 1780944"* — 152324" + 0(4").

The first 41 Hecke eigenvalues of ¢5 p, at odd positive integers match the Fourier coef-
ficients of fio and this newform is an element of M{,(2).

Equation (3.18) implies that Jy p, = {0} and this space should be mapped to M,(2).
We have seen that the latter space contains no newforms.

Equation (3.19) implies that

Jio,ps = CE¢E4 p, ® CE4E¢ p,
and this space should be mapped to M 4(2). Equation (3.23) implies that

3
Yi0,05(7,2) := ﬁEG(T)E4,D5 (1,2) + E4(7)Eg py(7,2)

is a Hecke eigenform in S ;o p,. The first few Fourier coeflicients of ¢ p, are listed in
Table We have seen that the space M4(2) contains precisely two newforms. The
first 41 Hecke eigenvalues of o p, at odd positive integers match the Fourier coeffi-
cients of g4 and this newform is an element of M{,(2).

Equation (3.18) implies that J,; p, = CE4)7 p, and this space should be mapped to
M6(2). Set Y11 ps := Eqr7.p,. In particular, this Jacobi form is a Hecke eigenform. We
have seen that the space M ¢(2) contains precisely one newform and we have checked
that the first 41 Hecke eigenvalues of ¢, p, at odd positive integers match the Fourier
coeflicients of fie.

Equation (3.19) implies that

J12,D5 = CE3E4’D5 &) CE6E6’D5 &) CE4E8,D5

and this space should be mapped to M;g(2). Set

192
ﬁiz,s =EgE4p; — TE4E8’D5 and

> 24
Bias =EeEe6ps + 7E4E8,D5‘

Equation (3.24) implies that these functions form a basis of S, p,. Using Sage, we

obtain that
15012 30720)

7= (Cabn s
7 7

on this basis and this matrix can be diagonalized as

-1
1 1)/6084 0 1 1
-t el -

8 80 8 80
It follows that the two Jacobi forms ¢/, p, and ¢, p, defined by the system of equations

1 1 =1 /51 13p1  _ 80 2
Yi2.ps)\ ._ 125 — [63P125 7 189”125
¢ L 39 2 - @ﬁl + 30 32

12,Ds 3 80 12,5 63”125 7 189”125

are Hecke eigenforms of T'(3), with eigenvalues 4,,,, (3) = 6084 and 1;,, (3) =
—4284, respectively. We have seen that M;g(2) contains precisely one newform and
we have checked that the first 23 Hecke eigenvalues of i, p, at odd positive integers
match the Fourier coeflicients of fis. We have checked that the first 23 Hecke eigen-
values of ¢, p, at odd positive integers match the Fourier coefficients of the oldform
F]g.
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Equation (3.18) implies that Jy3 p, = CEey7 p, and this space should be mapped to
M>(2). Set Y13 p, := Eeq7,p,. In particular, this Jacobi form is a Hecke eigenform. We
have seen that the space M,((2) contains precisely two newforms. We have checked
that the first 41 Hecke eigenvalues of ¢35 p, at odd positive integers match the Fourier
coeflicients of gy and this newform is an element of M (2).

Equation (3.19) implies that

Jiaps = CE0Esp, ® CE3Es p, ® CEGES p,

and this space should be mapped to M, (2). Set

192
ﬂ}4,5 I:E10E4’D5 - TEﬁE&DS and

> 24
Bias =EsEeps + 7E6E8,Ds-

Equation (3.25)) implies that these functions form a basis of S 14 p,. Following the same
argument as in the weight 12 case, the two Jacobi forms 14 p, and ¢4 p, defined by the

system of equations
)11 )
$rans) % 1 %4,5

are Hecke eigenforms of 7'(3). We have seen that the space M»,(2) contains precisely
two newforms. We have checked that the first 23 Hecke eigenvalues of ¢4 p, at odd
positive integers match the Fourier coeflicients of g, and this newform is an element
of M3,(2). The first 23 Hecke eigenvalues of ¢4 p, at odd positive integers match the
Fourier coefficients of the oldform F,.

Equation (3.18) implies that J;s p, = CEgy7 p, and this space should be mapped to
M4 (2). Set s, := Egy p,. In particular, this Jacobi form is a Hecke eigenform. We
have seen that the space M,4(2) contains precisely one newform and we have checked
that the first 41 Hecke eigenvalues of 45 p, at odd positive integers match the Fourier

coefficients of f>4.
Equation (3.19) implies that

J16,D5 = CAE4,DS @ CE12E4’D5 &) CE10E6,D5 &) CEgEg’DS

and this space should be mapped to Mys(2). Set

1 192
Bies :=EnEsp; — TESES,DS,

5 24
Biss :=E10Esps + 7E8Eg,D5 and

3 —
1816,5 ‘_AE4,D5 .

Equation (3.26) implies that these functions form a basis of S6p,. Using Sage, we
obtain that

_ 1202318412 1669724160 190577840947200
837 4 477481 )

483 837 7
T(3) — 6217200 _ 9330948 821653217280
- 7 7 691

1220032044
799 —496 12200304
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on this basis and this matrix can be diagonalized as

1 1 1
T (3) _( —382123 V106705-25405997 382123 V106705-25405997 32477 )

59648240 59648240 67280
—3342367 V106705+756027937 3342367 V106705+756027937 _ _ 691
515360793600 515360793600 2422080
—4800 V106705+189924 0 0
X 0 4800 V106705+189924 0
0 0 —195804

59648240 59648240 67280

—3342367 V106705+756027937 3342367 V106705+756027937 _ _ 691

1 1 1 -1
X ( —382123 V106705-25405997 382123 V106705-25405997 32477 )
515360793600 515360793600 2422080

It follows that the three Jacobi forms 6 p,, ¢16,p, and ;6 p, defined by the system of
equations

1 1 TN 1
Y1605 Bies
: -382123 V106705-25405997 382123 VI06705-25405097 32477 >
605 | 1= 50643240 50643240 67280 Biss
816,05 3342367 V106705+756027937 3342367 V106705+756027937 691 B

, 16,5

515360793600 515360793600 2422080

are Hecke eigenforms of 7'(3), with eigenvalues 4., (3) = —4800 V106705 + 189924,

Agiep;(3) = 4800 V106705 + 189924 and A, (3) = —195804, respectively. We have
seen that the space M,4(2) contains precisely three newforms and we have checked
that the first 23 Hecke eigenvalues of 16 p, and ¢ p, at odd positive integers match
the Fourier coefficients of g6 and g,4, respectively. We have checked that the first 23
Hecke eigenvalues of 6,6 p, at odd positive integers match the Fourier coeflicients of the
oldform Fog.

Equation (3.18) implies that Jy7p, = CE o7.p, and this space should be mapped
to Mog(2). Set Y17.p, := Eio¥7.p,. In particular, this Jacobi form is a Hecke eigenform.
We have seen that the space M,g(2) contains precisely two newforms. We have checked
that the first 41 Hecke eigenvalues of ¢7 p, at odd positive integers match the Fourier
coeflicients of gg and this newform is an element of M7, (2).

Equation (3.18) implies that

Ji9.p;, = CE12y7,ps © CAYr7 p,
and this space should be mapped to M3,(2). Set

1.

,319,5 :=E1247 p; and
2 .

Bios :=AY7,p,.

The matrix of T'([) on Jy9 p, satisfies

(DB, 5) (ﬂ‘
S| = T( l) 19,5
(T(l)ﬁ%,s %9,5
and it can be computed following the same reasoning as before. Consequently, the two
Jacobi forms ¢/19 p, and ¢9 p, defined by the system of equations

Yiops) . _ 1 1y }95
( ¢19,D5) = ( 477481 v/987507049-11643202817  —477481 V987507049~ 11643202817 ) (ﬁgs)

363831333465600 363831333465600 s
are Hecke eigenforms. We have seen that M3,(2) contains precisely three newforms.
We have checked that the first 41 Hecke eigenvalues of ¢/19 p, and ¢9 p, at odd positive
integers match the Fourier coeflicients of g3, and g,,, respectively, and these newforms
are elements of M3,(2).
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3.3.2.4. The lattice D;. For the lattice D7, Remarks[3.12)and[3.16|suggest that there
exists a lifting map

Jep, = My 5(2).

Note that M3,_,(2) is spanned by modular forms with eigenvalue —1 with respect to
Atkin—Lehner involutions when k is odd and by modular forms with eigenvalue +1
with respect to Atkin—Lehner involutions when £ is even.

Equation (3.18) implies that Js p, = Cis p,. In particular, the Jacobi form ¢s p, is a
Hecke eigenform. We have checked that the first 41 Hecke eigenvalues of s p, at odd
positive integers match the Fourier coefficients of —E,/24.

Equation (3.19) implies that Jsp, = CEgp, and this space should be mapped to
M,4(2). In particular, the Jacobi form Egp, is a Hecke eigenform. We have checked
that the first 41 Hecke eigenvalues of E¢ p, at odd positive integers match the Fourier
coefficients of E4/240.

Equation (3.18) implies that J7 p, = {0} and this space should be mapped to M(2).
We have seen that the latter space contains no newforms.

Equation (3.19) implies that

J3.p, = CE4E4p, ® CEgp,

and this space should be mapped to Mg(2). Equation (3.22)) implies that

576
V3. p,(7,2) := E4(T)E4p,(7,2) — ?ES,D7(Ta )

is a Hecke eigenform in S p,. The first few Fourier coeflicients of 5S¢ p, are listed in
Table We have seen that the space Mg(2) contains precisely one newform. The first
41 Hecke eigenvalues of g p, at odd positive integers match the Fourier coefficients of
fs-

Equation (3.18)) implies that Jo p, = CE4s p, and this space should be mapped to
M,(2). Set Yo p, := Esfs p,. In particular, this Jacobi form is a Hecke eigenform. The
first few Fourier coefficients of i p, are listed in the second column of Table @ We
have seen that the space M;y(2) contains precisely one newform and the first few Hecke
eigenvalues of Y p, at odd positive integers match the Fourier coefficients of fi.

Equation (3.19) implies that

Ji0.p, = CEcEyp, ® CE4E¢ p,

and this space should be mapped to M;,(2). Equation (3.17) implies that

1
Yi0.p,(7,2) := ﬁE6(T)E4,D7(Ta 2) + E4(7)E6 p, (7, 2)

is a Hecke eigenform in S o p,. The first few Fourier coefficients of 4y p, are listed in
Table We have seen that the space M;,(2) contains no newforms and the first 41
Hecke eigenvalues of o p, at odd positive integers match the Fourier coefficients of A.
Equation (3.18)) implies that J,; p, = CEgs p, and this space should be mapped to
M 4(2). Set Y11 p, := Eeis p,. In particular, this Jacobi form is a Hecke eigenform. The
first few Fourier coeflicients of ¢, p, are listed in the fourth column of Table We
have seen that the space M4(2) contains precisely two newforms and the first 41 Hecke
eigenvalues of i, p, at odd positive integers match the Fourier coefficients of gj4.
Equation (3.19) implies that

J123D7 = CE8E4,D7 2] CE6E6,D7 S?) CE4E8,D7
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and this space should be mapped to M4(2). Set

1 576

ﬁ12,7 ::ESE4,D7 - ?E4ES,D7 and
2. 24

Bi27 '=EcEsp, + ?E4E8,D7-

Equation (3.24) implies that these functions form a basis of S, p,. Using Sage, we
obtain that

7T3)::(2000/3 ~22548

on this basis and this matrix can be diagonalized as

11 11\
o[4Sl

216 144 216 144

25452 —829440)

It follows that the two Jacobi forms ¢/, p, and ¢, p, defined by the system of equations

=1 /51 1 432 2
(‘ﬁlZ,Dv) — ( l 2 ) (ﬂ%m) — ( 3181%,7 - gz 127 )
b12.0, 216 144 12,7 _2:312,7 T 5 P12

are Hecke eigenforms of 7'(3), with eigenvalues Ay,,, (3) = 6252 and Ay, (3) =
—3348, respectively. We have seen that M;4(2) contains precisely one newform and
we have checked that the first 23 Hecke eigenvalues of ¥, p, at odd positive integers
match the Fourier coefficients of fis. We have checked that the first 23 Hecke eigen-
values of ¢, p, at odd positive integers match the Fourier coefficients of the oldform
F16.

Equation (3.18) implies that J,3 p, = CEsis p, and this space should be mapped to
M3(2). Set Y13 p, 1= Egys p,. In particular, this Jacobi form is a Hecke eigenform. We
have seen that the space M g(2) contains precisely one newform and we have checked
that the first 41 Hecke eigenvalues of ¢35 p, at odd positive integers match the Fourier
coeflicients of fg.

Equation (3.19) implies that

Jiap, = CE0E4p, ® CERE¢ p, ® CEGEjg p,

and this space should be mapped to My(2). Set

| 576
Bis7 :=E10Esp, — ?EﬁE&D7 and

) 24
ﬁ14’7 I:E3E6’D7 + ?E6E8,D7-

Equation (3.25) implies that these functions form a basis of S 14 p,. Following the same
argument as in the weight 12 case, the two Jacobi forms 14 p, and ¢4 p, defined by the

system of equations
_] 1
i 4.D7) . _ 1 1 14,7
¢ =1 89 77 2
14,D7 3024 2952 14,7

are Hecke eigenforms of 7'(3). We have seen that the space M((2) contains precisely
two newforms and we have checked that the first 23 Hecke eigenvalues of ¢4 p, at odd
positive integers match the Fourier coefficients of g,o. The first 23 Hecke eigenvalues
of Y14 p, at odd positive integers match the Fourier coefficients of the oldform Fy.
Equation (3.18) implies that J5sp, = CE o5 p, and this space should be mapped
to M (2). Set yisp, := Ejo¢s p,. In particular, this Jacobi form is a Hecke eigenform.
We have seen that the space M»,(2) contains precisely two newforms. We have checked
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that the first 41 Hecke eigenvalues of ¢5 p, at odd positive integers match the Fourier
coeflicients of g;, and this newform is an element of M,(2).
Equation (3.19) implies that

J16,D7 = CAE4,D7 EB CE12E4’D7 @ CE10E6,D7 EB CE8E85D7

and this space should be mapped to M4(2). Set

576

Bies =EnEsp, — ?ESES,DW

5 24
ﬁ16,7 ::E10E6,D7 + ?EgEg,D., and

3.
Bie7 :=AEup,.

Equation (3.26) implies that these functions form a basis of Sp,. Using Sage, we
obtain that

3889276452 _ 135604316160 79595230118215680
91 691 477481

6
T(3)=| 158160 5517108 3162724392960

83 191956572
3 -976 691

on this basis and this matrix can be diagonalized as

18929980896 T 6300993632 18920980896 T 6309993632 126828

1 1 1
T(3)_(2I421\/144169 176954735 _ 21421 V144169 | 176954735 3455 )

—477481 V144169+60215813 477481 V144169+60215813  _ 691
224888173044480 224888173044480 146105856
=576 V144169+169740 0 0
X 0 576 V144169+169740 0
0 0 -505908

—477481 V144169+60215813 477481 V144169+60215813 691

1 1 1 -1
21421 V144169 176954735 _ 21421 V144169 176954735 3455 ]
224888173044480 224888173044480 ~ 146105856

X ( 18929980896 ' 6309993632 18920980896 T 6309993632 126828

It follows that the three Jacobi forms ¥ 6 p,, ¢16.p, and 96 p, defined by the system of
equations

— 2
¢16.D7 18929980896 " 6309993632 18929980896 * 6309993632 126828 ﬁ16,7

1 1 1 -1 Bl
¥16,0; 167
. 21421 V144169 | 176954735 _ 21421 V144169 , 176954735 3455
016,04 —477481 V144169+60215813 477481 V144169+60215813 2
' 16,7

691
224888173044480 224888173044480 " 146105856

are Hecke eigenforms of 7'(3), with eigenvalues 4,,,,, (3) = =576 V144169 + 169740,

Agiep,(3) = 576 V144169 + 169740 and A5, (3) = —505908, respectively. We have
seen that the space M»4(2) contains precisely one newform and we have checked that
the first 23 Hecke eigenvalues of 06 p, at odd positive integers match the Fourier co-
efficients of f,4. We have checked that the first 23 Hecke eigenvalues of 6 p, and
¢16.0, at odd positive integers match the Fourier coeflicients of the oldforms F,4 and

Fo, respectively.
Equation (3.18) implies that

J17.0, = CEnays p, @ CAYss p,
and this space should be mapped to Mys(2). Set

1 o 2 .
Bi17 = Enysp, and Bi17 = A¥s p,.

The matrix of 7'(/) on Jy7 p, satisfies

108k o 8]
(T(l)ﬂ%7,7 - T(l) %7,7
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and it can be computed following the same reasoning as before. Consequently, the two
Jacobi forms ¢17 p, and ¢7 p, defined by the system of equations

-1
1
¥ 17,07 ._ 1 1 17,7
170 ‘= | -477481V106705+33963341 477481 V106705+33963341 2
T 232962188659200 232962188659200 17,7

are Hecke eigenforms. We have seen that M,s(2) contains precisely three newforms.
We have checked that the first 41 Hecke eigenvalues of @7 p, and ¢7 p, at odd positive
integers match the Fourier coefficients of g and g,4, respectively, and these newforms
are elements of M3 (2).

3.3.3. Concluding remarks. The results of this section are summarized in Table
Modular forms whose first few Hecke eigenvalues match are listed on the same row.
Elliptic Eisenstein series together with the corresponding Jacobi forms are marked in
green, elliptic newforms in the + space together with the corresponding Jacobi forms are
marked in blue, elliptic newforms in the — space together with the corresponding Jacobi
forms are marked in orange and elliptic oldforms together with their corresponding
Jacobi forms are marked in red.

Theorem [3.29] contradicts Conjecture 6.1.3 in [Ajo15], which would imply that

Jir1.py = Jir2,py = P5(2) and
Ji3,ps = Jrrap, = M(2),

since, for example, Ji»p, # Ji3p,. However, the conjectured weight and level seem
to be correct. Furthermore, Jacobi forms of index D; and D; which correspond to
newforms indeed map to the — space and Jacobi forms of index D5 and D; which cor-
respond to newforms map to the + space. Let J%n and J}'9 denote the subspaces of
Jacobi forms in J; p, whose Hecke eigenvalues match the Hecke eigenvalues of ellip-
tic oldforms and elliptic newfroms, respectively. In particular, the results in Table
suggest that

0, if k is odd,
new ~ Jnew ~ —,new

Jk+1,D1 _Jk+2,D3 - M2k (2)’
new ~ Jnew ~ +,new

‘]k+3,D5 _Jk+4,D7 - Mzk (2)

Theorem |1.37|implies that

old old 0, if k is even and
Jir1.0, =issns = o
o s My(1), if kis odd,
Jold L jold {Mzk(l), if k is even and
k+2,D3 - k+4,D7 -

Jirip, = M2 (2) @ My (1)
as Hecke modules. The remaining above statements can be re-formulated as the follow-
ing:
ConsecTurE 3.30. For every k > 2, the following holds:
Jes2.py =M (2) @ My (1),
Jss,ps =My (2) & My (1),
Jisap, =M (2) @ My (1)

and these isomorphisms are Hecke equivariant.
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TaBLe 3.1. Correspondence between Jacobi forms of index D, (n =
1,3,5 and 7) and elliptic modular forms

Jis1o, | Jes2py | Mu(2) | Jiwsps | Jisan,
E4.p, E4 Eo.p,
Es4p, Es E¢ p;
Esp, Eg
/s Y105 | Ysp,

B WIN

o)}

f1o0 Ysps | Yob,

6 Y3 b, A Y10.p,
7 Ysp, | Yop, S1a
814 Yio.ps | Y110,
8 fie Y1105 | Y12.0,
10,0, Fis b12.0,
9 fis Y205 | Y13.0
10,0, Fig $12,D;
Yiip, | 1205 S0
10 820 Y1305 | Prap,
V12,0, F Y140,
Yi2p, | Y130, f2
11 g» Yiaps | Y150,
P12.0, Fa $14.D;
foa Y1505 | 0160
12 Y140, Fay V16,0,
®14.p, Fo ®16.0,
Yiap, | Y150, Js
13 826 Yie.ps | P17.0,
826 d16.0s | Y17.0,
P14.0, F 016,05
Y150, | O16,Ds J2s
828 17,05

14 Yi6,0s Fog
®16,D; Fag
0160, | Y17,Ds S0
830

15 b16,0, F3
V16,0, F3
17,0, &)
16 83 Y19.Ds
83 $19,Ds
17 Y19.ps f3a
18 || Y19.0, f36
19 Y21,ps J3s
$21,p; f3s
20 || ¥21.p, S0
2 Y230, ._f44
$23.p, faa







CHAPTER 4

Level raising operators

We define a generalization of the operators U; and V; from [EZ83| §1.4] for Jacobi
forms of lattice index and study some of their properties. Given the terminology on one
hand and the connection between Jacobi forms and elliptic modular forms conjectured
in [AjolS, §6.1.1] on the other, the level of a Jacobi form should be the level of the
lattice in its index. This is supported by results from [Sak18], which state that the
space of Jacobi newforms of weight k and scalar index 1 for I'((N) which is invariant
with respect to the action of a certain Atkin—Lehner operator is isomorphic to the space
of Jacobi newforms of weight k and scalar index N for I' as modules over the Hecke
algebra (for every odd, square-free N).

4.1. The U operators

These operators arise from isometries of lattices (see end of Section[I.2). We remind
the reader that an isometry of a lattice into another is an injective linear map on the
underlying quadratic modules, which preserves the bilinear forms.

DerinitioN 4.1. Let L, and L, be positive-definite, even lattices over Z such that
there exists and isometry o of L, into L,. Define a linear operator

U() : Jir, 2 {¢: H X (L1 ®2C) — C: ¢ is holomorphic}

as

U(O')‘P(T’ Z]) = ¢(T’ O-(Z] ))
This operator satisfies the following:

Lemma 4.2. Let o be an isometry of L, into L,. For every ¢ in Ji,, the function
U(0)¢ is invariant with respect to the i -action of JE,

Proor. For every A in I', we have

(U@, AT, 1) =U(0) (AT, —c/ﬁ(zl))

<1 —k
d
)(CT+ ) e( ct+d

ct+d
B o(z1) & [P (0(z1))
_¢(AT’ CT+d)(CT+d) e( ct+d )
=@l 1,A(T, 0(21)) = ¢(7, 0(z1)) = U(o)d(7, 21),

since 3, o o~ = 31 and ¢ is a Jacobi form of weight k and index L,.
On the other hand, for every (4, u) in H%1(Z), we have

(U()P)\L, (A, (7, 21) =U(0)P(T, 21 + AT + e(rf1(A) + B1(4, 21))
=¢ (1,0(z1) + 70(A) + o (W) e (1B2(0 (D) + B2 ((D), 7(z1)))
=@, (o), o()(7, 0°(21))
=¢(7, 0(z1)) = U(0)(T, 21),

since 3, o o = By and ¢ is a Jacobi form of index L,. It follows that U(c)¢ is invariant
under the |k:é1 -action of JL1, as claimed. O
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We would like for U(c)¢ to be a Jacobi form of weight k and index L,. If ¢ in Jy 1,
has a Fourier expansion of the type

br2) = ). cln,r)e(nt +fa(ra, 2)),
nGZ,rZELg
n=Pa(r2)

then

Ulo)¢(r,21) = (7, 0(21)) = Z cp(n, ra)e (n + Ba(ra, 07(21))) -
neZ,rQEL;it
nzp(r2)

We need 3,(r,, 0(21)) = B1(r1, z1) for some ry in Lf for every r, in Lg such that c4(n, r,) is
non-zero in order for U(o )¢ to have the correct Fourier expansion. One case in which
this condition holds is when o is surjective and we can make the change of variable
¥ = o~ !(r) in the above equation.

Assume that o is surjective on L%. Then o : o '(L%) — L% is a Z-module isomor-
phism and, furthermore,

o' (L3 ={re Li®Q: B(x,0(r)) € Z for all x in L,}
= forevery rin o '(L}), B2(x, o(r)) € Z for all x in o°(L,)
& forevery rin o '(L}),5,(c"(x),r) € Z for all x in o<(L,)
& forevery rin o '(L}),5,(x',r) € Z for all X' in L,

= o '(hH Ll

This implies that o' (L}) is a Z-submodule of L¥ and hence that rk(L,) < rk(L,). On
the other hand, since o is injective by definition, we also have that rk(L,) < rk(L,). It
follows that tk(L,) = rk(L,), which is equivalent to the factthat o : L; ® Q — L, ® Q is
an isomorphism of Q-modules. Conversely, suppose that L, = (L,,£;) and L, = (L,,3,)
satisfy rk(L,) = rk(L,). Then every isometry o of L, into L, is necessarily surjective as
amap between L; ®Q and L, ®Q. It follows that o : L;®Q — L,®Q is an isomorphism
of Q-modules and therefore it is invertible on L%. Hence, every isometry o~ of L, into
L, is invertible on L’; if and only if tk(L,) = tk(L,) (if and only if L; ® Q ~ L, ® Q). As
a consequence, the following holds:

Tueorem 4.3. Let L, = (Ly,B1) and L, = (L, B2) be positive-definite, even lattices
over Z, of the same rank and such that there exists an isometry o of L, into L,. Then
U(o) maps Jiy, 1o Jyp,. Furthermore, if ¢ in Ji 1, has a Fourier expansion of the type

br2) = ). coln,r)e(nt +Ba(ra, ),
neZ,rzeLg
n2p(r2)

then U(o )¢ has the following Fourier expansion:

Uogrz)= ), cgna(r)emt +pir,z).

nez,ry EL?
n2pi(r1).o(r)eL}
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Proor. Lemma [.2) implies that U(c)¢ transforms like a Jacobi form of weight k
and index L,. In light of the discussion above regarding Fourier expansions, we have

U@pma) = Y. cyn et +Ba(ra, o(z))

neZ,rzeL’;Ik
n>f(r2)

DT colnolr)ent +Bi(ri,z1))
neZ,rleo"l(Lg)
n=p(ry)
S cnotr)ent + By ),

nez,ri EL?
n>p1(r1).o(r1)eLl

as claimed. m|

CoroLLary 4.4. Let L, = (Ly,81) and L, = (L,,3,) be positive-definite, even lattices
over Z, of the same rank and such that there exists an isometry o of L, into L,. Then
U(o) maps Sy, t0 Sy,

Proor. If ¢ in S, and has a Fourier expansion of the type

bTm)= D cylnrent +faolr, ),
neZ,rzeL’z’

n>Pa(r2)

then the above theorem implies that U(o)¢ has the following Fourier expansion:

U@pma) = D, cna(r)etr +Bi(r, ).

nez,ry EL?
o (r)eL n>pi(r1)

If n = B1(r1) in the above equation, then n = (o (r1)) and hence c4(n, o(r)) = 0, since
¢ is a cusp form. It follows that U(o)¢ is also a cusp form. m|

We will show that the U(-) operators preserve Eisenstein series in the following
sections.

REMARK 4.5. In Section we encountered an example of an isometry of D,, (n =
1,3,5 and 7) into Eg which is not surjective, but preserves Jacobi forms nonetheless:

a,:D,—> Eg:(x1,...,x,)— (0,...,0,x1,...,Xx,).

This is due to the fact that, for every ¢ in J; g,, we have

U(n)d(7,2) = ,¢(7,2) = ¢(T, 2,(2)) = Z cy(n, e (n7 + (r, y(2)))
I‘lEZ,rEEg,
nz@
and, for every r in Eg and every z in D, ® C, there exists an r’ in D¥ such that

(r,@y(2)) = (', 2).

More precisely, we have

(I", CYn(Z)) = (a'n ((r8—n+la s I"g)) s an(z)) = ((rS—n+l PR I"g), Z)
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and (rg_p+1,...,13) € Df: for every r = (ry,...,rg) in Eg (see Example . It follows
that

Uanpr = > D > cmne®r+ (- .,75),2)

(F8—pt1seees rg)EDﬁ (F1seees?8-n) nez

242
(r1,...,73)€EER > r1+2+'g
= z E C¢(I’l, r)e (nT + ((r8—n+1’ ] rg), Z))
(F8—n+15---r8)ED NEZ (r1sees?8-n)
,.2 +~-+r2 r%+»~+r§
n> 8—n+12 8 (rise..,r8)EES N> ——
= g CU(ans (N> )e(nt + (5,2)),
nez,seD}
where
CU(an)¢(n7 S) = E C¢ (n’ (S]7-'~’Sn’xl7'-'7x8—n))'
(X150005X8-1)
(Sl»-éwsmles--w;fi—n)iES
. 51 +;»+sn > Xp+edxg

The operators U(-) raise the level of the index of the Jacobi form that they are
applied to:

Lemma 4.6. If L, = (L, 1) and L, = (L,, 3,) are positive-definite, even lattices over
Z, of the same rank and such that o is an isometry of L, into L,, then lev(L,) | lev(L,).

Proor. By definition,
lev(L,) =min{N € N : NB,(r) € Z for all  in L}
=min{N € N : NB,(c"(r)) € Z for all r in L}}.
On the other hand, lev(L,)B(c(r)) € Z for all r in L%. Hence, lev(L,) | lev(L,)). |

ExampLE 4.7. The operator U, defined in [EZ85] arises from the following isometry
of the lattice (Z, (x,y) — ml*xy) into the lattice (Z, (x, y) — mxy):

11 (Q, (x,y) = mlPxy) = (Q, (x,y) > mxy), oy(x) = Lx.

It raises the level by a factor of /.

Fix any two bases for L; ® Q and L, ® Q, let G| and G, denote the Gram matrices
of L, and L,, respectively, and let M denote the matrix of o~ with respect to these bases.
Then

Broo =B & MGM=G, = det(L,) = det(L,) det(M).

In other words, we have shown the following:

Lemma 4.8. If L, = (L1, 1) and L, = (L, B2) are positive-definite, even lattices over
Z and o is an isometry of L, into L,, then det(L,) = det(o)? det(L,).

We remind the reader that lev(L) and det(L) have the same set of prime divisors for
every fixed positive-definite, even lattice L. It follows from this fact and from Lemmas

and that, when L; ® Q =~ L, ® Q, the set of prime divisors of L) onsists of the

lev(L,)
prime divisors of det(c-) which are not divisors of lev(L,), plus possilgly some primes
dividing lev(L,). Write

lev(L,) | det(L,) | lev(L,)™ ",
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where

1, otherwise.

lev(L,) - i
—lev(f’) in the above, we obtain that
ev(L,)

2v,(det(0)) - (lev(él)
k@) "\l

for primes dividing det(o-) which do not divide lev(L,). For primes dividing lev(L,), we
obtain the bounds

1+ v,(det(L,)) + 2v,(det(c))
; ri(éz) - 1=vpev(Ly) < vp(

< 1 +vp,(det(L,)) — v,(ev(L,)) + 2v,(det(o))
if p =2 and rk(L,) = 1 mod 2 and

v,(det(L,)) + 2v,(det(o0))
- Zrk( Lz)" 1= vp(lev(L,)) < v,,(

< vp(det(L,)) — v,(Iev(L,)) + 2v,(det(c))

5o {2, if rk(L,) = 1 mod 2 and

Then, writing lev(L,) = lev(L,)

) < 2v,(det(o))

lev(L,)
lev(Lz))

lev(L,)
leV(Lg))

otherwise. When rk(L,) = rk(L,) = 1, the above bounds imply that v, (leV(L‘)) =

lev(L,)
2v,(det(0)) for all primes p, in other words that lev(L,) = det(o)? lev(L,). However,
when rk(L,) = rk(L,) > 1, it is possible that lev(L,) differs from lev(L,) by a factor
which is not a square, as illustrated by the following example:

ExampLE 4.9. Consider the positive-definite, even lattices
L, =(Z%.((3).(3)) > 8xs + 16yr) and
L, =(Z%.((3).(})) > 8xs + 4yt).

There exists an isometry o, of L, into L,, mapping () to (2y). It gives rise to the linear
operator U(o,) mapping Ji 1, to Ji 1, . Using Sage, one can check that lev(L,) = 32 and
lev(L,) = 16, which implies that U(c,) raises the level of the index of Jacobi forms in
Jk.L, by a factor of two.

If, on the other hand, we consider the isometry o, of L, into the lattice

Ly = (Z2.((3).()) > 2xs + 16y1).

mapping () to (zy" ), then the linear operator U(o,) maps Ji 1, to Jir, . Since lev(L,) =
lev(L;) = 32, it follows U(o,) leaves level of the index of Jacobi forms in Ji , un-
changed.

Given a positive-definite, even lattice L, we want to classify lattices L’ of the same
rank as L such that there exists an isometry o of L into L', since every Jacobi form
in Ji o gives rise to an “oldform” in Ji ;. For example, when rk(L) = k(L) = 1, we
have L = L and L’ = L for some m and n in N. Then the matrix of every isometry
o of L into L’ is an integer d and, since 8’ o o(x) = B(x) for every x in Z, we obtain
that nd*> = m. Hence, there is a one-to-one correspondence between lattices L such
that there exists some isometry o of L into L’ and square divisors of m (this has been
established in [EZ85]]). Note that o is unique for each L', up to multiplication by +1
(which is equivalent to a change of basis in L or L").

Suppose that L = (L,p) and L’ = (L’,[8’) are positive-definite, even lattices such
that there exists an isometry o of L into L'. Then (o(L),’) is a sublattice of L’ and
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o : L — (o(L),p) is an isomorphism of lattices. Conversely, every sublattice (M, ") of
L’ gives rise to an isometry of (M, ) into L’ given by inclusion of (M, ) in L’. Hence,
the problem of classifying lattices L’ of the same rank as L such that there exists an
isometry o of L into L’ is equivalent to the problem of classifying overlattices of L.

ProposiTion 4.10 ([Nik80, Prop 1.4.1]). Let L = (L,p) be a positive-definite, even
lattice over Z. Then there is a one-to-one correspondence between overlattices of L and
isotropic subgroups of Dy. For every such overlattice L' = (L', B), the correspondence
is given by

L' L/L.
Since we are interested in the reverse correspondence, we include the proof:
Proor. The following inclusions hold:
L L — L'*[*
Since L has finite index in L', the group L’/L is indeed an isotropic subgroup of L*/L.
Conversely, every isotropic subgroup I of L¥/L gives rise to a positive-definite lattice

L, = (L;,p) containing L, where L; is the pre-image of I under the quotient map L —
L*/L. Since B(I, L) € Z and

B(x,y) = Bx +y) = p(x) = B(y) € Z

for every x and y in I, it follows that L, is even. O

Ife: L, — L, is an isomorphism of lattices, then the map

Ly - Jk»Lz - Jk,Ll,QS = (),
defined by

4.1) L(P) (T, w) = (7,1 (W),

is an isomorphism of spaces of Jacobi forms. If L’ is an overlattie of Land ¢ : L' — L”
is an isomorphism of lattices, then it is easy to show thatt o o : L — L” is an isometry
and that U(o) o t.(¢) = U(t o 0)¢ for every ¢ in Ji ;. Two overlattices L" and L of
L are said to be isomorphic if there exists an automorphism of L which extends to an
isomorphism between L’ and L”. We remind the reader that, given any positive-definite,
even lattice L over Z, every automorphism « of L extends to an automorphism & of Dy.

ProposiTion 4.11 ([N1k80, Prop 1.4.2]). Let L be a positive-definite, even lattice
over Z and let L' and L" be two overlattices of L. Then L' ~ L" if and only if there
exists an automorphism « of L such that

a(L’/L)=L"/L.

We remind the reader that 7, denotes the set of isotropic subgroups of D;. The
orthogonal group of L acts on 1 from the right via

(a, 1) > a(l).
Let O(L)\1 1 denote the quotient of this action, i.e. the set
{U1:1€1,[Il=[J]] & dain O(L) such that J = a(l)}.

For every element I in 7, let ¢; denote the inclusion map between L and L; and set
ul) = U).
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DerintTION 4.12 (Oldforms with respect to isometries). Let L be a positive-definite,
even lattice over Z. For every non-trivial isotropic subgroup 7 of D;, every element in
Jk.1, 1s called an oldform in J; ;. Define the space of oldfroms of weight k and index L
with respect to isometries as

o= Y Uiy,
1€0\T,,
I#{0}

ExampLE 4.13. In the case of the scalar lattice L, = (Z,(x,y) — 2mxy) (m € N),
the isotropy set of L, is Iso(Dy, ) = %Z/Z, where m = ab* with a square-free. Since
Iso(D., ) 1s cyclic, all its subgroups are cyclic by the Fundamental Theorem of Cyclic
Groups and they are in one to one correspondence with divisors of b. In other words,

|
I, ={(s):selso(Dy)} = {<Zz> 1d | b}

Note that L, = (NLVZ, (x,y) — 2mxy) for every s in Iso(Dy, ) and the latter is isomorphic

to the lattice L% = (Z, (x,y) — Z%xy). Furthermore, we have O(L,) = {+xId} and
NS s

hence O(L\Z, = I . Thus, we recover the usual notion of oldforms with respect to

the operators U, from [EZ85].

ExamrLE 4.14. When #n i1s odd, the root lattice D, is the maximal even lattice in
the odd unimodular lattice Z". In other words, it has no even overlattices. Indeed, we
remind the reader that

er+:---+e, 61 +---+e,_1—¢€
Dz/Dn = {O»ena - - - ,

2 ’ 2
where {e;}; denotes the standard basis of Z", and hence the only isotropic element in

D*/D, is the trivial one. It follows that there are no oldforms with respect to isometries
in the spaces Ji p,, for every odd n and k > 7.

4.1.1. Connection to vector-valued modular forms. A partial newform theory
for vector-valued modular forms with respect to the dual Weil representaiton was de-
veloped in [Brul4, §3]. In this subsection, we present some of the results from there
and discuss their connection with the oldform theory developed in the previous para-
graphs. Let L = (L, ) be a positive-definite, even lattice over Z and let M = (M, ) be
a sublattice of L of finite index. We have seen that following inclusions hold:

M — L L¥ — M*

Furthermore, the quotient group H := L/M is an isotropic subgroup of Dy, and its
orthogonal complement with respect to 8 is H- = L* /M. There is a natural isomorphism
(H*/H,B mod Z) ~ Dy and |M*/M| = |L*/L||H|*.

THEOREM 4.15 ([Sch15, Thm 4.1 ]). Let
F) = ) Fuoe,

xel*/L

be an element of M (pp). Then the function

Fu(@:= Y Fem(®e,

xel*/M

is an element of M(p},).
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While the author only treats the case where rk(L) is even in [Schl$], the proof
carries through in general. We include it here:

Proor. It suffices to check that Fy is pj},-invariant under the [¢-action of T and S.
Since F' € M(p;), the following holds for every AinT:

Fo(Ar) = w@? > prA) Fy(D),
yelL#/L
Since
pu(T)e, = pr(T)e, = e(B(x))e,
for every x in L* /M, we have
FuhT(@ = D0 Frgu@Dec= D (=B + LIM)F copm(0)ex = piy(TF (7).
xel* M xel* M
Furthermore, write Fy; = Zye it Fayey, with

Fy+L/M» lfy € L#/M and
Fyy = .
0, otherwise.

Then
FullS@ =t 3" FrmSte, =1 Y Fiy (S1)e,.

yeL* /M yeM* M

If y € L*/M, then

- rk(L)

T4 Fyy(ST) =t Fyp(ST) = Y —

\ / #
xel*/L /
' rk(L)

= IL/M le (=B(x,y)) Fx(7)
XGLZ#/L V

- er

= e (=B(x,y)) F(7)
xel* /M VM#/

i rk(L)

= e (=B(x,y)) Fy (1)
XG%Z/M VM#/

Ify ¢ L*/M, then 7°F; ,(S7) = 0 and

e (=B(x,y + L/M)) F(7)

o rk(L) . rku

————e (Bl Fua(®) = ), ————=e(-Bx.)) Fur.
\/T \/T

xeM* |M xeLl*|M

- 1k(L)

XELZ#/LN;M VM /M

€ (_ﬂ(x + U, y)) FM,X‘HI(T)

- rk(L)

= 6( ﬁ(x y)) Fx+L/M(T) €(-ﬂ(,l,l )’)) =
xELZ#/L V M#/ H;M
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since the inner sum in the last line is equal to zero. It follows that

' rk(L)

FulS@= > | D] We(—ﬁ(x SOIHOIE

yeM* /M \xeM* M

. rk(_)
= > Faum@ ), T A = P(S)Fu()
xel*/M yeM* M V #/ o
and the proof is complete. O

Given a positive-definite, even lattice M = (M, ), elements of M, (p;,) which arise
in this way from overlattices of M are called oldforms. The converse result is the fol-
lowing:

ProposiTioN 4.16 ([Brul4, Prop 3.2]). Let M be a sublattice of L of finite index and
let

Fry= ) Fudt)e
xeM*/M
be an element of M;(p),). Then the function

Fir)i= > Fu®ecum
xel* /M
is an element of M(p;).
Since an explicit proof is not given in [Brul4l], we include it here:

Proor. The fact that
pL(T)e)ﬁL/M = e(B(x))exiL/m
for every x in L*/L implies that

FET@ = Y FlTDewm= ), e(-BOIFT)ewm = py(T)FHT).

xel* M xeLl* M
Furthermore,
FHRS (@ =t 3" Fy(ST)eum =
yel# /M

- rk(L)

yeLZ#JM xeMZ#/M V M#/

l._fk(zé)
XG%M @ WIL/M Z Z e(—Bx,y +p)e,

yel*/L ueL/M
F(1) e(=B(x, y))e e(=B(x, 1))
XGMZ#/M yeLZ#/L V "IL/M| lL/Ml ;M

. rkL)
F(7) =T
XELZ#/M yeLZ#/L #/

ProposiTioN 4.17 ([Bruld, Prop 3.3]). Let
Fry= Y Fu(1)e

xeM* M

€ (_B(-x’ )’)) Fx(T)ey+L/M

- rk(L)

e (=B(x + LIM,y)) ¢, = p(S)FX(7). O
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be an element of Mi(p;,) such that F, = 0 for x not in L*/M. Then F,, = F, for all y
in L/IM and a
l (Fb
LM
In other words, this is a sufficient criterion for an element of M(p),) to be an oldform.

F(r) =

We remind the reader of the isomorphism ¢ between Jacobi forms of lattice index
and vector-valued modular forms for the dual Weil representation from Theorem [1.39]
The connection between this newform theory for vector-valued modular forms for the
dual of the Weil representation and the newform theory developed in the previous sub-
section for Jacobi forms of lattice index is the the following:

Lemma 4.18. Let L = (L,B) be a positive-definite, even lattice over Z and let L' =
(L, B) be an overlattice of L. For every Jacobi form ¢ in Ji i, the following holds:

¢ (UL [L)) (7) = p(@)L(7).

ProOF. Since ¢ : Ji ;s — M, _nw(p;,), it suffices to check that
L wipg

UL [D)¢(1,2) = ¢ (¢(@)L) (7. 2).
The Fourier expansion of the left-hand side is given in Theorem (4.3}

U(L'/D)¢(t,2) = Z Cy(D,r)e (B(r) = D)t + f(r,2)) .

reL’*,DeQ
D=B(r) mod Z

Suppose that ¢ has the following theta expansion:
$T2) = D gDy (T2,
xel* /L
Then
PR = > hya(D)e,

xeL'* /L’

and

PO = ) hyern(Des.
xeLl#|L
It follows that

¢ (e@L) T = D hpwr i (TILAT2),
xel’* /L
in other words that

¢ (@) ma = > Cy(D, e (Bx) - D)t +B(x,2))

xeL'* DeQp
D=p'(x) mod Z

and equality holds. O

Proposition gives us a criterion for when a Jacobi form in Ji; is an oldform
with respect to isometries:

Lemma 4.19. Let L be a positive-definite, even lattice over Z. If
$r= > Cy(D,r)e((B(r) - D)t +B(r,2)
(D,r)esupp(L)

is an element of Ji1 such that C4(D, r) = 0 for all r not in L'* for some overlattice L' of
L, then ¢ is an oldform coming from Jy .
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Proor. Let

pr = D CoD,r)e((BG) = Dyt +B(r',2)
(D.r")esupp(L)
rel’*

be the Fourier expansion of ¢ and let

$T2) = ) hy(D)ILT,2)

xel*/L

be its theta expansion. It follows that A4, = O for x not in L*/L. First, we show that
C4(D, x) = Cy(D,r + x) for every r in L’. We remind the reader that

g (AT) = WO* " p1(A)syhg(T)

yeLl*/L

for every A in I' and therefore
i rk(L> i le

hy(ST) =7 e( —BCx, Y)hg(T) =T
yeLZ#/L ' yeLZ’#/L V

Hence, for every r in L', we have

e(—ﬁ(x, Yhg (7).

' rk(L)

h¢ r+x(ST) =T
)e;;/L V

- rk(L)
= -

yEL’#/L

e(—ﬁ(r + X, Y)hg(7)

e(—,B(x’ Yhyy(T) = hy(ST).

It follows that h,,, = hy, for every x in L*/L’ and every r in L', which is equivalent to
the fact that Cy(D, x) = Cy4(D, r + x) for every rin L'.
Define

Em= Y > CyD,r+x)e(((x) - Dyt +B(x,2).
(D,x)esupp(L’) reL’ /L

Then
¢ (1.2) = ¢ (¢(d)r) (1.2)

and it follows from Proposition that ¢£° € J; . But

=L/ ) CoD,x)e((B'(x) - Dyt +B(x,2),

(D,x)esupp(L’)

since Cy(D, r + x) = Cy(D, x) for every r in L’, and therefore

UL ) =L /L . CoD,r)e(BU’) - D)t +B(r, 2).

(D,r")esupp(L)
rel*

Thus,
U(L' /)¢~ (t,7) = I [ LIp(7, 2)

and in particular ¢ is an oldform coming from Ji ;. m|
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4.1.2. Theta series and level raising operators. We study the action of the oper-
ators U(+) on theta series.

Lemma 4.20. Let L = (L,B) be a positive-definite, even lattice over Z and let L' =
(L, B) be an overlattice of L. For every r in Dy, the following holds:

U LBy, = Y. O

Proor. We have

I = Y, eBET+AEx)

xeL*
x=r mod L’

by definition. Every x in L which is congruent to » modulo L’ can be written as x = r+t
for some 7 in L’ and we can write t = A + u, with A in L and g in L’/L. It follows that
x=r+p+Adand x € L* such that x = r + gumod L and r + u € L'*/L such that
r+u =r mod L'. Conversely, every x in L'* which is equivalent to s modulo L for some
s in L*/L which is equivalent to r modulo L’ can be written as x = s+ A = r+u + A, for
some A in L and some y in L', and therefore x € L'* and x = r mod L’. It follows that

UL DOyt = Y, > eBOT+Bxr= D, b,

seL*/L  xel* sel*/L
s=r mod L/ x=s mod L s=r mod L’

as claimed. O

Let I be an isotropic subgroup of D;. Since U(I) is an inclusion map, we have
shown that

for every rin D;,. We remind the reader of definition (T.I7) of the I-module ©;. Define
the following averaging operator on @ :

L 1
Tr 10— —— Ol(A, p).
e s ), )

()e(Ly/L)?

Lemma |4.20, implies that ©,, is a [-submodule of Op. Let @l denote the orthogonal

complement of ®,, inside @, with respect to the scalar product (L.22)). The following
holds:

ProposiTION 4.21. For every 0 in ®r, we have

Trj0=0 < 0c0}.
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Proor. First, note that Tr %’ is well-defined. For every r in L*/L and every pair (4, u)
in (L*)?, we have

I (A 0)(T.2) = (D) + B(A,2)) D (1,2 + AT + p1)
=e (D) +BL,2) Y. e(@B() +Bx.z+ AT+ )

xeL*
x=r mod L

= Z e (7(B(x) + B() + B(x, V) + B(x + A,2) + B(x, 1))

xeL*
x=r mod L

=e(Br,w) ), e@BO) +B02)

yeL*
y=r+A mod L

:e(ﬂ(l’, /.l))ﬂé,r+/l (T’ Z)'

Write 0 = 3,14/ ¢,91,, With ¢, in C for all r in L*/L. It follows that, if (A, ') =
(A, 1) + (8,) for some (6,y) in L?, then

L )T 2) = Y celBr g Nt = > ceB)ra(T,2)

rel*/L rel*/L
=0|.(4, u)(7, 2)

L, . . . .
and therefore Tr ;' is independent of the choice of coset representatives.
Furthermore, we have

1
T 0D =y ) ), B L)

rel* /L (A)e(L;/L)?
1
TIL/LP 2. 2. CraelBls )P,
! seL*JL (L)e(Ly/L?

Thus, for every 6 = 3 cp#/p ¢/ 0L, and 6, = 3,c14) d, 0, in O,

1 —
T 000 = D) D, coaelBlssds

sel#*/L (Au)e(Ly/L)?

! —_—
ILi/LP? Z Z ce(B(r, y)dr—s

rel*/L (6,y)e(Li/L)?

=[6,. Tr 6,1,

where we have made the substitutions —4 = 6, s = r — ¢ and u = —y. It follows that
Tr i’ is Hermitian with respect to the scalar product (1.22).
For every ¢ in Dy, Lemma[4.20]implies that

T 91,0 =m D, D, B am= ) D 9T

(AweLi/Ly*  seLf/L AeLi/L  xeL¥/L
s=t mod L; x=t mod L;

:0£1,lv

where we have used the fact that e(8(s, u)) € Z for every s in L’f and every u in L; and
we have made the substitution s + 4 = x. In other words, we have ®£1 cTr %@L- On
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the other hand, for every r in D; we have
lﬁL r = ﬁL r+/l(T Z) 6(6(1", ,Ll))
772
|L1/ Lj A;L ﬂ; .

and note that the inner sum is equal to zero unless r € L¥. For every r in L¥, we obtain
that

L 1
Tr 79, = —— P 5(1,2) = UMDY, (7,
rL L, |L[/L| Z# L, (T Z) ( ) LI’ (T Z)
seLy/L
s=r mod Ly

and thus Tr i@é C O,. It follows that ®, = Tr f@é'
To prove the Proposition, assume that 6 in @ satisfies Tr i’@ = 0. Then
[6.0,,1 = [0, Tr 0] = [Tr6,0,] = 0
and therefore 6 € ®i1. Conversely, assume that 6 € G)i . Then
0=1[0.0,,]=1[0.Tr0,] = [Tr0.0,]
and therefore Tr i’@ = 0, since [+, -] is non-degenerate. O

Lemma 4.22. The operator Tr %’ is a projection map from O to O,

Proor. We have seen in the proof of the previous proposition that ®, = Tr %’ 0.

Thus, we only have to check that Tr Lo Tr L= Ty %’. For every r in Dy, we have

Try o Tr /"90,(7.2) = > BT B a(.2)

(Awe(L/L)?

Z Z e(B(r, ) + B(r + A, YO rsa45(T, 2)

(AE(Lr/L)* (6y)eLs/L)?
2
D L/ LB )L (. 2)
(x.)e(Ly/L)?

=Tr & ﬂL (T, 2),

|L1/ LP

|L1/ IL;/L*

1
|L;/LI*

where we have used the fact that ¢ .| (4, n) = e(B(r, )P 1 for every (4, 1) in (LH)?
and that addition by ¢ and by y are automorphisms of L;/L for every fixed ¢ and y in

L/L. =
Set
®old Z ®L
IeT L
1£{0)
L
and O := (G)gld) , where the orthogonal complement is taken with respect to the

scalar product [-, -].

Lemma 4.23. The space O is a [-submodule of O, and, furthermore,

4.2) O =) O

IEIL



4.1. THE U OPERATORS 115

Proor. The space O°" is a [-submodule of O,, since O, is a I-submodule of O

for every I in 1 and the ["-action on O, is unitary with respect to [-,-] (the latter is
essentially a re-statement of the fact that the Weil representation is unitary with respect
to the scalar product on C[L*/L]).

The statement regarding the decomposition of ®; can be proved by induction on the
number of isotropic subgroups of D;. If D; has no non-trivial isotopic subgroups, then
O, = ©}°". For the induction step, suppose that

_ new
®£1 - Z ®Ll+./
Jel Ly
for every non-trivial / in 7. Then
0, =0 ), ), O, = ) Or -

IEIL JejL[ IE[L
I#{0}

ProrosiTiON 4.24. Suppose that L is a positive-definite, even lattice over Z such that
B(1,J) = 0 for every isotropic subgroups I and J of Dy. Then
_ new
GL - @ ®71 ’
IE.Z—L
where the direct sum decomposition is taken with respect to the scalar product (1.22).
Proor. Note that one instance in which (I, J) = 0 for every isotropic subgroups
I and J of Dy is when Iso(Dy) is a cyclic group (as is the case for the scalar lattices
L_). In view of the previous lemma, it suffices to prove that the summands in (4.2)) are

pairwise orthogonal. Let / and J be two elements of 7 such that I # J. For every r in
Dy, and every pair (4, ) in L?, we have

Fp, (A (7, 2) =e (1B() + B(A, 2)) Z e (7B(x) + B(x,z + AT + )

#
xeL
x=r mod L;

—e(Br,p) Y, e@BH) +B0,2)

#
yELJ
y=r+A mod Ly

=e(B(r, )DL, r+a(7, 2),
using the fact that (1, J) = 0. Hence,

DT eBr I, (T 2)

(el /Ly?

Lios/ L) D By + ), (T, 2)

6Lt/ Ling)? (s.)€(Ling/L)?

Tr i’ﬁéj,,(‘r, z7) =

1
|L;/LI?

|Ly/Ling?
1

= > BN, a7 2.

ILil Lol oy

The quotient /" := I/I N J is a non-trivial isotropic subgroup of D, and we have
LI/LIﬁJ = (L[ +J/IN J)/(LIQJ +J/IN J) = LJ+[//L] . It follows that

L L.
Tr z”ﬂéﬁr(T, Z) = TIZ;H ﬂéj,r(Ta Z).

Proposition @ implies that the latter is equal to zero if ¥ , € ®}™ and, implicitly,
that @Ziw - ®i1' Since ®21 c (GZTW)L, the proof is complete. O



116 4. LEVEL RAISING OPERATORS

4.2. The V operators

Let L = (L,p) be a positive-definite, even lattice over Z. For every [ in N, consider
the linear operator U(IL/L) : Jip — Jiarp arising from the following inclusion of
lattices:

(LB = L.
The map ¢ : (L, ’8) — (IL,p) defined by x > Ix is an isomorphism of lattices. Define
a linear operator U(l) on the space Ji 1 as the composition of U(/L/L) with the map ¢,
defined in (@.1)), in other words

UD¢(t,2) := 1. (UUL/L)¢) (1, 2) = (1, [2).
Equivalently, the operator U(l) is the operator U(o7) corresponding to the isometry
o1 (LB = (LB, ,ou(x) = Ix.

Hence, it maps J;; to Ji 12 and, if ¢ in J;; has a Fourier expansion of the type

b= D cylnre(nt +B(r,2),

nez,rel?

n>f(r)
then Theorem [4.3]implies that U(l)¢ has the following Fourier expansion:

UDo(t,z) = Z co(n, Ir')e(nt + PR, 2)),
neZ,r eL(%)*
nZlZﬁ(r’)

with the convention that c4(n, [r') = 0 unless 7 is an /-th multiple of another element of
L(I?)*. The level of L(I%) is equal to [* lev(L) and that the determinant of L(/%) is equal
to 12D det(L).

Extend the definition of U(J) to [ in Ry,. We remind the reader of definition (3.3)) of
the set I'\M(/) and that the |, ;-action of a matrices in M7 (Z) on holomorphic, complex-
valued functions defined on $ X (L ® C) is defined in (3.4).

DEeriNtTION 4.25. For every [ in N, define a linear operator V(/) on the space J ;. as

Vhg(r,2) =11 " UV (¢leeM) (7, 2).

Mer\M())

This definition was given in [EZ85] for Jacobi forms of scalar index. We remind
the reader that the set

A={A=(85):a,b,deZ,a,d>0,ad =1and 0 < b < d}

is as a set of coset representatives of I'\M(l). If M = (44) € A, then ¢|,  M(7,2)

contains a factor of ¢(MT, %) and this function transforms like a Jacobi form with

respect to translations in the sublattice VI(tL® L) in the abelian variable. However, this
sublattice is incommensurable with 7L & L. Applying U( VI) restores integrality and
brings us closer to obtaining a function which is invariant with respect to translations in
7L ® L in the abelian variable. In other words, the operators V(-) are “precursors” of the
usual Hecke operators. The following holds:

THEOREM 4.26. For every l in N, the operator V() is independent of the choice of
coset representatives of the action of I'\May(Z). It maps Jip to Ji o). Furthermore, if ¢
in Ji . has a Fourier expansion of the type

b= D cylnre(nt +B(r,2),

nezZrel*
n>p(r)
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then V()¢ has the following Fourier expansion:

4.3) Vit = > . d ( )e(m’+lﬁ(r 2).

neZ,r’ eL(ly* al(n [)
n2IB(r') eL(l)#

Proor. Fix a coset [M] in I'\M(/) and assume that [M*] is a different choice of
representative for the same coset. Then M* = yM for some y in I" and hence
Pl LM (1,2) = Pl LYM)(7,2) = Dli LYl LM (7,2) = Pl L M(7,2),

since ¢ € Jy ;. It follows that V(/) is independent of the choice of coset representatives.

To show that V (/)¢ is invariant under the |, -action of I', let {M;}; be a set of
coset representatives of I'\M(/). For every A in I', [CS17, Lemma 6.3.1] implies that
M;A = A;M,;, for some permutation o on the set of indices {i} and some A; in I'. It
follows that

D laMili AT D) = ) Bl (MiA) (T, 2) = ) Bl (AiMoy)(T,2)

= Z ¢|k,;Ai|k,;Mcr(i)(T, 7) = Z ¢|k,;Mj(T, 2),
i j

since ¢ € Ji; and where j = o (i). Set
(2 =170 ) Bl M(r,2)
\M()

for simplicity. Then

VDl LyAlr,2) =(U( ‘ﬁ)w)lk,gz)A(T, 2) = U(VDy (AT,
cﬁ( Vi z)
CcT

< i [—clB(z)
d)(CT+d) e(cr+d)

l
=y [AT, C‘['\/_—+Zd) (ct+d)Fe = Yl LA(T, \/_Z) = yY(T, \/—Z)

UV (t,2) = V(D).

To check for invariance under the action of HX)(Z), take {M;}; = A,. For each M; =
(&%) in Ay, set

k
) UND(@l L M)(T.2) = ¢ (‘” b ,az)

0i(1,2) := (i y

Vi

for simplicity. We have
atr+b
Oily(A, p) =e(TIB(A) + IB(A, 2))¢ (T, az + alt + a,u) :

a‘r;b and 7’ for az, which implies that 7 = dT,T_b and that z = ZE

il (A, p)(t, 2) =e (d(7'd — D)B(A) + B(dA,Z)) ¢ (7,2 + (7'd = b)A + ap)
=e (T'B(dA) + B(dA, 7)) ¢ (7,7 + T'dA + (au — bA))
=¢|.(dA, au — b7, 7)) = ¢(7', ) = 6i(1, 2),
since ¢ € Ji 1. It follows that V(D)l h = V(D¢ for every h in HXO(Z). It remains to

prove that V(/)¢ has the correct Fourier expansion.
Take A, as the set of coset representatives of I'\M(/) in the definition of V({):

(4.4) V(Dp(r,2) = = Z > e (”b )

ad 1 bEZ(d)

Substitute 7’ for
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Insert the Fourier expansion of ¢ in order to obtain that

1
V(IDp(r,z) = 7 Z a* Z Z cy(n,r)e (%T + B(r, az)) ey (nb).
ad=1 bmod d pez rel
n=p(r)

Since

1 I, ifd|nand
~ ) enb) = {
72

" 0, otherwise,

substitute m for n% in the above:

ml
V(Do(r,z) = Z a! Z Cy (—, r) e(mat + aB(r, 2)).
all meZ,reL* a
m>4p(r)
ubstitute n for ma, which implies that the condition on a becomes a | (z, /) and that the
Substitute 7 fi hich implies that th: dit b | (n,]) and that th
condition on n and r becomes n > “—;,B(r). Furthermore, set ar = s:

_ nl s
Vit = )y > d lc¢(—2, —)e(nT+ B(s.2)),
a’ a
neZ,sel* al(n,l)
nz4p(s) ael’
with the usual convention that an empty sum is equal to zero. There is a one-to-one
correspondence between L(I)* and L*, given by x — [x. Set 1 =" in order to complete
the proof. O

CoroLLARY 4.27. Let L be a positive-definite, even lattice over Z and let | € N. Then
V() maps Sy to S rw.

Proor. If ¢ in S, and has a Fourier expansion of the type

6@ = ), colnelnr +B(r,2),

nez,rel?

n>p(r)
then the above theorem implies that V(/)¢ has the following Fourier expansion:

V(ho(r,z) = Z Z ak_1c¢ (n_l %) e(nt + IB(7, 2)).

a?’
nez,r eL(y* /al(nJ)
n2IB(r')  “eL()*

If n = [B(r") and a satisfies the conditions in the above equation, then Z—ﬁ =0 (%) and

therefore c, (Z—zl %) = 0, since ¢ is a cusp form. It follows that V(o)¢ is also a cusp

form. =

We will show that the V() operators preserve Eisenstein series in the following
sections.

The level of L(/) is equal to /lev(L) and its determinant is equal to I det(L). It
follows that V(I) also raises the level of the index of Jacobi forms that it is applied to.

RemMark 4.28. Jacobi forms of lattice index can be obtained as the Fourier—Jacobi
coeflicients of orthogonal modular forms. Orthogonal modular forms have many ap-
plications in algebraic geometry. For example, they can be the automorphic discrimi-
nants of moduli spaces [[GN98], which allows for the construction of modular varieties
[Gril8]. The operators V(-) were constructed in [Gri94] as the images of the elliptic
Hecke operators (I1.7) under a certain homomorphism, using the embedding of spaces
of Jacobi forms into spaces of orthogonal modular forms.
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Given a positive-definite, even lattice L = (L,[) and a positive integer /, the lattice
L(1/]) is even if and only if / | gcd(G) and %G has even diagonal entries, where G is
any Gram matrix of 8 (note that change of basis preserves the greatest common divisor
of the Gram matrix). When that is the case, we say that / divides 8 and write / | 8. For
example, when rk(L) = 1, we have L = L, for some m in N and L(1/]) is even if and
only if / | m.

DeriniTION 4.29 (Oldforms with respect to V(-) operators). Let L be a positive-
definite, even lattice over Z. For every positive integer / | S which is greater than
one and every ¢ in Jy 111, the Jacobi form V (/)¢ is an oldform in J; ;. Define the space
of oldfroms of weight k and index L with respect to the V(-) operators as

1d,V .
Y= 3 Vkwap-
L .
>1

ExampLE 4.30. We remind the reader of definition (I.24) of the scalar Eisenstein
series. Theorem 4.3 in [EZ8S] states that, if m is a square-free, positive integer, then

Vim)Ey 1, 0 = or-1(mEy 1, 0,
in other words Ey 1, o is an oldform.

ExampLE 4.31. The root lattice D; has Gram matrix equal to 2 with respect to the
standard basis element of Z. For n > 1, a Z-basis of D, is given by the set

lex—er,es—es,....e,— e, 1,1 + €2}

The Gram matrix of the Euclidean bilinear form with respect to this basis is equal to
(39) whenn = 2 and to

2 -1 0 ... 0 O
-1 2 -1 ... 0 -1
0O -1 0 ... 0 2

when n > 2. It follows that there are no oldforms with respect to the V(-) operators
in the spaces Jy p,, for every n > 2 and k > 5. We have also seen in Example
that there are no oldforms with respect to isometries in the spaces J; p, when n is odd.
Nonetheless, Table [3;1'] illustrates that there are Jacobi forms in the spaces Jg p,, Ji0.0,,
J10.05» J12.0,> J12.05 and J12 p, which might lift to old elliptic modular forms.

4.3. Properties

We establish the commutative properties of U(-) and V(-) and their combined action
on Eisenstein series.

Lemma 4.32. Let L = (L,f) be a positive-definite, even lattice over Z and suppose
that I and J are two isotropic subgroups of Dy. Then I + J is an isotropic subgroup of
Dy if and only if (I, J) = 0 and, when this is the case,

U)oU) =UU)oUWJ)=U+J).
Proor. Every element x in / + J can be written as x = r + s with  in / and s in J.
It follows that B(x) = B(r) + B(s) + B(r, s) = B(r, s) and therefore I + J is an isotropic

subgroup of D, if and only if B(r, s) = O for every r in I and s in J. Furthermore, the
following inclusions hold when S(Z, J) = O:

L — Ll - £1+J

Lo L= Ly,
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Since the U(-) operators are inclusion maps, the result follows. O

Lemma 4.33. Let L = (L,pB) be a positive-definite, even lattice over Z and suppose
that I is an isotropic subgroup of Dy. Then I is also an isotropic subgroup of Dy, for
every |l in N and

V(D)o U) = U)o V(I).

Proor. We have S(I) = 0 = [B(I) = 0 and hence [ is an isotropic subgroup of
D 5. Since U(I) acts as an inclusion map, the result follows. m|

Lemma 4.34. For every land l' in N, the following holds:

(4.5) Vo Vg = ) d'U)o V(ll )¢.

di(Ll’)

Proor. Analyse the Fourier expansions of both sides of the above equation. Equa-
tion (4.3) implies that the Fourier coefficient of e(nt + B(r,z)) on the left-hand side of

(4.5) is equal to

w lr nll ll’
4.6 pl k-1 n el N(e)ekLe =1,
(4.6) % Z“C¢a2bz Z()
iei# al(!%’l,)
Lelt
where N(e) is equal to the number of ways of writing e = ab with the conditions in the
sums. In order to make these conditions precise, write

4.7 n =t;b,
4.8) [ =t:b,
nl
4.9) ﬁ =fit, = a and
(4.10) I =t4a,

with 11, 1, 13 and #, in N. Equation (4.10) implies that

Lie 'b
he=1lb = .
* o) e
But ( 7o (1};)) = 1 and therefore (,— | t,. This implies that b = (1,66)6 with § =

ts(I',e)/l'. Since b | e,b | nand b | [, it follows that ¢ divides e, n and [ as well. Since
divides t4, it also divides /. Equation (4.9) implies that

nl nl b tab

2=

e b a a ’
and hence 6 | (nl/e). Combining equations and (4.10), we obtain that nl’ /e = 114
and thus & | (nl’/e). Combining equations (4.8)) and (4.10), we obtain that II'/e = t,t4
and therefore 6 | (Il'/e). Finally, equations (4.9) and (.10) imply that nll’'/e* = t3t4a
and hence 6 | (nll’/e*). We obtain that

[ nl I nll
(4.11) 5|(n,l,1’,e,”,—" Lz )
e

e’ e’ e

In the converse direction, we want to show that the conditions in the above equation
imply the conditions in the sums in (#.6)). Suppose that e | (nl, nl’, I, that €* | nll’ and
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that ¢ satisfies (#.1T)). Write

n=s0, [ =550,
I =530, e =840,
5182 nl’ 5153
1 =556 = 6—, — =560 = 06—,
¢ S4 e S4
nll’ 515283

’ 5283
I —§s; = 6—== and
e
S4

—(5S8 =0

2
S4

Setb := g6 anda = | = (l,ﬁ. It follows that a = (9s3,054)/0 = (s3,54) and,
in particular, that @ | I’. To show that b | n, we need to show that -~ (z' | s1. But
e/(l',e) = s4/(s3,54) and sls3/s4 = §¢ 1S an 1nteger which 1mphes that % € Z.
Since (—

(53,54)° (53, Y4))
b | I, we need to show that

| $3. S1nce szs3/s4 =57

(1' | s, or, equlvalently, that
5253/(53,54)
54/(83,54)

we need to show that a | 1’7'—2’. We have

(s V)
is an integer, it follows that

n_l 5152 _ 5152(53,54)2 _ 55(83, 54)
b2 ez/(€9 l/)z Si S4/(S3a S4)

. We know that

and a = (53, 54). Thus, we need to show tha

S18283 8583 S5S3/(S3,S4)

Si 54 s4/(83, S4)

§g =

Since ( 5—4)

(53, S4) (53,54)

(
N(e) = # {(5 (5|(nll’ nl ﬂ,l’"”)},
e

e e e

with the added condition that £ € L*.
On the other hand, the coefficient of e(nt + 8(r, 7)) on the right-hand side of {.3) is

equal to
_ Wn W'r 'n ll'r
> 5 ot ) = Do (1 1),

diLl) al(n W )

"2

r #
a€L

where N’(e) is equal to the number of ways of writing e = ad with the conditions in the
sums. Following the same argument as above, write

[ =tsd, ' =ted,
i
n =t;a and E =I5l¢ = Iga.

Write d = @5 with 6 = t;(n, ¢)/e and obtain that § divides e, [, !’ and n. Furthermore,
we have Il' /e = tsd, In/e = tst7, I'nje = tet; and ll'n/e* = tst;. It follows that N’(e) =
N(e) and the proof is complete. O

CoroLLary 4.35. If ¢ € Jp and (I,1) = 1, then
V(') o V(De = V).
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THEOREM 4.36. The operators U(-) and V(-) commute with Hecke operators. In other
words, let L = (L, B) be a positive-definite, even lattice over Z and let I be an isotropic
subgroup of Dy. If ¢ € Jyp, and 1 € Ny NNy, then

(1) T(Hho Uy =U)oT().
Ifpe i, L€ Npandl € N such that (I,I') = 1, then
(i) T(o V(I =V(I')oT()e.

Proor. Since Hecke operators are defined by different formulas for even and odd
rank lattices, respectively, consider the case where rk(L) is odd for their commutativity
with U(-) and the case where rk(L) is even for their commutativity with V(-). The
remaining two cases can be treated analogously.

(1) We remind the reader of the action of Hecke operators on the Fourier coefficients
of a Jacobi form of odd rank lattice index, as stated in Theorem if ¢ has Fourier
expansion
b= Y. CoD,Ne((B(r) - Dyt +B(r,2),

(D,r)esupp(L;)

then
T2 = Y CrouD,Ne(B(r) = D)t +B(r,2),
(D,r)esupp(L;)

where
2

_ k=152 1-1 ! '
Crap(D,r) = Z a2 ,uLI(D,a)C(,)(;D,la r)

all?
a?|2lev(L,)D

and a’ is an integer such that aa’ = 1 mod lev(L,). Furthermore, Theorem [4.3] implies
that
UD¢(t,2) = Z Co(D, )e((B(r') — D)t + B(r', 2)).

(D,r")esupp(L)
v EL’;

The Fourier expansion of T(l) o U(I)¢ is

(L) I
T()o UDp(t,2) = Z Z a1 (D, a)C¢(—2D, la’r')
(D,r")esupp(L) all? a
a®|2lev(L)D,la'r €L}

X e((B(r') — D)yt + B(r', 2)),

where a’ is an integer such that aa’ = 1 mod lev(L). On the other hand,

k@) I2 .,
UDoTerm= > > AT, DA, (ED, 1A r)
(D,r")esupp(L) A2
relt  AYPlev(L)D

X e((B(r") — D)t + B(r', 2)),

where A’ is an integer such that AA” = 1 mod lev(L,).

Compare conditions in the summations first. Since lev(L,) | lev(L) and / € N, N N,
if a divides 2, then a* | *lev(L)D if and only if a* | I*1ev(L,)D. Furthermore, clearly
r e L = A" € Lj. Conversely, since | € N, and AA’ = 1 mod lev(L,), we
have [A’r = r* for some 7" in L’f. This is equivalent to the fact that r’ = I"Yar* mod L,
where [”! denotes the inverse of / modulo lev(L,). Hence, i’ € L <= IA’r’ € L and
therefore the conditions in the summations are equivalent to one another.
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We remind the reader that
xi(B.4). if lev(L)D,A) = f2 for some f in N and

D A _ f29 f2
Hul )= {O, otherwise.

and that

(P 3) = ATP
Since A | I* and [ € Ny NN , if follows that
(Iev(L)D,A) = (lev(L;)D, A).

D A) ((D/fz)( 1)l JZdet(L))

We have
D A DI 2 dert) D
XL, (72’ 72) - ( Alf? =XL (fz, fz)
since ;;I(%)) is a square by Lemma 4.8| and it is coprime to A as a result of Remark
=1

Last, but not least, if a’ is an integer such that aa’ = 1 mod lev(L) and A’ is an
integer such that aA” = 1 mod (lev(L,)), then it is straight-forward to show that a’ =
A’ + mlev(L,) for some integer m. It follows from Remark- 1.8|that la’r’ = [A’r mod L;

and hence
? ?
C¢( —D,ld'r ) C¢( —D,IA’ ’)

(i1) We remind the reader of the action of Hecke operators on the Fourier coefficients
of a Jacobi form of even rank lattice index, as stated in Theorem 3.6} if ¢ has Fourier
expansion

s = > Cy(D,r)e((B(r) - Dyt +B(r,2)),

(D,r)esupp(L)
then
T(O¢(t,2) = Z Crap(D, r)e((B(r) — D)t + B(r, 2)),
(D,r)esupp(L)
where

2

CrapD.0N = Y &% y@C, (l D,ld r)
al?,lev(L)D
and a’ is an integer such that aa’ = 1 mod lev(L). Furthermore, Theorem [4.26] implies
that
VIP(r.2) = ! ¢(—(lﬁ o ,l—r)
(D,r")esupp(L(I)) al(l’é’(r’)—D)J’ “ 4
CeL()t

xe((I'B(r)—-D)yr+1'B(r,z))
= ) D, IC¢(DZ l'—') ((I'B(F) - Dyt + (', 2)),

(D,r")esupp(L() al(I' B(r')=D).I'
ZeL('y

where Cy(D, r) = c4(I'B(r) — D, r), as usual. The Fourier expansion of T (/) o V(I')¢ is
rk(L)
T V= ) D, PR d e ®)

(D,r")esupp(L(I")) b|2,I" lev(L)D allz(b’zl’ﬁ(r’)—b%),l'
Wl epryt

DU 'y
¢ b2a2’

)e((l’ﬁ(r’) - D)t +IB(r', 2)),
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where b’ is an integer such that bb” = 1 mod lev(L(/")). On the other hand,

V(') o Td = A B< (B
(I) o T(D¢(.2) = XL(B)
(D.r")esupp(L(")) Al(I'B(r")-D),lI BI lev(L)D
seL(t

PDI' IBl'Y
xc¢(32 Az,—) ((IBG) = Dyt + IB(r.2)).

where B’ is an integer such that BB’ = 1 mod lev(L).
Compare conditions in the summations first. Since b and B divide Pand (') =1,
they parametrize the same sets. Since (1,/') = 1,if b | I and a | I, then

D
a|l2(b/zl,8( )——) = all (b’zl,B( - )
= a (bb'zl’ﬁ(r’)— 3) = al(b*p"°IB() - D).
A similar argument as in (i) implies that ¥ € AL(I?)* < IBv € AL(')* and

therefore the conditions in the summations are equivalent to one another.
We remind the reader that

I@d L
_ 2 £

and that

(- 1) l‘kUdet(L)
Xy (B) = ( 2 )

k(L)

Since rk(L) is even, it follows that (l 3 ) = 1 and therefore equality holds between the
two above quantities. As before, if b’ is an integer such that b’ = 1 mod lev(L(/")) and
B’ is an integer such that bB’ = 1 mod (lev(L)), then

Dl Ulb'v 3 2Dl IB'l'Y
\ b2’ TN\ a2 a )

completing the proof. O

THEOREM 4.37. Let L be a positive-definite, even lattice over Z and let I be an
isotropic subgroup of Dy. If ¢ € Ji1, and s is an element of O(Dr) N O(Dy,), then

(1) UMD (W () = (UDg)W(s).
If p € Jir, | € Nand s is an element of O(Dy;)) N O(Dy), then
(i1) V(ID(gW(s) = (V(ID)W(s).

Proor. (i) We remind the reader that Lf/ L; is a subgroup of L*/L. Since U(I) is an
inclusion map of Jiz, into Ji 1, the result follows.

(ii) Let s be an element of O(Dy;) N O(D.). Equations(3.12) and (4.3) imply that

VW)@ =V Y cotn stren + 5

nez,rel*

n2f(r)

- Z Z ak_lc¢ (Z—i, s (%)) e(nt + IB(r', 2))

neZ,r’eL(h* al(n.D)
n2l(r") eL(z)#



4.3. PROPERTIES 125

and that

[ Ir
vooweEa = Y, (> a"‘lcqs(%,%))e(mﬂﬁ(r',z)))W(S)
neZ,eL(y*  al(n,l)
nzIB(r)  CeLt

nl 1
= Z Z d e, (—2, —s(r’)) e(nt + I8(r', 2))
a’’ a
neZ,r eL()* al(nl)
nzIB(r’)  Ceryt
and equality holds between these two expressions. O
Finally, we study the action of U(-) and V(-) on Eisenstein series.

ProrosiTioN 4.38. Let L = (L, B) be a positive-definite, even lattice over Z and let 1
be an isotropic subgroup of Dy. For every r in Iso(Dy, ), the following holds:

4.12) UDE,= Y. Eipe

Proor. Since Jacobi Eisenstein series are uniquely determined by their singular term
(2.17) and since the theta series {¢},, : r € Iso(D,)} are linearly independent as functions
of z, it suffices to prove that equality holds in (4.12) for the singular terms. For every s
in Lf/ L such that s = r mod L,;, we have B(s) = B(r+1) € Z for some A in L;. Therefore,
the right-hand side is well-defined and its singular term is equal to

1
> 5P+ D).
sel*/L
Eremlod L;

The singular term of the left-hand side is equal to

1
5 (91,0 + (=D, (7.2))

and Lemma @4.20| implies that equality holds between the two singular terms. O

Hence, the operators U(-) map Eisenstein series to Eisenstein series (in addition to
preserving cusp forms). Conversely, given a positive-definite, even lattice L, we want do
determine which Eisenstein series are oldforms with respect to isometries (i.e. coming
from overlattices of L). We remind the reader of Definition [I.31] of twisted Eisenstein
series. Let x € Zj, and & be a primitive Dirichlet character modulo F with F | N,.
Then

Eppxe = Z E(A)Ey gy

X
deZ(NX)

Write N, = NNy with Ny = [],r p™. For every divisor f of Nj, set x; := fFx.
Then (x;) is an isotropic subgroup of Dy, of order N,, = NoN;/fF and I_JW> = (Lxpy»B)
is a positive-definite, even overlattice of L.

For every isotropic element 7 in L?x_,»/ L, Proposition implies that

UG DEer, = ), Eivs

Every s in the above summation can be written as s = r + y for some y in L, and,
since s € L /L, it follows that y € L(y,/L. Since A # p in L.,/L if and only if

(x
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A—p € L+dxy for some d in Z(Nxf), a set of coset representatives for this quotient group
is given by {dx; : d € Z(Nxf)}. It follows that

(4.13) UK )Ees, r= D, Exsrsay

dEZ(NXf)

and note that N,, = N,/fF. The following result was proved in [Sch18] for vector-
valued modular forms:

THEOREM 4.39. If € is a primitive Dirichlet character modulo F for some F | N,
such that F # N, then Ey 1 ¢ is an oldfrom. More precisely, we have

Eir.ee(t,2) = END) D DU Er, gueT 2).
1IN} ‘

Proor. Since Ny and N are coprime, every element d in ZZ(NX) can be written as
d = mNy + nNj, with m running through Z(XN(,)) and n running through Z, ; as d runs
through Z ,. Since F | Ny and they share the same set of prime divisors, it follows
that n can be written as n = a + bF, with a running through Z(XF) and b running through

Zyyr) as n runs through Zg, . It follows that

Evpre = Z Z Z E(mNo + (a + DF)NQ)E L (nNo+(a+bF)Nx.é

mEZE;V(,)) aEZfF) bEZ(NO/F)

=£(N) Z &(a) Z Z B LnNo+@+bFINxg-

an(XF) bEZ(Ny/F) meZ(XN(,))

Remove the coprimality conditions between m and N/ using (I.4). Set f = (m,N)) in
the above equation and obtain that

Epce =E(N) Z &(a) Z Zﬂ(f ) Z E L (feNo+(a+bF)Ny)x.g

L) beZay/F) fIN e<Zy 11
’
=) D () Y E@ DY Ervienrenny pasanye-
FING an(XF) bEZy/F) EEZ(N(') H

The expression eNo/F + DN/ f runs through NoN)/fF = N,, as b runs through Zy,r
and e runs through Z(Né /p)- Since x € Iso(Dy), we have B(Nx, L)) € Z and B(Nyx) € Z.

I;[l follows that Njx is an isotropic element of order F in L?x,) /Lix,y and (@.13) implies
that

Eipwe =END) D 1) Y €@ Y Errasyanyee

leé aEZfF) dEZ(NXf)
=ENG) ) k() ) E@UUErs, anye
fING anfNN, )
;

=£(Ng) D (DU Ees

=(xf) ’N(,) x&
’
Iy

as claimed. |
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ProposiTioN 4.40. Let L = (L, B) be a positive-definite, even lattice over Z. For every
rinlso(Dy) and every lin N, the following holds:

(4.14) VIDEyL, = Z Z dEp L s
s€lso(Drpy) al(B(s).)
rz% mod L

Proor. As was the case in the proof of Proposition [4.38] it suffices to prove that
equality holds for the singular terms. The singular term of the right-hand side of (4.14))

is equal to
<!

> 2 5 B+ D).
SEISO(DL(I)) al(lﬁ(y) l)
r=LS mod L
The Fourier expansion of the left-hand side is

¢ Gry, (’; bt lx) e (IB(X) - D)7+ IA(x,2))

(D,x)esupp(L(D) al(iB(x)=D,1)
LerLy*

and therefore its singular terms is equal to

> > “Gku( )e(lﬁ(x)r+lﬂ<xz))

xeL()* al(B(x),D)
IBx)eZ LeL(ly*

- Z Z “GkL,(o l:) Z e (BT + IB(x,2)) .

seL(y* /L aliB(s),D) xeL(y*
IB()EZ  LeL()* x=smod L

For every r and s in L*, define

5,01, 5) 1, ifr = s mod L and
r,s) =
L 0, otherwise.

We remind the reader that

GiLr (0, l—s) ! ((5L (r l—) + (=D, (—r l_s))
= a 2 a

Note that, 1f s = rmod L or l—s = —r mod L, then ﬁ € L(D)*. Thus, the singular term of
the left-hand side of #@.14) is equal to

1)t [
Z > klcsL(r —)ﬂL<z>s(Tz)+(2) > D] “c&(—r —S)ﬁL(l)s(TZ)

seL(l)# /L aliB(s),D) seL(y* /L aliB(s),D)
IB(s)ez IB(s)eZ
1 ls

= Z Z oL\r—|3 (ﬁL(z)s(T 2+ (=1 (T, Z))

seL(y* /L al(B(s),D)

IB(s)eZ

after substituting s := —s in the second line. Hence, equality holds between the two
singular terms. O

In particular, Propositions [4.38and [4.40] imply that
Ul : J,Ei,f — Ji} and
OB

They can be combined into the followmg result.
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ProrosiTioN 4.41. Let L = (L, B) be a positive-definite, even lattice over Z and let 1
be an isotropic subgroup of Dy. For every r in Iso(Dy,) and every l in N, the following
holds:

(4.15) Vo UDE, = Y, >, d'Euo
)CEISO(DL(I)) al(iB(x),)
rE% mod L;

Proor. Equations (4.12)) and (4.14) imply that

VW o UDE,, = >, VDEyw.= > > > d " Eyp.

seLt/L sel/L  x€lso(Drqy) al(B(x).D)
s=r mod Ly s=rmod Ly SE% mod L
k-1 Ix
S D RS S
XEISO(DL(I)) al(iB(x),l) SEL?/L
s=r mod L;

The inner sum contains at most one non-trivial term. Suppose that x in Iso(Dy;) and a |
(I6(x), 1) are fixed. If there exists an s in L?/ L such that s = r mod L; and ’Ex = smod L,
then

l—xzsmodL = %x:s+,uf0rsomeuinL
= %x:r+/lforsome/linL1 = %ErmOdLl-
On the other hand,
%ErmodL, - %x:r+/lf0rsome/linL1
= %x:r+y+,uforsomeyinlandsome,uinL
= %EsmodL

for some s in Lj* /L such that s = r mod L + I. In other words, there exists an s in Lf /L
such that s = r mod L; and l;x = s mod L if and only if % = r mod L. It follows that

Ix Ix
Z 6L S, — | = 614 r, —
a a

seL¥/L
s=r mod L;

and we obtain the desired result. ]

CoroLLARY 4.42. Let L = (L,8) be a positive-definite, even lattice over Z and let 1
be an isotropic subgroup of Dy. For every l in N, the following holds:

(4.16) Vo UDE,0= ), D, @ Ewon

xe(Y L)/ UG
Bez Ze

Proor. When r = 0 in Proposition #.41] the right-hand side of (4.15)) vanishes iden-
tically unless /x € L;. The following equalities hold:

(xe LO*/L:Ilxe L)} ={[x]: x € %LI and [x] = [s] & x-s€l}= (%L,) /L.

The result follows immediately from Proposition{4.41 O
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ReMARK 4.43. Assume that k is odd. Then E;; o = 0 and, for every x in (%L,) /L

such that IB(x) € Z, —x satisfies the same condition. Since Ej ¢ = (—l)kEk,é(,),_x for
every x in L(l)*, it follows that both sides of (.16)) vanish.

The above corollary leads to the following generalization of (13) from [EZ8S, §1.4]:

lk 1 l_[ 1 +p_(k 1 Z/J(d)v(dz)o U(d)EkLO

a2\l

4.17
i =t l—[ 1+ p~&D Z“(d) Z Z Ek.L(l),x~
2|l xe(4 L)/Lal(lﬁ(x) n )

IB(x)eZ
dZEL

The unintuitive normalizing factor on the left-hand side of was chosen because,
when k is even, the coeflicient corresponding to Ej 1) on the right-hand side of this
equation is equal to one. We include the proof of this claim When x € L, IB(x) is an
integer multiple of d—lz and l € L for every divisor a of > and therefore the coefficient

of Ei 10 18 equal to
k-1
Je=1 1_[ 1+ p~&D Zﬂ(d)z

d2|l ll| 1

[
F() = 55 ]_[ 50 M@ l(dz)

22|l
We show, by induction on the number of primes dividing /, that F(/) = 1 for every
positive integer /. This clearly holds when / = 1. Assume that [ = p* for some prime
number p and some « > 1. If k = 1, then

1 1

Define

If k > 1, then every divisor d of p* is of the form d = p* for some 0 < a < « and
u(d) = 0 for a > 1. Therefore,

K 1 1 K Kk—2
F(P) =5 X T35 (11 (P) = Tt (P°7D)

(k+1)(k-1) (k-1)(k-1)

1 —
= x 2 P = 1.

=D 4 pe=Dk=1) P11
In the induction step, assume that F(I) = 1 whenever [ is the product of ¢ distinct
primes, say [ = [],,; p}' for some fixed number of primes 7, and show that this implies
that F(Ip*) = 1, for every p # p; foreveryiin {1,...,¢} and every k > 0. If k = 1, then

d’ | Ip* <= d*|[and hence

1 1 1 Ip
F(lp) = X T+ p&D X lk_—ll_lWZ'u(d)o-k 1(d2)

pill P, 2|l

1 1 [
= X Zk—_I]—IWZMdm 1(d2)0'k 1(p) =1,

pill p; 2|l

where we have used the fact that the divisor sum is multiplicative and that (p, d_IZ) =1

for every d* | L. If k > 1, then the set of square divisors d’> of [p* that satisfy u(d’) # 0 is
equal to the union of the set of square divisors d* of [ that satisfy u(d) # 0 with the set
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of square divisors of the form p?d?, with d in the former set. Note that u(pd) = —u(d)
for such d. Hence,

K 1 lpK
Fp) =G5 | — > udoy 1( dz)

pilp*) D 2lip*

1 1 1 Ip“ Ip*
:pK(k—l) X 1 " p—(k—l) X lk_—l l—[ 1 N p_(k D Zﬂ(d) (O-k l(dz) Oj-1 (pzdz))

pill i a2\l

1 1 1
:pK(k—l) + p(K—l)(k—l) X lk__l 11:”[ 1+ p —(k—=1)

[
X Zﬂ(d)O'k 1(d2)(0'/< 1 (P) = o (P 2)) F(p)F() =1
a2l
and the proof is complete. We include the proof of [EZ8S5, §1.4, (13)], since it is not

given explicitly in the cited text:

Lemma 4.44. For every | in N, the following holds:

=1 1_[ 1+ pGD Z“(d)v( )O U(d)Ey,0 = Eir,0-

a2l

Proor. Take L = L, in (#.17). Then the right-hand side of this equation is equal to

lkll—[1+ o D) ), ) T By

a2\l XGZ(I) |(T 7)
d:
eZ

’C
ez

Write [ as [ = bc?, with b square-free. The condition that d? | [ is equivalent to d | c,
the condition that [ | x* is equivalent to x = bcs for some s € Z, and it follows that the
above expression is equal to

lkll—[1+ —(kl)Z“(d)Z Z L

dic SE€Z(c) alb(v
bcveZ
Note that bcs can be written as
2 d
bcs = b(s, E) sz,
d/ (s,c/d)

in other words the condition that bc; € Z is superfluous. Thus, the right-hand side of
(4.17) is equal to

lkll_[1+ —(k— I)Zﬂ(d)zo-kl( ( ))EkL[
SEZ(()
The term corresponding to s = 0 in the above equation is equal to
lk 1 rl 1+ —(k=1) Z,U(d)O'k l( )EkL 0
2|l

and the above discussion implies that this expression is equal to Ey 0. When ¢ = 1 (i.e.
when [ is square-free), this term is the only one which arises. We claim that, for every
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¢ > 1, every s € Z, \ 0 and every square-free b, the following holds:

Zu(d)akl(( )2) 0

Let ¢ = []i., p}" be the prime decomposition of c and let s = ], p¥ || q?’ be that

of s (with at least one b; > 0 for some i in {1,...,r}). Then
Z,u(d)o-k 1( ( ) ) Z ( el 1[ HpmmZb 2a;-2¢;) ]
de N 70T e,

Since s < c, there exists some some j in {1, ..., t} such that b; < a;. For every such j,
we have min{2b;, 2a; — 2c;} = 2b; and therefore

1

Z (_1)#{0,-:60 ( l_[ pmm (2b;,2a;- Zc,]

ClyennnCr=0
t
_ Z Z ( | yHersOsell il 1(bp2b’ 1—[ b 2a- zc,)
J i
c;j=0cy,....c;= i=1
i#j i#]
Z (=)0t o 1(bp2b l—[ pmin{Zb;,Za,-—zc,-})
i
ClyeennCr=0 i=1
i#j i#]
t
§ 2b~| | in{2b: 2a:-2c¢:
( 1) c,#OL#/ ( pj J pr;nn{ 0,20 c,}):O’
----- i=1
t;&j i#]

as claimed. Thus, we obtain that

1 1 [
lk__] l—[ 1+ p_(k_l) Z:u(d)v(dz) ° U(d)EkL 0 = EkL ,0
pll

2|l
for every /in N. O
When L = L for some m in N, the right-hand side of (4.17) is equal to

lk1ﬂ1+ —<k1)Z'“(d)Z 2. 7B

dzll XEZ([) |(mX
ma2 g2
M€z Lez,

For every [ in N which is coprime to m, calculations similar to those carried out in the
proof of Lemma M imply that

1 !
= nmzﬂ(d)v(dz)oU(d)EkL 0=Err o

2l
If (I, m) > 1, then the previous simplifications no longer hold.






APPENDIX A

Tables of Fourier coefficients

This chapter contains the tables used in Section The code which generates
them is available at https://github.com/andreeamocanu/eigenvalues-Dn. The
difficulty of computing the Fourier coefficients (and implicitly the Hecke eigenvalues)
decreases as the rank of the lattice increases, since the Fourier coefficients of Jacobi
forms of index D, (n = 1,3,5 and 7) are linear functions of representation numbers of
quadratic forms in 8 — n variables. It also increases with the weight for fixed n.

We remind the reader that

D'/D, = {o, e, &

+ote, et te, —en}
2 ’ 2
for every n in N, where {e;}; denotes the standard basis of Z", and

2
Dp, = (Z/4Z, re % mod Z)

when n is odd. Set r{ := 0, r} :=¢,, r} 1= 5= and r} := 4==2==% for every n in

{1,3,5,7}. Then —r; = r} in D¥/D, and Proposition implies that

—C4(D,r}), if ¢ € Jypy1,p, and
C¢(D, rg’), if ¢ € JZk,D,l
for every D in Q< such that (D, r}) € supp(D,). This can also be seen by inspecting the

formulas for the Fourier coefficients of E, p, and ¢,_,,p, obtained in Subsection [3.3.1]
Furthermore, equation (3.21)) implies that

Cy(D,7}) = Cy(E,15) =0
for every ¢ in Jy.1 p, and every (D, ') and (E, r)) in supp(D,,).
In this chapter, we list the Fourier coefficients Cy(D, r’}) of some of the Jacobi forms

¢ in Ji p,, for the first 100 values of D such that (D, r’}) € supp(D,) for every j, plus the
Fourier coefficients which needed to compute their Hecke eigenvalues in Section[3.3]

C¢(D, I”Z) = {

Table A.1: Fourier coefficients of 11y p,

D C”l/’s,Dl(D’ rll) D Cll'ﬂs,DI(D’ I"é) D C”l//&Dl(D’ I’é)
-1 864 -1/2 144 -7/8 -1152
-2 -9216 -3/2 0 -15/8 10368
-3 36288 -5/2 -12096 -23/8 -24192
-4 -55296 -7/2 73728 -31/8 -48384
-5 4032 -9/2 -159408 -39/8 279936
-6 0 -11/2 0 -47/8 -145152
-7 114048 -13/2 536256 -55/8 -975744
-8 589824 -15/2 -663552 -63/8 1275264
-9 -2216160 -17/2 -24192 -71/8 1247616
-10 774144 -19/2 0 -79/8 -2158848
-11 3985344 -21/2 279936 -87/8 -653184
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-12
-13
-14
-15
-16
-17
-18
-19
-20
-21
-22
-23
-24
-25
-26
-27
-28
-29
-30
-31
-32
-33
-34
-35
-36
-37
-38
-39
-40
-41
-42
-43

45
-46

-48
-49
-50
-51
-52
-53
-54
-55
-56
-57
-58
-59
-60

A. TABLES OF FOURIER COEFFICIENTS

-2322432
-2987712
-4718592
11477376
3538944
-15474816
10202112
-2987712
-258048
-9880704
0
25292160
0
16947360
-34320384
-66624768
-7299072
124655040
42467328
-48432384
-37748736
-43110144
1548288
-105303168
141834240
97516224
0
-83161728
-49545216
54294912
-17915904
103322304
-255062016
-4463424
-99090432
396184320
148635648
-272836512
107228160
88739712
191213568
-932001984
0
76374144
301989888
194856192
293400576
734287680
-734552064

23)2
25/2
272
29/2
312
-33/2
-35/2
372
-39/2
41/2
_43)2
45)2
47)2
_49)2
512
53)2
-55/2
572
-59/2
61/2
-63/2
-65/2
67)2
-69/2
712
73)2
75/2
77)2
-79/2
81/2
-83/2
-85/2
872
-89/2
912
93/2
95/2
972
-99/2
-101/2
-103/2
-105/2
-107/2
-109/2
1112
113/2
-115/2
117/2
119/2

1548288
-1675440
0
-4584384
3096576
8781696
0
-5974848
-17915904
9144576
0
31026240
9289728
-45472752
0
-34098624
62447616
-12037248
0
47863872
-81616896
52026624
0
-24240384
-79847424
22458240
0
74739456
138166272
63090576
0
-501512832
41803776
-5975424
0
519841152
86040576
-100920960
0
-287872704
-186310656
-312139008
0
988835904
-376233984
146375424
0
-593635392
202162176

-95/8
-103/8
111/8
119/8
“127/8
-135/8
-143/8
-151/8
~159/8
-167/8
-175/8
~183/8
-191/8
-199/8
-207/8
215/8
223/8
231/8
-239/8
247/8
-255/8
-263/8
271/8
279/8
-287/8
-295/8
-303/8
311/8
-319/8
-327/8
-335/8
-343/8
-351/8
-359/8
-367/8
-375/8
-383/8
-391/8
-399/8
-407/8
_415/8
-423/8
-431/8
~439/8
_447/8
-455/8
-463/8
471/8
~479/8

-1344384
2911104
5878656
-3158784
-2165760
-19035648
3459456
40606848
-10088064
-3459456
-22596480
-31632768
31608576
-5056128
62052480
-11200896
-41448960
81430272
-113073408
-94753152
31352832
107063424
89687808
53561088
46365696
-191509632
-167225472
-121129344
178003584
-37231488
201930624
499313664
-513962496
-15389568
23466240
41368320
-201712896
-488017152
350479872
-197797248
616321152
372314880
20659968
-164336256
53198208
309768192
-1680346368
-497446272
78769152




-61
-62
-63
-64
-65
-66
-67
-68
-69
-70
-71
=72
-73
-74
=75
-76
=77
-78
-79
-80
-81
-82
-83
-84
-85
-86
-87
-88
-89
-90
91
-92
-93
-94
-95
-96
-97
-98
-99
-100
-121
-169
-225
-289
-361
-441
-529
-625

A. TABLES OF FOURIER COEFFICIENTS

-245802816
-198180864
-292533120
-226492416
308297088
-562028544
215383104
990388224
1187488512
0
-1358822016
-652935168
145926144
382390272
-422210880
191213568
-710620416
1146617856
-1261018368
16515072
2691374688
-585252864
-1886472000
632365056
1911192192
0
-1212962688
0
-1369734912
-1985679360
1515411072
-1618698240
156981888
-594542592
7939228032
0
-1462962816
2910256128
-4411775808
-1084631040
-131145696
-5228631648
-43469978400
31477013856
-250713464544
699825653280
-395764329888
-987067533600

1212
123/2
-125/2
-127/2
-129/2
131)2
-133/2
-135/2
137/2
-139/2
1412
-143/2
-145/2
147/2
-149/2
1512
-153/2
-155/2
157/2
-159/2
-161/2
-163/2
-165/2
-167/2
-169/2
1712
173/2
-175/2
177/2
-179/2
-181/2
-183/2
-185/2
-187/2
-189/2
-191/2
-193/2
-195/2
-197/2
-199/2

488351952
0
-48263040
138608640
-781861248
0
-1234737792
1218281472
381867264
0
1255004928
-221405184
566592768
0
-1590591168
-2598838272
62052480
0
2138052672
645636096
1945631232
0
-745189632
221405184
-2261559600
0
-227199168
1446174720
-3320341632
0
1939105728
2024497152
-104702976
0
-513962496
-2022948864
1335005568
0
1156344768
323592192

-487/8
-495/8
-503/8
-511/8
-519/8
-527/8
-535/8
-543/8
-551/8
-559/8
-567/8
-575/8
-583/8
-591/8
-599/8
-607/8
-615/8
-623/8
-631/8
-639/8
-647/8
-655/8
-663/8
-671/8
-679/8
-687/8
-695/8
-703/8
-711/8
-719/8
-727/8
-735/8
-743/8
-751/8
-759/8
-767/8
-775/8
-783/8
-791/8
-799/8

709031808
1080148608
502879104
87717888
114058368
-130540032
-1230784128
38351232
-789360768
256330368
-504724608
-474526080
1126705536
876935808
845500032
426085632
-1461825792
-233805312
4746234240
-3200135040
-1762701696
-2152621440
-1615396608
2307457152
-2459255040
2897057664
507178368
3809957760
2389844736
724211712
-3018395520
-3274038144
1180158336
-3332448000
474211584
-3678210432
562947840
1199245824
-204360192
2969459712
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A. TABLES OF FOURIER COEFFICIENTS

Table A.2: Fourier coeflicients of ¢ p,

D | Cy,.(D.1)) D [Cy, DD D |Cyp, D13
1 2 12 1 ’5/8 2

2 24 32 12 “13/8 22

3 108 52 56 21/8 -84
4 176 72 112 29/8 66

5 -196 9/2 9 -37/8 398
6 1056 112 364 -45/8 990
7 728 “13/2 616 -53/8 70
8 -1472 _15/2 432 61/8 2354
9 990 17/2 240 -69/8 -1080
“10 2752 “19/2 484 77/8 -1848
‘11 1276 21/2 2352 -85/8 2292
12 9504 23)2 2608 -93/8 3852
13 772 25/2 1705 -101/8 7682
14 9856 272 -3024 -109/8 | -8430
15 1032 29/2 -1848 “117/8 198
‘16 128 312 11168 | -125/8 |  -9660
17 _13576 332 -6480 1338 | -5012
18 216 -35/2 5432 “141/8 | 33048
-19 2620 372 | -11144 || -149/8 994
20 17248 392 | -12720 || -157/)8 |  -6158
21 22680 412 16320 || -165/8 | -36984
22 232032 43)2 5964 1738 | 9126
23 9176 4572 | 27720 || -181/8 | 39558
24 768 472 | -15904 || -189/8 | -21168
25 15910 492 | -33551 || -197/8 | 45206
26 230272 512 | -20520 || -205/8 | 22616
27 27216 -53/2 1960 213/8 | -36504
28 64064 5512 | 26608 || -221/8 | -44224
29 -51348 572 | 65520 || -229/8 | -19626
-30 -38016 -59/2 18244 || -237/8 | -11004
31 231920 612 | -65912 || -245/8 “126
32 84480 -63/2 -1008 253/8 | 121596
33 129568 652 | -111360 || -261/8 | 32670
34 5760 672 | 33468 || -269/8 | 15202
35 20440 -69/2 30240 || -277/8 | -138758
36 -87120 7172 | 45392 || -285/8 | 38016
37 71436 732 | 145200 || -293/8 | -40018
38 42592 752 | 95460 || -301/8 | -292376
-39 41256 772 | 51744 || -309/8 | 258852
-40 -180736 792 | -79968 || -317/8 | 112558
41 51720 8172 | -174879 || -325/8 | 175010
42 115584 832 | -43404 || -333/8 3582
43 -100852 852 | 64176 || -341/8 | -167836
44 112288 872 | 26352 || -349/8 | -53126
45 1764 892 | 267600 || -357/8 | -182952
-46 229504 91/2 | 122584 || -365/8 | 145772




-47
-48
-49
-50
-51
-52
-53
-54
-55
-56
-57
-58
-59
-60
-61
-62
-63
-64
-65
-66
-67
-68
-69
-70
-71
=72
-73
-74
-75
-76
=77
-78
-79
-80
-81
-82
-83
-84
-85
-86
-87
-88
-89
-90
-91
-92
-93
-94
-95

A. TABLES OF FOURIER COEFFICIENTS

48976
6912
-67102
-40920
-133512
-67936
-201612
266112
215864
-7168
56160
-90816
278324
-90816
126588
-982784
-360360
357376
596840
155520
-205100
1194688
-362544
-478016
-202776
-13248
-727696
-547648
184140
230560
344848
1119360
592016
-12544
-104814
-391680
-290756
-1995840
567496
-524832
685176
23296
-301376
1362240
342888
807488
309960
1399552
-2209528

93/2
-95/2
97/2
-99/2
-101/2
-103/2
-105/2
-107/2
-109/2
1112
113/2
“115/2
117/2
119/2
12172
1232
-125/2
127/2
-129/2
131)2
-133/2
1352
137/2
-139/2
141/2
-143/2
-145/2
-147/2
-149/2
1512
-153/2
-155/2
1572
-159/2
1612
-163/2
-165/2
167)2
-169/2
171/2
1732
175/2
177/2
-179/2
~181/2
-183/2
-185/2
-187/2
-189/2

-107856
-41936
-357360
180180
-215096
-66288
272160
23300
236040
342096
-188640
-490760
-5544
-354592
373561
-75816
270480
29440
-422640
473196
140336
108864
-46080
-157980
-925344
217360
428160
-756
-27832
291696
-118800
110320
172424
-565488
-134400
223516
1035552
-382928
-949031
-4356
255528
-890960
2093040
-750228
-1107624
678960
-775200
714296
592704

-373/8
-381/8
-389/8
-397/8
-405/8
-413/8
-421/8
-429/8
-437/8
-445/8
-453/8
-461/8
-469/8
-477/8
-485/8
-493/8
-501/8
-509/8
-517/8
-525/8
-533/8
-541/8
-549/8
-557/8
-565/8
-573/8
-581/8
-589/8
-597/8
-605/8
-613/8
-621/8
-629/8
-637/8
-645/8
-653/8
-661/8
-669/8
-677/8
-685/8
-693/8
-701/8
-709/8
-717/8
-725/8
-733/8
-741/8
-749/8
-757/8

-75082
-183876
-23974
531186
104814
-2996
95318
-323136
-134596
-406232
-160860
107514
536928
-34650
198236
253876
470880
-160070
-866668
-143220
-751788
405790
21186
395014
-786124
1355184
1574580
-1554160
245700
-T47122
573526
-272160
-508820
1386
-1300320
-1053366
1394494
1304484
1062802
1917412
-914760
-921658
-682394
-872208
112530
-131238
-2876328
1793008
64838
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-96
-97
-98
-99
-100
-121
-169
-225
-289
-361
-441
-529
-625
=729
-841
-961
-1089
-1225
-1369
-1521
-1681
-1849
-2025
-2209
-2401

A. TABLES OF FOURIER COEFFICIENTS

-2144256
-399848
805224
11484
-1400080
1391326
-412890
7875450
-16651582
26275038
-33215490
24413858
-20810950
-201788658
297835558
-162944638
688706370
-533796410
-225738714
-204380550
384528482
259765470
-833795370
4916006978
-2831097598

-191/2
-193/2
-195/2
-197/2
-199/2

1157920
-119280
-379728
-1265768
1603536

-765/8
-T773/8
-781/8
-789/8
-797/8

-20628
931542
618572
2421360
-1044646




A. TABLES OF FOURIER COEFFICIENTS

Table A.3: Fourier coeflicients of ¢ p, and 7 p,

D Cuo, (D, 13 D Cuop (D, T3

'5/8 1 3/8 1
-13/8 15 11/8 9
21/8 90 -19/8 27
-29/8 245 27/8 12
-37/8 105 -35/8 90
-45/8 1107 43/8 135
-53/8 2485 51/8 54
-61/8 195 -59/8 99
-69/8 4860 67/8 -189
77/8 22420 75/8 -85
-85/8 -3990 -83/8 657
93/8 -8190 91/8 162
-101/8 19695 -99/8 135
-109/8 13755 -107/8 171
117/8 38475 -115/8 810
-125/8 3990 -123/8 702
~133/8 9750 “131/8 495
_141/8 34020 ~139/8 837
-149/8 43015 -147/8 673
-157/8 -46605 -155/8 900
-165/8 ~13860 -163/8 243
173/8 127385 -171/8 -1053
-181/8 106485 -179/8 297
~189/8 165240 -187/8 1566
-197/8 79275 -195/8 2700
-205/8 -16380 -203/8 1764
213/8 292340 211/8 81
221/8 -35840 219/8 -1188
229/8 151995 227/8 1377
-237/8 188550 -235/8 270
-245/8 315783 243/8 2043
253/8 90090 251/8 3321
261/8 271215 -259/8 756
-269/8 307485 -267/8 3726
277/8 20475 275/8 3015
285/8 -505440 283/8 -4563
-293/8 915385 -291/8 -3348
-301/8 209340 -299/8 504
-309/8 284130 -307/8 351
-317/8 337645 -315/8 -1350
-325/8 294225 -323/8 468
-333/8 269325 -331/8 891
341/8 ~1707970 -339/8 7074
-349/8 -70305 -347/8 1611
-357/8 1297620 -355/8 2700
-365/8 574210 -363/8 2423
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-373/8 492765 -371/8 -1512
-381/8 251370 -379/8 -3267
-389/8 -847245 -387/8 -5265
-397/8 -1102725 -395/8 -1800
-405/8 438129 -403/8 3510
-413/8 -1416190 -411/8 2970
-421/8 641445 -419/8 -6741
-429/8 0 -427/8 8910
-437/8 1537330 -435/8 -1620
-445/8 1239420 -443/8 7227
-453/8 -800370 -451/8 7506
-461/8 1403815 -459/8 -648
-469/8 -472080 -467/8 -13923
-477/8 -2750895 -475/8 -9045
-485/8 -2707950 -483/8 7884
-493/8 -761490 -491/8 -5985
-501/8 952560 -499/8 -2079
-509/8 7162255 -507/8 -815
-517/8 -1869450 -515/8 6930
-525/8 -1047150 -523/8 1107
-533/8 1169350 -531/8 -1485
-541/8 728805 -539/8 12231
-549/8 500175 -547/8 5049
-557/8 -5564055 -555/8 -8100
-565/8 1575990 -563/8 15075
-573/8 -5375160 -571/8 -11205
-581/8 939590 -579/8 -4104
-589/8 1736280 -587/8 -10719
-597/8 4629870 -595/8 -18900
-605/8 151789 -603/8 7371
-613/8 2775045 -611/8 5310
-621/8 8922960 -619/8 7587
-629/8 -9469990 -627/8 -756
-637/8 -4736745 -635/8 6390
-645/8 -408240 -643/8 -11799
-653/8 -2820545 -651/8 16632
-661/8 -7843095 -659/8 4041
-669/8 4410630 -667/8 13500
-677/8 7312455 -675/8 1020
-685/8 4813590 -683/8 9117
-693/8 -2678940 -691/8 -297
-701/8 -1306095 -699/8 -23274
-709/8 4328205 -707/8 -12078
-717/8 4383720 -715/8 9180
-725/8 2850575 -723/8 -4212
-733/8 650415 -731/8 -16236
-741/8 -16312140 -739/8 5535
-749/8 -13250360 -T47/8 9855
-157/8 3613365 -755/8 29700




-765/8
-7173/8
-781/8
-789/8
-797/8
-845/8
-2925/8
-1445/8
-1805/8
-2205/8
-2645/8
-8125/8
-3645/8
-4205/8
-4805/8
-5445/8
-15925/8
-6845/8
-7605/8
-8405/8
-9245/8
-1053/8
-26325/8
-11045/8
-12005/8

-10234350
25950965
-2986830
-126360
14627375
-6051657
-754687125
84706867
290177621
349571781
458060567
17136589125
-960510717
4663815989
2711816609
168030423
-92911253175
-440148993
-6699184299
-54454984999
-65088056133
-46725255
-916515876825
31316662703
39981446849

-763/8
771/8
779/8
-787/8
-795/8
-891/8
-867/8
-1083/8
-539/8
-4851/8
-1587/8
_1875/8
-8019/8
-2523/8
-2883/8
“1331/8
-11979/8
-3675/8
4107/8
-1859/8
-16731/8
-5043/8
-5547/8
22275/8
-6627/8
-7203/8
3179/8
28611/8
-8427/8
9075/8
-3971/8
-35739/8
-10443/8
11163/8
-43659/8
-12675/8
-13467/8
-5819/8
-52371/8
15123/8
-15987/8
-6875/8
-61875/8
-17787/8
~18723/8
“72171/8
-2299/8
-20691/8

A. TABLES OF FOURIER COEFFICIENTS

-3780
-2862
-11034
23463
13500
21303
19619
46799
12231
183465
-80879
-60275
39609
-78181
-197761
9828
147420
57205
109873
-32211
-483165
79763
710255
-7136505
-576479
-139775
-176571
-2648565
-1345141
205955
-297729
-4465935
-2846039
600721
28950777
69275
426767
508905
7633575
1056817
591265
69975
1049625
1630679
4059839
47064969
6453
-251667
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A. TABLES OF FOURIER COEFFICIENTS

Table A.4: Fourier coeflicients of 7yrg p,

D Crys, (D, ) D Crys, (D, r) D Crysp, (D, )
-1 96 -1/2 -48 -3/8 24

-2 -768 -3/2 384 -11/8 -312
-3 1728 -5/2 -960 -19/8 1608
-4 1536 =772 0 -27/8 -3744
-5 -10560 -9/2 3600 -35/8 1680
-6 6144 -11/2 -4992 -43/8 9672
-7 18816 -13/2 2112 -51/8 -15984
-8 -12288 -15/2 0 -59/8 -936
-9 -22752 -17/2 -11136 -67/8 3912
-10 -15360 -19/2 25728 -75/8 35880
-11 53952 -21/2 -8064 -83/8 -11304
-12 27648 -23/2 0 -91/8 -100464
-13 -40896 -25/2 -11760 -99/8 73944
-14 0 -27/2 -59904 -107/8 40536
-15 -97920 -29/2 80064 -115/8 40080
-16 24576 -31/2 0 -123/8 -57456
-17 126336 -33/2 65664 -131/8 -111000
-18 57600 -35/2 26880 -139/8 56664
-19 -68544 -37/2 -228288 -147/8 -80472
-20 -168960 -39/2 0 -155/8 233760
-21 169344 -41/2 -31488 -163/8 84552
-22 -79872 -43/2 154752 -171/8 -120600
-23 -104064 -45/2 227520 -179/8 -203160
-24 98304 -47/2 0 -187/8 -15216
-25 143520 -49/2 -69552 -195/8 -73440
-26 33792 -51/2 -255744 -203/8 -61152
-27 -269568 -53/2 -224064 -211/8 661464
-28 301056 -55/2 0 -219/8 117792
-29 -222528 -57/2 157824 -227/8 -53400
-30 0 -59/2 -14976 -235/8 | -1054320
-31 185088 -61/2 725184 -243/8 111672
-32 -196608 -63/2 0 -251/8 458616
-33 -223488 -65/2 -234240 -259/8 -362208
-34 -178176 -67/2 62592 -267/8 668304
-35 900480 -69/2 -1029888 -275/8 -76440
-36 -364032 -71/2 0 -283/8 305496
-37 -206400 -73/2 -180096 -291/8 48672
-38 411648 -75/2 574080 -299/8 -209856
-39 584064 -T7/2 715008 -307/8 -852264
-40 -245760 -79/2 0 -315/8 -398160
-41 -1320576 -81/2 383184 -323/8 -280032
-42 -129024 -83/2 -180864 -331/8 1197144
-43 -436800 -85/2 -769920 -339/8 263088
-44 863232 -87/2 0 -347/8 44520
-45 792000 -89/2 436608 -355/8 1577760
-46 0 -91/2 -1607424 -363/8 -996168




-47
-48
-49
-50
-51
-52
-53
-54
-55
-56
-57
-58
-59
-60
-61
-62
-63
-64
-65
-66
-67
-68
-69
-70
-71
=72
-73
-74
-75
-76
=77
-78
-79
-80
-81
-82
-83
-84
-85
-86
-87
-88
-89
-90
-91
-92
-93
-94
-95
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160512
442368
139104
-188160
-1120896
-654336
-363456
-958464
167040
0
3739392
1281024
-391104
-1566720
945600
0
-4459392
393216
-1633920
1050624
227136
2021376
799488
430080
3471744
921600
-1629696
-3652608
423360
-1096704
-2972928
0
1475328
-2703360
1659744
-503808
8149440
2709504
-3288960
2476032
-3998592
-1277952
-4253952
3640320
-2072448
-1665024
-2477952
0
4817280

93/2
-95/2
97/2
-99/2
-101/2
-103/2
-105/2
-107/2
-109/2
1112
-113/2
-115/2
117/2
-119/2
1212
123/2
-125/2
-127/2
-129/2
131)2
-133/2
-135/2
137/2
-139/2
1412
-143/2
-145/2
147/2
-149/2
1512
-153/2
-155/2
157/2
-159/2
-161/2
-163/2
-165/2
-167/2
-169/2
-171/2
173/2
175/2
-177/2
-179/2
-181/2
-183/2
-185/2
-187/2
-189/2

434304
0
603264
1183104
232896
0
-1693440
648576
172224
0
-1496832
641280
-158400
0
1992336
-919296
-835200
0
1081728
-1776000
2400384
0
-344832
906624
-1859328
0
-1770240
-1287552
1154496
0
2639232
3740160
-6352704
0
2333184
1352832
5679360
0
-7177584
-1929600
-3057216
0
-7163776
-3250560
6600000
0
6213120
-243456
1257984

-371/8
-379/8
-387/8
-395/8
-403/8
-411/8
-419/8
-427/8
-435/8
-443/8
-451/8
-459/8
-467/8
-475/8
-483/8
-491/8
-499/8
-507/8
-515/8
-523/8
-531/8
-539/8
-547/8
-555/8
-563/8
-571/8
-579/8
-587/8
-595/8
-603/8
-611/8
-619/8
-627/8
-635/8
-643/8
-651/8
-659/8
-667/8
-675/8
-683/8
-691/8
-699/8
-707/8
-715/8
-723/8
-731/8
-739/8
-T747/8
-755/8

-348096
-1567656
-725400
352320
1090704
-1292112
2329992
2254224
-303840
-1280280
-3861072
2493504
-1604616
393960
1336608
-1972728
-1481256
3588792
3115440
198120
221832
-452088
-4342824
-4220640
1452168
1108200
615744
-1979016
6185760
-293400
3118800
13800
-1255392
-1431600
-2338344
-3358656
-4064232
6075168
-5597280
1922280
5664360
3963600
-91728
-1878240
-587232
5560416
-4968600
2679048
-6210720
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-96
-97
-98
-99
-100
-121
-169
-225
-289
-361
-441
-529
-625
=729
-841
-961
-1089
-1225
-1369
-1521
-1681
-1849
-2025
-2209
-2401
-2601
-2809
-3025
-3249
-3481
-3721
-3969
-4225
-4489
-4761
-5041
-5329
-5625
-5929
-6241
-6561

A. TABLES OF FOURIER COEFFICIENTS

1572864
3273600
-1112832
-4046400
2296320
-6795744
19838880
-34014240
-31793568
17765664
-32967648
46497120
-62637600
188907552
-300784224
-37045152
1610591328
207960480
593398944
-4701814560
-126117024
2904173088
2481317280
-547333536
-4006373280
7535075616
2352642720
-10159637280
-4210462368
9611302944
-1857732192
2404969056
29659125600
-13586243808
-11019817440
-34729060512
21776815968
14845111200
-9847033056
50980984416
-62138319264

-191/2
-193/2
-195/2
-197/2
-199/2

0
2077824
-1175040
-926400
0

-763/8
-771/8
-779/8
-787/8
-795/8

-9845472
8972208
-1915440
-3989400
-4105440




A. TABLES OF FOURIER COEFFICIENTS

Table A.5: Fourier coefficients of ¢ p,

145

D Cornp (D, 13 D [CppnD.) [ D | CpppDir)
1 78 12 3 -3/8 3

%) 192 32 192 11/8 33

3 1332 502 -1020 -19/8 663
4 -4992 72 0 27/8 3708
5 660 9/2 5895 -35/8 -9870
6 12288 112 2112 -43/8 13809
7 7224 13)2 232604 51/8 13374
8 12288 -15/2 0 -59/8 15651
9 -39546 172 94728 67/8 15321
-10 -65280 1972 42432 75/8 | -125475
11 152724 212 ~44856 -83/8 156267
12 85248 23/2 0 91/8 20706
13 157284 25/2 | -219225 99/8 16731
14 0 272 237312 || -107/8 | -344637
-15 -50040 -29/2 326124 || -115/8 10770
-16 319488 31/2 0 123/8 | 766818
17 194856 332 | 323928 | -131/8 | -525795
18 377280 352 | -631680 | -139/8 | -160749
-19 713628 372 | 440004 || -147/8 | -160251
20 42240 -39/2 0 -155/8 | 1215780
21 -1780632 41)2 122928 || -163/8 | -1203351
22 135168 43)2 883776 || -171/8 | -1302795
23 1043256 45/2 | -517140 | -179/8 | 1867485
24 786432 472 0 187/8 | 1244562
25 3262350 _49)2 545643 _195/8 | 955620
26 2086656 512 | -855936 | -203/8 | -4422684
27 1646352 53/2 | 2740212 | -211/8 | 390699
28 462336 -55/2 0 219/8 | -574092
29 881484 57/2 | 3887208 | -227/8 | 2180685
-30 0 -59/2 | 1001664 | -235/8 | 2864130
31 6705264 6172 | -424404 || -243/8 |  -199881
32 786432 63/2 0 251/8 | 2116569
33 2878128 65/2 | -2522640 | -259/8 | -3726492
34 6062592 67/2 980544 || -267/8 | 3007602
35 5124840 69/2 | 1384272 || 275/8 | -2411475
36 2530944 712 0 283/8 | 4629267
37 -3584220 73/2 | -6748248 || -291/8 | -4366188
38 2715648 75/2 | -8030400 | -299/8 | 7027176
-39 -4924728 772 | 14972496 || -307/8 | -8021637
40 4177920 -79/2 0 315/8 | -5004090
41 6841608 81/2 | 2503251 | -323/8 | 15365076
42 2870784 83/2 | 10001088 | -331/8 | 8306019
43 76380 85/2 | -7623480 | -339/8 | -2594538
44 9774336 872 0 -347/8 | -31328475
45 1296900 -89/2 | -14031432 | -355/8 | -5996220
46 0 91/2 | 1325184 | -363/8 | 12708399
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-47
-48
-49
-50
-51
-52
-53
-54
-55
-56
-57
-58
-59
-60
-61
-62
-63
-64
-65
-66
-67
-68
-69
-70
-71
=72
-73
-74
-75
-76
=77
-78
-79
-80
-81
-82
-83
-84
-85
-86
-87
-88
-89
-90
-91
-92
-93
-94
-95

A. TABLES OF FOURIER COEFFICIENTS

6256272
5455872
-14186718
-14030400
439848
-10066176
-9775044
15187968
39366360
0
-16798608
20871936
-39697092
-3202560
33062340
0
-3662568
-20447232
-30122040
-20731392
11934636
12470784
69448464
-40427520
61783368
24145920
-58510464
28160256
-97335900
45672192
173712
0
-104534256
2703360
75478338
7867392
61662660
-113960448
53505720
56561664
81274968
8650752
36913584
-33096960
-86768136
-66768384
-157222728
0
-99129720

93/2
-95/2
97)2
-99/2
-101/2
-103/2
-105/2
-107/2
-109/2
1112
113/2
-115/2
117/2
-119/2
1212
123/2
-125/2
-127/2
-129/2
131/2
-133/2
-135/2
137/2
-139/2
1412
-143/2
-145/2
147/2
-149/2
1512
-153/2
-155/2
-157/2
-159/2
-161/2
-163/2
-165/2
-167/2
-169/2
171)2
173/2
175/2
177/2
-179/2
-181/2
-183/2
-185/2
-187/2
-189/2

-8795448
0
13131528
1070784
706524
0
34287120
-22056768
3733164
0
-15265776
689280
-64066860
0
12708399
49076352
58599000
0
-13164552
-33650880
25319112
0
-68494224
-10287936
18745488
0
-37464720
-10256064
43792476
0
48027096
77809920
-7972308
0
44085216
-77014464
-125112240
0
9617871
-83378880
-16221828
0
153272808
119519040
-16462380
0
-81021120
79651968
-55442016

-371/8
-379/8
-387/8
-395/8
-403/8
-411/8
-419/8
-427/8
-435/8
-443/8
-451/8
-459/8
-467/8
-475/8
-483/8
-491/8
-499/8
-507/8
-515/8
-523/8
-531/8
-539/8
-547/8
-555/8
-563/8
-571/8
-579/8
-587/8
-595/8
-603/8
-611/8
-619/8
-627/8
-635/8
-643/8
-651/8
-659/8
-667/8
-675/8
-683/8
-691/8
-699/8
-707/8
-715/8
-723/8
-731/8
-739/8
-147/8
-755/8

22356264
-4431069
27134685
-17963160
-26598702
-7738362
-7097247
31815042
-6552540
10931925
-2653002
-16530264
65247
48448725
-59365404
20729817
9517131
9617871
3819510
-72738075
7935057
6002073
16284843
2458980
79803441
16519605
63567576
-166216953
-34758780
30105765
-112658790
-13830555
117374004
142240650
73145547
-55777176
-94080813
-88511676
-155087100
256087605
-24603555
41126490
27531126
-27172860
-165738924
-33222564
71095245
79227369
-35880660




-96
-97
-98
-99
-100
-121
-169
-225
-289
-361
-441
-529
-625
-729
-841
-961
-1089
-1225
-1369
-1521
-1681
-1849
-2025
-2209
-2401
-2601
-2809
-3025
-3249
-3481
-3721
-3969
-4225
-4489
-4761
-5041
-5329
-5625
-5929
-6241
-6561

A. TABLES OF FOURIER COEFFICIENTS

50331648
61951560
34921152
300102660
208790400
-54054858
-1003046850
1654011450
-3664036974
-6964711962
-7192666026
81005125890
-92207163750
156340323126
23069261982
-427678395534
-27405813006
593359480350
1327507544142
-508544752950
582993418722
-3544394729226
-3156881486850
3337902191442
6646101541170
-1857666745818
-8174228488530
2260844435850
-3531108964734
34042857156438
-56361407427234
13728075593778
41952434501250
-23220449276154
41069598826230
20332412880546
-108391819515486
-46749032021250
-9831551627898
238946924093202
72899789108562

-191/2
-193/2
-195/2
-197/2
-199/2

0
-25078008
61159680
-43153260
0

-763/8
-771/8
-779/8
-787/8
-795/8

-66468444
140530518

71155050
223092285
-142360380
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A. TABLES OF FOURIER COEFFICIENTS

Table A.6: Fourier coeflicients of 5y p,

D [ Csyp DD [ D | Copur, DD D | Copp(D.7)
1 864 12 144 178 18

2 1152 32 -1728 -9/8 270
3 1728 52 0 -17/8 1728
4 6912 72 6912 -25/8 -6030
5 -8640 -9/2 2160 -33/8 12096
6 13824 1172 1728 41/8 | -13824
7 17280 -13/2 0 -49/8 12114
-8 9216 152 | -34560 57/8 | -22464
9 33696 172 | -13824 -65/8 34560
-10 0 -19/2 22464 -73/8 -1728
11 -63936 2172 0 81/8 | -42606
12 13824 23/2 34560 -89/8 1728
13 -60480 -25/2 48240 -97/8 29376
14 -55296 272 | 20736 || -105/8 | 86400
15 86400 29/2 0 113/8 | -134784
16 55296 3172 69120 121/8 | 4302
17 38016 332 | 96768 || -129/8 8640
18 ~17280 3572 | -120960 || -137/8 | 145152
19 50112 372 0 -145/8 | -172800
20 69120 392 | -131328 || -153/8 | 67392
21 24192 412 | 110592 || -161/8 | 96768
22 -13824 -43/2 98496 -169/8 | -14670
23 -203904 -45/2 0 177/8 | -243648
24 -110592 47/2 96768 -185/8 | -120960
25 ~73440 4972 | 96912 || -193/8 | 416448
26 0 512 | 335232 || -201/8 | 133056
27 20736 -53/2 0 209/8 | -105408
28 -138240 552 | -172800 || -217/8 | -314496
29 191808 572 | 179712 || -225/8 | 90450
-30 276480 592 | -216000 || -233/8 | -177984
31 145152 -61/2 0 241/8 | 247104
32 73728 632 | -103680 || -249/8 | -150336
33 -317952 65/2 | -276480 || -257/8 | 518400
34 110592 672 | -461376 || -265/8 | -172800
35 604800 -69/2 0 273/8 | -231552
36 -269568 7172 | 532224 || -281/8 | -181440
37 191808 -73/2 13824 289/8 | 176274
-38 179712 752 | 146880 || -297/8 | 145152
-39 756864 772 0 -305/8 | -86400
-40 0 792 | 41472 || 313/8 | -345600
41 -134784 8172 | 340848 || -321/8 | -57024
42 0 832 | 191808 || -329/8 | 411264
43 -665280 -85/2 0 -337/8 | 196992
44 511488 872 | 269568 || -345/8 | 950400
45 129600 892 | -13824 || -353/8 | -787968
46 276480 9172 | 169344 || -361/8 | -842382




-47
-48
-49
-50
-51
-52
-53
-54
-55
-56
-57
-58
-59
-60
-61
-62
-63
-64
-65
-66
-67
-68
-69
-70
-71
-72
-73
-74
-75
-76
=77
-78
-79
-80
-81
-82
-83
-84
-85
-86
-87
-88
-89
-90
-91
-92
-93
-94
-95

A. TABLES OF FOURIER COEFFICIENTS

698112
-110592
581472
-385920
701568
483840
-772416
165888
190080
442368
82944
0
1325376
-691200
-741312
-552960
673920
-442368
432000
774144
-661824
-304128
919296
967680
-176256
138240
1029888
0
578880
-400896
-546048
1050624
1112832
-552960
-1485216
-884736
309312
-193536
-1641600
-787968
-1717632
110592
-400896
0
943488
1631232
3003264
-774144
-2678400

932
-95/2
97/2
-99/2
-101/2
-103/2
-105/2
-107/2
-109/2
11172
113/2
11572
11772
11972
12172
1232
1252
12772
-129/2
1312
1332
-135/2
1372
-139/2
“141/2
~143/2
_145/2
14772
-149/2
15172
-153/2
-155/2
15772
~159/2
-161/2
-163/2
-165/2
-167/2
-169/2
1712
1732
1752
1772
17972
“181/2
-183/2
-185/2
_187/2
-189/2

0
-864000
-235008

67392

0
-601344
-691200

-22464

0
366336
1078272
293760

0

96768
34416
-604800

0

2211840
-69120
98496

0

-414720
-1161216
-368064

0
-988416
1382400

-2348352
0
-1223424
-539136
2246400

0
-103680
-774144
2787264

0
628992

117360
-336960

0
-587520
1949184

98496

0
1845504
967680

-2056320

0

-369/8
-3717/8
-385/8
-393/8
-401/8
-409/8
-417/8
-425/8
-433/8
-441/8
-449/8
-457/8
-465/8
-473/8
-481/8
-489/8
-497/8
-505/8
-513/8
-521/8
-529/8
-537/8
-545/8
-553/8
-561/8
-569/8
-577/8
-585/8
-593/8
-601/8
-609/8
-617/8
-625/8
-633/8
-641/8
-649/8
-657/8
-665/8
-673/8
-681/8
-689/8
-697/8
-705/8
-713/8
-721/8
-729/8
-737/8
-745/8
-753/8

-539136
286848
120960

1211328

98496

667008

-1933632

-146880
945216

-181710

-274752

-207360

-138240
616896

-127872

-209088

1316736

-518400

-269568

-694656

1017810
589248

-1641600
-2865024

2536704

-473472

1676160

1347840

1268352

-485568

-2128896
-2196288

-139950

-907200

2279232
696384

25920

1779840

-1266624

-872640

-241920
383616

-604800

1842048
774144

79218
-3112128
259200
-1097280
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-96
-97
-98
-99
-100
-121
-169
-225
-289
-361
-441
-529
-625
-729
-841
-961
-1089
-1225
-1369
-1521
-1681
-1849
-2025
-2209
-2401
-2601
-2809
-3025
-3249
-3481
-3721
-3969
-4225
-4489
-4761
-5041
-5329
-5625
-5929
-6241
-6561

A. TABLES OF FOURIER COEFFICIENTS

884736
162432
775296
959040
587520
2093472
3092256
-2864160
8461152
-28581984
22677408
48854880
-52077600
-91515744
-67548384
170865504
81645408
-49425120
182458656
120597984
-50180256
-476272224
126243360
318671712
-120765600
329984928
-1162201824
-177945120
-1114697376
2458977696
911246112
-999550368
-262841760
150991776
1905340320
-1531560096
510852960
-2031026400
1408906656
-3507700896
2149978464

-191/2
-193/2
-195/2
-197/2
-199/2

-2419200
-3331584
172800
0
1140480

-761/8
-769/8
-177/8
-785/8
-793/8

-1534464
1162944
3580416

-3162240
4223232




A. TABLES OF FOURIER COEFFICIENTS

Table A.7: Fourier coefficients of 4y p,

D Cayyop, (D, 1)) D | Cayyp, (D,17) D | Cuy,,, (D, 73)
-1 -120 -1/2 4 -1/8 1

2 2144 32 720 -9/8 9

-3 -6480 -5/2 4320 -17/8 240
-4 -4800 72 6720 -25/8 1705
-5 11760 -9/2 36 -33/8 -6480
-6 28800 -11/2 -21840 -41/8 16320
-7 43680 -13/2 -47520 -49/8 -33551
-8 43264 -15/2 -25920 -57/8 65520
9 -59400 -17/2 -960 -65/8 -111360
-10 -103680 -19/2 29040 -73/8 145200
-11 -76560 2172 181440 -81/8 -174879
-12 259200 -23/2 156480 -89/8 267600
-13 -46320 -25/2 6820 -97/8 -357360
-14 268800 27/2 181440 -105/8 272160
-15 -61920 -29/2 -142560 -113/8 -188640
-16 360960 -31/2 -670080 -121/8 373561
-17 814560 -33/2 -25920 -129/8 -422640
-18 -19296 -35/2 -325920 -137/8 -46080
-19 157200 -37/2 -859680 -145/8 428160
20 470400 -39/2 763200 -153/8 -118800
21 -1360800 -41/2 65280 -161/8 -134400
22 -873600 -43/2 -357840 -169/8 -949031
-23 550560 -45/2 2138400 -177/8 | 2093040
24 -2165760 -47/2 954240 -185/8 -775200
-25 -954600 -49/2 134204 -193/8 -119280
26 1140480 -51/2 1231200 -201/8 | -2686320
27 -1632960 -53/2 151200 -209/8 | 3830640
28 1747200 -55/2 -1596480 || -217/8 -789600
-29 3080880 -57/2 262080 -225/8 15345
-30 -1036800 -59/2 -1094640 || -233/8 | -2990640
31 1915200 -61/2 -5084640 || -241/8 | 4364400
32 3352576 -63/2 60480 -249/8 -460080
-33 1774080 -65/2 -445440 -257/8 | -3355200
34 514560 -67/2 -2008080 || -265/8 | -1864320
-35 -1226400 -69/2 2332800 -273/8 | 6118560
-36 -2376000 7172 -2723520 || -281/8 | 2936880
-37 -4286160 -73/2 580800 -289/8 | -8325791
-38 1161600 -75/2 5727600 -297/8 | -1632960
-39 -2475360 -77/2 3991680 -305/8 | 4133280
-40 -6359040 -79/2 4798080 -313/8 | 9286080
-41 -3103200 -81/2 -699516 -321/8 | -11722320
42 -4354560 -83/2 2604240 -329/8 829920
-43 6051120 -85/2 4950720 -337/8 848160
-44 -3062400 -87/2 -1581120 || -345/8 | 6697440
-45 105840 -89/2 1070400 -353/8 | -15909120
-46 6259200 -91/2 -7355040 || -361/8 | 8185321
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-47
-48
-49
-50
-51
-52
-53
-54
-55
-56
-57
-58
-59
-60
-61
-62
-63
-64
-65
-66
-67
-68
-69
-70
-71
-72
-73
-74
-75
-76
=77
-78
-79
-80
-81
-82
-83
-84
-85
-86
-87
-88
-89
-90
-91
-92
-93
-94
-95

A. TABLES OF FOURIER COEFFICIENTS

-2938560
19491840
4026120
-3655520
8010720
-1852800
12096720
7257600
-12951840
-20213760
-3369600
3421440
-16699440
-2476800
-7595280
-26803200
21621600
1167360
-35810400
13893120
12306000
32582400
21752640
-13036800
12166560
389376
43661760
20632320
-11048400
6288000
-20690880
30528000
-35520960
-35374080
6288840
-34990080
17445360
-54432000
-34049760
-14313600
-41110560
65694720
18082560
-51321600
-20573280
22022400
-18597600
38169600
132571680

93/2
-95/2
97/2
-99/2
-101/2
-103/2
-105/2
-107/2
-109/2
1112
113/2
1152
117/2
119/2
12172
1232
-125/2
127/2
-129/2
131)2
-133/2
1352
137/2
-139/2
-141/2
-143/2
~145/2
-147/2
-149/2
15172
-153/2
-155/2
-157/2
~159/2
1612
-163/2
-165/2
-167/2
-169/2
171/2
1732
175/2
177)2
-179/2
-181/2
-183/2
-185/2
~187/2
-189/2

-8320320
2516160
-1429440
-10810800
-16593120
3977280
1088640
-1398000
18208800
-20525760
-754560
29445600
-427680
21275520
1494244
4548960
20865600
-1766400
-1690560
-28391760
10825920
-6531840
-184320
9478800
-71383680
-13041600
1712640
45360
-2147040
-17501760
-475200
-6619200
13301280
33929280
-537600
-13410960
79885440
22975680
-3796124
261360
19712160
53457600
8372160
45013680
-85445280
-40737600
-3100800
-42857760
45722880

-369/8
-3717/8
-385/8
-393/8
-401/8
-409/8
-417/8
-425/8
-433/8
-441/8
-449/8
-457/8
-465/8
-473/8
-481/8
-489/8
-497/8
-505/8
-513/8
-521/8
-529/8
-537/8
-545/8
-553/8
-561/8
-569/8
-577/8
-585/8
-593/8
-601/8
-609/8
-617/8
-625/8
-633/8
-641/8
-649/8
-657/8
-665/8
-673/8
-681/8
-689/8
-697/8
-705/8
-713/8
-721/8
-729/8
-737/8
-745/8
-753/8

8078400
12790560
-25243680
-6499440
7261200
13657440
-6283440
-1909200
4599600
-301959
-13457520
-4219200
32296320
-6850800
-10126560
-26658000
23335200
4792320
16511040
-25002720
12206929
-39625200
27769440
11689440
32345280
-12983520
-20004960
-55123200
8774880
10290480
65681280
17979600
-40592975
-22600080
-18126480
34416240
1306800
-14209440
-7112400
27624240
-65909760
71929440
31416480
27870240
-144762240
-45663831
52764720
146311200
-56732400




-96
-97
-98
-99
-100
-121
-169
-225
-289
-361
-441
-529
-625
=729
-841
-961
-1089
-1225
-1369
-1521
-1681
-1849
-2025
-2209
-2401
-2601
-2809
-3025
-3249
-3481
-3721
-3969
-4225
-4489
-4761
-5041
-5329
-5625
-5929
-6241
-6561

A. TABLES OF FOURIER COEFFICIENTS

-7004160
23990880
71933344
-689040
-38184000
-83479560
24773400
-472527000
999094920
-1576502280
1992929400
-1464831480
1248657000
12107319480
-17870133480
9776678280
-41322382200
32027784600
13544322840
12262833000
-23071708920
-15585928200
50027722200
-294960418680
169865855880
494551985400
141343224600
-664079899800
-780368628600
536913532920
-936128995560
-210996870840
197072397000
1695804213240
-725091582600
-958470710520
73113632520
618085215000
2800822717560
-4204774713720
1936995369480

-191/2
-193/2
-195/2
-197/2
-199/2

-69475200
-477120
22783680
-97644960
-96212160

-761/8
-769/8
-177/8
-785/8
-793/8

63691200
-78000240
-38626560
-81925920
21048960
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A. TABLES OF FOURIER COEFFICIENTS

Table A.8: Fourier coefficients of ¢ p, and ¥ p,

D C¢9,D7 (D, I";) Clﬁll,D7 (D, }’g
18 1 1
-9/8 237 -507

-17/8 1440 -15120
-25/8 245 -713075
-33/8 -1440 -166320
-41/8 -11520 -60480
-49/8 3353 53417
-57/8 -12960 1043280
-65/8 28800 604800
-73/8 15840 1829520
-81/8 17289 -967671
-89/8 -4320 589680
-97/8 36000 -7635600
-105/8 -100800 1058400
-113/8 -66240 -9465120
-121/8 70789 -693011
-129/8 -142560 -498960
-137/8 5760 15361920
-145/8 86400 -3628800
-153/8 108000 29710800
-161/8 80640 6773760
-169/8 149533 3205957
-177/8 -180000 24570000
-185/8 302400 -22226400
-193/8 59040 -48520080
-201/8 -298080 3311280
-209/8 -456480 -4823280
-217/8 141120 -128489760
-225/8 58065 37049025
-233/8 -465120 -22876560
-241/8 -47520 -11476080
-249/8 -154080 46433520
-257/8 385920 86667840
-265/8 -28800 -45964800
-273/8 544320 253380960
-281/8 684000 -57078000
-289/8 -331183 46974833
-297/8 -224640 205571520
-305/8 849600 31903200
-313/8 -11520 -296170560
-321/8 1208160 -50243760
-329/8 -1834560 136110240
-337/8 -941760 -207839520
-345/8 388800 -227253600
-353/8 -288000 -299980800
-361/8 -185059 -89291179
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-369/8
-3717/8
-385/8
-393/8
-401/8
-409/8
-417/8
-425/8
-433/8
-441/8
-449/8
-457/8
-465/8
-473/8
-481/8
-489/8
-497/8
-505/8
-513/8
-521/8
-529/8
-537/8
-545/8
-553/8
-561/8
-569/8
-577/8
-585/8
-593/8
-601/8
-609/8
-617/8
-625/8
-633/8
-641/8
-649/8
-657/8
-665/8
-673/8
-681/8
-689/8
-697/8
-705/8
-713/8
-721/8
-729/8
-737/8
-745/8
-753/8

-864000
-72000
-705600
277920
82080
-515520
2086560
2152800
-1078560
794661
-1162080
840960
2188800
2052000
-1650240
-1516320
-2358720
1065600
-2021760
54720
75337
-2717280
-561600
504000
1192320
-5175360
452160
2160000
3360960
3610080
-1128960
3566880
-1739975
-5404320
6564960
3615840
3754080
-3528000
2988000
-6078240
-1169280
8640
-2462400
-2508480
0
-1967787
-6798240
6379200
1412640

118843200
-143488800
-360914400
605450160
19822320
397867680
-255059280
632394000
449683920
-27082419
291982320
959152320
-743299200
-601246800
-270617760
729524880
-89540640
-1294876800
-1289494080
-394117920
1334599033
-1683354960
-922168800
794858400
-884157120
932329440
1849569120
-1188432000
1438728480
-801949680
2097325440
495074160
2977455625
-547994160
-785982960
2549186640
-927566640
-2249100000
825022800
-964398960
2388597120
-2738020320
-4374064800
-1138868640
-1257379200
2004363117
-94636080
-4928666400
-3712398480
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761/8
-769/8
777/8
-785/8
-793/8
-841/8
961/8
-1089/8
-1225/8
-1369/8
-1521/8
-1681/8
-1849/8
-2025/8
-2209/8
2401/8
-2601/8
-2809/8
-3025/8
-3249/8
-3481/8
-3721/8
-3969/8
-4225/8
-4489/8
-4761/8
-5041/8
-5329/8
-5625/8
-5929/8
6241/8
-6561/8

-6439680
-3051360
-5080320
3585600
2206080
-4547731
2232929
16776993
821485
2432917
35439321
-1313719
-30251803
4235805
15460753
-37161551
-78490371
8725733
17343305
-43858983
-100117739
-47043059
57970017
36635585
141523373
17854869
412584409
226841833
-412374075
237355517
-453151759
-647274159

396204480
4309305840
4714536960
-4128213600
1852381440
-1485406411
-3708048991
351356577
-3903447275
-22150780307
-1625420199
-T474274599
-45440958067
70712558325
64352048497
-100320091151
-23816240331
60469078877
50641778825
45270627753
436446886621
619541397781
-51690081807
-234275307775
-297698067643
-676641709731
516872527849
1389638711737
-1509570001875
-37018568587
3549597014801
-934612680879
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