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Abstract

Jacobi forms arise naturally in number theory in several ways: theta series arise
as functions of lattices, Siegel modular forms give rise to Jacobi forms through their
Fourier–Jacobi expansion and the largest Mathieu group gives rise to semi-holomorphic
Maaß–Jacobi forms, for example. Jacobi forms of lattice index have applications in the
theory of reflective modular forms and that of vertex operator algebras, among other
areas.

Poincaré and Eisenstein series are building blocks for every type of automorphic
forms. We define Poincaré series for Jacobi forms of lattice index and show that they
reproduce Fourier coefficients of cusp forms under the Petersson scalar product. We
compute the Fourier expansions of Poincaré and Eisenstein series and give an explicit
formula for the Fourier coefficients of the trivial Eisenstein series in terms of values of
Dirichlet L-functions at negative integers. For even weight and fixed index, we obtain
non-trivial linear relations between the Fourier coefficients of non-trivial Eisenstein se-
ries and those of the trivial one. This result is used to obtain formulas for the Fourier
coefficients of Eisenstein series associated with isotropic elements of small order.

A more efficient way of breaking down a given space of automorphic forms is into
its oldspace and its newspace. We study the linear operators leading to a theory of
newforms for Jacobi forms of lattice index, namely Hecke operators, operators arising
from the action of the orthogonal group of the discriminant module associated with the
lattice in the index and level raising operators. We show that these operators commute
with one another and are therefore suitable to define a newform theory. We define the
level raising operators of type U(I) (for every isotropic subgroup I of the discriminant
module associated with the lattice in the index) and show that they preserve cusp forms
and Eisenstein series. We give a formula for the action of the level raising operators
U(I) and V(l) and operators W(s) arising from the action of the orthogonal group on
cusp forms and Eisenstein series. We obtain a description of some of the oldforms in a
given space of Jacobi forms using these operators and the relation between Jacobi forms
and vector-valued modular forms for the dual of the Weil representation.
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Introduction

This thesis concerns a certain generalization of elliptic modular forms called Jacobi
forms of lattice index. Interest in Jacobi forms has increased in recent years due to
their numerous applications to number theory, algebraic geometry and string theory.
Computing Jacobi forms gives direct information on the Fourier coefficients of half-
integral weight modular forms [RSST16], they play a part in the Mirror Symmetry
conjecture for K3 surfaces [GN96] and a certain type of Jacobi forms can be the elliptic
genus of Calabi–Yau manifolds [Gri91], to name some of these applications.

The arithmetic theory of Jacobi forms of scalar index was established in [EZ85].
In this book, the authors analyse Eisenstein series and cusp forms, compute the Taylor
expansions of Jacobi forms, define Hecke operators on these functions and, last but not
least, discuss the relation between Jacobi forms and half-integral weight elliptic modu-
lar forms, vector-valued modular forms and Siegel modular forms. Since then, several
generalizations of Jacobi forms have been studied, such as Siegel–Jacobi forms [Zie89],
Jacobi forms of lattice index [Gri88] or Jacobi forms over number fields [Boy15].

Let k be a positive integer and let L = (L, β) be a positive-definite, even lattice over
Z. By a Jacobi form of weight k and index L we mean a holomorhic function of two
variables (a modular variable denoted by τ and an abelian variable denoted by z), which
is invariant with respect to a certain action of the integral Jacobi group associated with
L and which has a prescribed Fourier expansion (see Definition 1.23). These functions
were introduced in [Gri88] as the Fourier–Jacobi coefficients of orthogonal modular
forms. They have applications in the theory of reflective modular forms [Gri18] and
that of vertex operator algebras [KM15], among other areas.

Our goal is to investigate the relation between Jacobi forms of lattice index and
elliptic modular forms. This would enable the transfer of information and mathematical
tools from one side to the other. Lifts of Jacobi forms to other type of automorphic forms
often have special properties, for example their Fourier coefficients satisfy simple linear
relations [Maa79], or their L-functions satisfy certain vanishing properties [EZ85].

This problem was solved for Jacobi forms of scalar index in [SZ88], where algebraic
lifting maps were defined between the former and elliptic modular forms, using the
action of Hecke operators on the Fourier coefficients of Jacobi forms. Hecke operators
were defined in [EZ85] only for good primes (i.e. primes not dividing the index).
As a result, the proof that a linear combination of these maps defines an isomorphism
between Jacobi forms of scalar index and a certain space of elliptic modular forms
utilizes heavy tools, such as trace formulas and a theory of newforms on either side. To
this end, in this thesis we study the linear operators which should lead to a theory of
newforms for Jacobi forms of lattice index, namely Hecke operators, operators arising
from the action of the orthogonal group of the discriminant module associated with the
lattice in the index (see Chapter 3) and level raising operators (see Chapter 4).

In [Bri06], the author constructs lifting maps similar to those in [SZ88] from spaces
of Jacobi forms of matrix index to spaces of elliptic modular forms. In addition, they
define maps in the opposite direction and prove that, when the dimension of the ma-
trix in the index is congruent to 1 modulo 8, these maps are adjoint with respect to the

vii



viii INTRODUCTION

Petersson scalar products on the two underlying spaces. The proof relies on the con-
struction of a holomorphic kernel function for the two maps and on the fact that this
kernel function can be expressed as a linear combination of Jacobi–Poincaré series of
matrix index. Eisenstein and Poincaré series are the most simple examples of modular
forms. They are obtained by taking the average of a function over a group (modulo
a parabolic subgroup) and hence are invariant under the group action by construction.
They satisfy the important property of reproducing Fourier coefficients of cusp forms
under a suitably defined scalar product and this is a crucial fact used in [Bri06]. Fur-
thermore, while the term “newform” is usually applied to cusp forms, it is important to
define this for Eisenstein series as well, in order to obtain a complete description of the
spaces of newforms. For this reason, we study Poincaré and Eisenstein series for Jacobi
forms of lattice index in Chapter 2.

0.1. Poincaré and Eisenstein series

To the best of the author’s knowledge, Poincaré series have not been defined in the
literature for Jacobi forms of lattice index. Let L# denote the dual of L with respect to β
and define the following set, which is called the support of L:

supp(L) := {(D, r) : D ∈ Q≤0, r ∈ L#,D ≡ β(r) mod Z}.

For every pair (D, r) in supp(L) such that D < 0, define the Poincaré series of weight k
and index L associated with the pair (D, r) as the series

Pk,L,D,r(τ, z) :=
∑

γ∈JL
∞\JL

gL,D,r|k,Lγ(τ, z),

where gL,D,r is a simple exponential function, JL denotes the integral Jacobi group asso-
ciated with L and JL

∞ is the stabilizer of the functions gL,D,r inside JL. Furthermore, |k,L
is the action of JL on Jacobi forms from Definition 1.22.

In Theorem 2.3, we show that Pk,L,D,r converges absolutely and uniformly on com-
pact subsets of its domain of definition under certain weight restrictions. By computing
its Fourier expansion, we show that it is a Jacobi cusp form of weight k and index
L. Its Fourier coefficients are expressed in terms of infinite sums containing J-Bessel
functions and Gauss-type sums. Furthermore, the series Pk,L,D,r reproduces the Fourier
coefficients of Jacobi cusp forms of the same weight and index under the Petersson
scalar product defined in (1.21). As a result, the set

{Pk,L,D,r : r ∈ L#/L,D ∈ Q<0 and β(r) ≡ D mod Z}

generates the C-vector space of Jacobi cusp forms of weight k and index L. It is well-
known that L#/L is a finite abelian group.

The definition of Jacobi–Eisenstein series of lattice index was given in [Ajo15,
§3.3], where some of their properties were studied (such as dimension formulas for
their spanning set and the fact that they are Hecke eigenforms). These functions are
indexed by isotropic elements, i.e. elements r in L# such that β(r) ∈ Z, and they only
depend on r modulo L. For every such r, the Eisenstein series of weight k and index L
associated with r is defined as the series

Ek,L,r(τ, z) :=
1
2

∑
γ∈JL

∞\JL

gL,0,r|k,Lγ(τ, z).

The convergence conditions for Ek,L,r were stated in [Ajo15]. In Theorem 2.6, we prove
that it is a Jacobi form of weight k and index L, by computing its Fourier expansion. Its
Fourier coefficients are expressed in terms of infinite sums containing Gauss-type sums,
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as can be seen in (2.16). Furthermore, the series Ek,L,r is orthogonal to cusp forms of
the same weight and index under the Petersson scalar product. As a result, we obtain a
direct sum decomposition of Jacobi forms with respect to the Petersson scalar product
into cusp forms and Eiesenstein series. The proofs of Theorems 2.3 and 2.6 are based
on the approach employed in [BK93] for the study of Siegel modular forms.

We would like to obtain a closed formula for the Fourier coefficients of Eisenstein
series. Lattice sums similar to (2.16) also arise in the Fourier expansions of Poincaré
and Eisenstein series for vector-valued modular forms and those of orthogonal modular
forms [BK01, Wil18], as well as in trace formulas for these types of automorphic forms
[SZ89, Ma18]. Most of the literature deals with the simplest case, which is equivalent
to taking r = 0 in L#/L. Even for Jacobi forms of scalar index, the authors of [EZ85]
compute the Fourier expansion of Ek,m,0 and state that “(the calculation) is tedious (for
arbitrary r)”. The mathematical objects that arise in these calculations are Gauss sums
for abelian groups and representation numbers for quadratic forms. For an introduction
to these topics, the reader can consult [Doy16] and [Sch85, §5], respectively, for exam-
ple. In Lemma 2.10, we show that Ek,L,0 vanishes identically when k is odd. In Theorem
2.14, we use results from [BK01] on L-series arising from representation numbers of
quadratic forms, in order to obtain an explicit formula for the Fourier coefficients of
Ek,L,0 when k is even. Classical number theoretical objects such as Bernoulli numbers
and values of Dirichlet L-functions at negative integers appear in this formula and we
show that the final expression is a rational number.

Let Nx denote the order of an element x of L#/L. For arbitrary isotropic elements
r in L#/L, we use the existence of an isomorphism between spaces of Jacobi forms
and spaces of vector-valued modular forms and a linear operator which was defined in
[Wil18], in order to prove that the Fourier coefficients of∑

m∈Z/NrZ

Ek,L,mr

are equal to finite linear combinations of Fourier coefficients of Ek,L,0. The proof relies
heavily on the connection between the Weil and the Schrödinger representations. We
use this result to compute the Fourier coefficients of Eisenstein series associated with
isotropic elements of small order in Examples 2.26–2.29.

0.2. Hecke operators and the action of the orthogonal group

Hecke operators give extra structure to spaces of automorphic forms and they have
algebraic interpretations in terms of the underlying surfaces. They can be used to con-
struct equivariant lifting maps between different types of automorphic forms. Hecke
operators acting on Jacobi forms of lattice index were defined in [Ajo15, §2.5] as dou-
ble coset operators (see Definition 3.2). It was shown there that they preserve spaces
of Jacobi forms of fixed weight and index and that they are Hermitian under the Pe-
tersson scalar product. Their action on the Fourier coefficients of Jacobi forms was
computed and their multiplicative properties were studied. Furthermore, by studying
the L-functions attached to Hecke eigenforms, a relation between Jacobi forms and el-
liptic modular forms was formulated. Explicit lifting maps were also defined in some
cases and we discuss them in Subsection 3.1.2.

The discriminant module of L is the pair DL = (L#/L, β mod Z). It is a finite qua-
dratic module (see Definition 1.11). We show in Proposition 3.20 that the orthogonal
group of DL acts on Jacobi forms of weight k and index L from the right. In Proposition
3.22, we prove that the operators arising from the action of the orthogonal group of DL
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are unitary with respect to the Petersson scalar product. In particular, since they com-
mute with Hecke operators and the spaces of Jacobi cusp forms of weight k and index
L are finite-dimensional, every such space has a basis of common eigenforms. We also
compute the action of these operators on Eisenstein series in Proposition 3.24, using
the fact that Eisenstein series are uniquely determined by the theta series in their sin-
gular terms. Furthermore, reflection maps in the orthogonal group of DL act on Jacobi
forms as involutions. It is well-known that, in the case of lattices of rank one, reflection
maps act on Jacobi forms in the same way that Atkin–Lehner involutions act on elliptic
modular forms (see Example 3.28).

The root lattices Dn are defined as

Dn = {(x1, . . . , xn) ∈ Zn : x1 + · · · + xn ∈ 2Z} .

For odd n, the generators for the spaces of Jacobi forms of index Dn over the ring of
elliptic modular forms were given in [BS19]. In Section 3.3, we use them to compute
the Fourier coefficients of Jacobi cusp forms of weight k and index Dn (odd n) for
small values of k. We compare their Hecke eigenvalues with the eigenvalues of elliptic
modular forms in Table 3.1, in order to verify the conjectured correspondence between
Jacobi forms of odd rank lattice index and elliptic modular forms from [Ajo15, §6.1.1].
Our calculations suggest that this conjecture is partially correct and we propose a fix for
Jacobi forms of index Dn.

0.3. Level raising operators

Level raising operators are intimately connected to the theory of newforms. They
can also be used to define additive lifting maps between Jacobi forms and other type of
automorphic forms [CG13, Maa79].

Level raising operators of type U(·) arise from isometries of lattices (see Definition
4.1). Let L1 = (L1, β1) and L2 = (L2, β2) be positive-definite, even lattices over Z, such
that L1 ⊗ Q ' L2 ⊗ Q as modules over Q and there exists an isometry σ of L1 into L2.
We define a linear operator U(σ) and show in Theorem 4.3 that it maps Jacobi forms of
weight k and index L2 to Jacobi forms of weight k and index L1. By analysing Fourier
expansions, it is straight-forward to show that such operators preserve cusp forms and
Eisenstein series. If L1 and L2 are as above, then (σ(L1), β2) is a sublattice of L2 and
σ : L1 → (σ(L1), β2) is an isomorphism of lattices. Conversely, every sublattice (M, β2)
of L2 gives rise to an isometry of (M, β2) into L2 given by inclusion. In other words,
given a positive-definite, even lattice L, for every overlattice L′ of L, Jacobi forms of
weight k and index L′ are Jacobi forms of weight k and index L. Every Jacobi form of
index L′ is called an oldform of index L. In Lemma 4.19, we obtain a criterion for when
a Jacobi form is an oldform of this type.

Level raising operators of type V(·) were constructed in [Gri94] as the images of
elliptic Hecke operators under a certain homomorphism of Hecke algebras, using the
relation between Jacobi forms and orthogonal modular forms. The reader can also
consult Definition 4.25 for a classical approach. In Theorem 4.26, we show that, for
every l in N, the operator V(l) maps Jacobi forms of weight k and index L = (L, β) to
Jacobi forms of weight k and index L(l) := (L, lβ) and we compute the action of V(l)
on Fourier coefficients of Jacobi forms. As a corollary, the operators V(·) also preserve
cusp forms and Eisenstein series. The precise action of U(·) and V(·) on Eisenstein
series is given in 4.41. Every Jacobi form φ of index L gives rise to the oldform V(l)φ
of index L(l).

In Section 4.3, we show that U(·) and V(·) commute with each other. They also
commute with Hecke operators and with the action of well-defined reflection maps,
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implying that they are well-suited to develop a theory of newforms for Jacobi forms
of lattice index. It was shown in [Ajo15, §3.3] that “twisted” Eisenstein series (see
Definition 1.31) form a basis of Hecke eigenforms for Hecke operators. We obtain a
sufficient condition for twisted Eisenstein series to be oldforms in Theorem 4.39.





CHAPTER 1

Preliminaries

This chapter contains the notation and elementary theory which are necessary in
order to make the results in this thesis precise. We recall the definition of Jacobi forms
of lattice index, following [Ajo15]. We discuss the connection between Jacobi forms
and vector-valued modular forms and, finally, we list some examples.

Let N,Z,Q,R and C denote the set of positive natural numbers, the ring of rational
integers, the rational number field, the real number field and the complex number field,
respectively. Set S 1 := {z ∈ C : |z| = 1}. The ring of integers modulo n is denoted by
Z(n). For every d in Z×(n), denote the inverse of d modulo n by d−1.

Consider the branch of the complex square root with argument in (−π/2, π/2]. It
follows that the function z 7→

√
z takes positive reals to positive reals, complex numbers

in the upper half-plane to the first quadrant and complex numbers in the lower half-
plane to the fourth quadrant. Set zk/2 := (

√
z)k when k ∈ Z. Let z denote the complex

conjugate of a complex number z and let <(z) and =(z) denote its real and imaginary
parts, respectively. For an odd prime p and an integer a, the number

( a
p

)
is the usual

Legendre symbol and, when p = 2, it is equal to 0 when a is even, to 1 when a ≡
±1 mod 8 and to −1 when a ≡ ±3 mod 8. Define

(
a
1

)
to be equal to 1 and

(
a
−1

)
to

be equal to sign(a). Let n in Z have prime factorization upe1
1 pek

k , with u = ±1. The
Kronecker symbol

(
a
n

)
is defined as(

a
n

)
:=

(
a
u

) k∏
i=1

( a
pi

)ei .

For every prime number p, the p-adic valuation for Q is defined as

vp : Q→ Z ∪ {∞}, vp(n) :=


max{v ∈ N, pv | n}, if n ∈ Z \ {0},
vp(a) − vp(b), if n = a

b ∈ Q \ Z and
∞, if n = 0.

The greatest common divisor of two integers a and b is denoted by (a, b). Write b ‖ a if
b | a and (b, a

b ) = 1. In sums of the form
∑

b|a or
∑

ab=n, the summation is over positive
divisors only. For an integer n, set en(x) := e2πix/n and en(x) := e2πinx. Write e(x) = e1(x).

The J-Bessel function of index α > 0 is defined by the following series expansion
around x = 0:

(1.1) Jα(x) :=
∞∑

n=0

(−1)n

n!Γ(n + α + 1)

( x
2

)2n+α

.

For every c in N and m, n in Z \ {0}, define the Kloosterman sum

(1.2) S (m, n; c) :=
∑

a∈Z×(c)

ec(ma + na−1),

where a−1 denotes the inverse of a modulo c.
Let Zp denote the p-adic integers and let ‖ · ‖p be the p-adic norm on the p-adic

numbers, i.e. ‖ a ‖p:= p−vp(a).
1
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Definition 1.1 (Igusa zeta function). Let f ∈ Zp[X1, . . . , Xe]. The Igusa zeta func-
tion of f at p is defined for every s in C with<(s) > 0 as the p-adic integral

ζ( f ; p; s) :=
∫
Ze

p

‖ f (x) ‖sp dx.

It was proved in [Igu74] that ζ( f ; p; s) is a rational function in p−s and hence it has
a meromorphic continuation to all of C.

Let ω(·), µ(·), σt(·) and ζ(·) denote the function counting the number of prime di-
visors of an integer, the Möbius function, the t-th divisor sum and the Riemann zeta
function, respectively. We define σt(n) = 0 for n in R \ N. Let Bn denote the n-th
Bernoulli number and define the n-th Bernoulli polynomial

(1.3) Bn(x) :=
n∑

j=0

(
n
j

)
Bn− jx j.

We remind the reader of the following well-known identity:

(1.4)
∑
d|n

µ(d) =

1, n = 1 and
0, otherwise.

Let R be a ring. The set of n × n matrices with entries in R is denoted by Mn(R).
A matrix A in Mn(Z) is called even if it has even diagonal entries. Denote the group
of invertible matrices in Mn(R) by GLn(R) and the group of matrices with determinant
equal to one by SLn(R). If R ⊆ R, then denote the group of matrices with positive
determinant by GL+

n (R). For every n × m matrix A, its transpose is denoted by At.
Let N ≥ 1 be an integer. A Dirichlet character modulo N is a map χ : Z→ C which

satisfies the following properties:
• χ(x + N) = χ(x) for all x in Z,
• χ(x) = 0 if and only if (x,N) > 1,
• χ(xy) = χ(x)χ(y) for all x, y in Z.

For every Dirichlet character χ, let σχ
t denote the twisted divisor sum

σ
χ
t (n) :=

∑
d|n

χ(d)dt

and, for every two Dirichlet characters ξ and χ, set

σ
ξ,χ
t (n) :=

∑
d|n

ξ
(n
d

)
χ(d)dt.

The Dirichlet L-function of a Dirichlet character χ is

L(s, χ) :=
∞∑

n=1

χ(n)n−s =
∏

p

(
1 − χ(p)p−s)−1

.

For every positive integer N, set

LN(s, χ) :=
∞∑

n=1
(n,N)=1

χ(n)n−s = L(s, χ)
∏
p|N

(
1 − χ(p)p−s) .

A discriminant is an integer which is congruent to 0 or 1 modulo 4. For every dis-
criminant D, the function χD :=

(
D
·

)
is a well-defined quadratic Dirichlet character and

we set LD(·) := L(·, χD). A fundamental discriminant is an integer d such that either
d ≡ 1 mod 4 and d is square-free or d = 4n for some n in Z such that n ≡ 2 or 3 mod 4
and n is square-free.



1.1. MODULAR FORMS 3

Definition 1.2 (Conductor). Let ξ and χ be two Dirichlet characters modulo F and
N, respectively, with F | N. If χ(n) = ξ(n) for every n in Z×(N), then χ is inflated by
ξ. If χ is not inflated by any character other than itself, then it is called primitive. It is
well-known that every Dirichlet character χ is induced by a primitive Dirichlet character
which is uniquely determined by χ. The conductor of χ is the period of the primitive
character which induces it.

Let χ be a primitive character modulo N and define the Gauss sum

G(χ) :=
N∑

n=1

χ(n)eN(n)

and the constant

aχ =

0, if χ(−1) = 1 and
1, if χ(−1) = −1.

Define the completed L-function of χ as

Λ(s, χ) :=
(N
π

) s+aχ
2

Γ

( s + aχ
2

)
L(s, χ).

The following holds:

(1.5) Λ(1 − s, χ) =
G(χ)

((−1)aχN)
1
2

Λ(s, χ).

For a proof of this fact, the reader can consult [CS17, §3.4.3], for example.

1.1. Modular forms

Let H denote the upper half-plane

{z ∈ C : =(z) > 0}.

For every τ in H and z in C, write q for e2πiτ and ζ for e2πiz. The group GL+
2 (R) acts on

H via linear fractional transformations:((
a b
c d

)
, τ

)
7→

(
a b
c d

)
τ :=

aτ + b
cτ + d

.

For every A =
( a b

c d
)

in GL+
2 (R) and every τ in H, define the automorphy factor j(A, τ) :=

cτ + d. For every integer k, define a right-action of GL+
2 (Q) on the space of functions

f : H→ C in the following way:

( f , A) 7→ ( f |kA) (τ) := det(A)
k
2 j(A, τ)−k f (Aτ).

Let Γ denote the modular group SL2(Z) and, for every positive integer N, set

Γ(N) :=
{

A ∈ Γ : A ≡
(
1 0
0 1

)
mod N

}
and

Γ0(N) :=
{

A ∈ Γ : A ≡
(
∗ ∗

0 ∗

)
mod N

}
.

A congruence subgroup of Γ is a subgroup containing Γ(N) for some N. The smallest
possible such N is called the level of the congruence subgroup. A cusp of a congruence
subgroup G is an equivalence class of P1(Q) under the action of G and a representative
of such an equivalence class is also called a cusp. Let Γ∞ denote the stabilizer of the
cusp (i∞) in Γ, i.e. the subgroup

{( 1 n
0 1

)
: n ∈ Z

}
of Γ.

If k ∈ Z, then a multiplier system of weight k for G is a homomorphism v : G → S 1

if k ∈ Z. If k ∈ Z + 1
2 , then a multiplier of weight k for G is a function v : G →
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S 1 such that v(g1)v(g2) = σ(g1, g2)v(g1g2) for every g1, g2 in G, where σ(g1, g2) =

j(g1, g2τ)1/2 j(g2, τ)1/2 j(g1g2, τ)−1/2 ∈ {±1} is independent of τ. In either case, v must
additionally satisfy v(−I2) = e−πik if −I2 ∈ G.

Let k ∈ Z, N ∈ N, let G be a congruence subgroup of level N and let v be a multiplier
system of weight k for G. An elliptic modular form of weight k with multiplier system v
for G is a holomorphic function f : H→ C which satisfies the following properties:

• f |kA = v(A) f for every A in G,
• the function f is holomorphic at the cusps of G.

Every f as above has a Fourier expansion of the form

f (τ) =
∑
n≥0

a f (n)qn/w,

where w is the width of the cusp i∞ [CS17, §7.1]. The elliptic modular form f is called
a cusp form if it vanishes at the cusps of G. The C-vector space of elliptic modular
forms of weight k with trivial multiplier system for Γ0(N) is denoted by Mk(N) and its
subspace of cusp forms is denoted by S k(N). If χ is a Dirichlet character modulo N
and A =

( a b
c d

)
∈ Γ0(N), then set χ(A) := χ(d). The map A 7→ χ(A) defines a multiplier

system of even integral weight for Γ0(N), which we denote by the same symbol χ.
Denote the C-vector space of elliptic modular forms of weight k with character χ for
Γ0(N) by Mk(N, χ) and its subspace of cusp forms by S k(N, χ).

It is also possible to define elliptic modular forms of half-integral weight, whose
theory was established by Shimura [Shi73]. For example, the Dedekind η-function

(1.6) η(τ) := q
1

24

∏
n≥1

(1 − qn) =
1
2

∑
n∈Z

(
12
n

)
q

n2
24

is a modular form of weight 1/2 for Γ with multiplier system of order 24 given by

vη

(
a b
c d

)
=


(

d
|c|

)
exp

(
π
12 ((a + d − 3)c − bd(c2 − 1))

)
, if 2 - c and(

c
|d|

)
exp

(
π
12 ((a − 2d)c − bd(c2 − 1) + 3d − 3)

)
ε(c, d), if 2 | c,

where

ε(c, d) :=

−1, if c ≤ 0 and d < 0 and
1, otherwise.

Together with the scalar Jacobi theta series, the Dedekind η-function can be used as a
building block for Jacobi forms, as we shall see in Subsection 1.3.3.

For every l in N, define the following operators on Mk(N, χ):

U(l) f (τ) :=
∑
n≥0

a f (ln)qn,

V(l) f (τ) :=
∑
n≥0

a f (n)qln and

T (l) f (τ) := l
k
2−1

∑
ad=l

∑
b mod d

χ(a) f |k
( a b

0 d
)

(τ).(1.7)

It is well-known that the Hecke operators T (·) map Mk(N, χ) to itself and that U(l) and
V(l) map Mk(N, χ) to Mk(lN, χ) (see [DS05, §5], for example). Furthermore, if l | N,
then U(l) f is an element of Mk(N, χ).

Let f =
∑

n a f (n)qn be an elliptic modular form in Mk(N, χ), which is a normalized
eigenfunction of the Hecke operators T (l) for all l in N. The L-series of f in s is defined
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as

L(s, f ) =

∞∑
n=1

a f (n)n−s.

It has an Euler product of the form

(1.8) L(s, f ) =
∏

p

(
1 − a f (p)p−s + χ(p)pk−1−2s

)−1
.

The reader can consult [CS17, §10.7] for a proof of this fact when f ∈ Mk(1) and the
same argument holds for f in Mk(N, χ). Define the completed L-function of f as

ΛN(s, f ) :=
(

2π
√

N

)−s

Γ(s)L(s, f ).

Definition 1.3 (Metaplectic group). The metaplectic group, denoted by Γ̃, consists
of pairs Ã := (A,w(τ)) with A in Γ and w : H → C a holomorphic function satisfying
w(τ)2 = j(A, τ). The group law on Γ̃ is

(A,w(τ))(B, v(τ)) = (AB,w(Bτ)v(τ)).

The metaplectic group is a double cover of Γ and it is generated by the following ele-
ments:

T̃ =

((
1 1
0 1

)
, 1

)
and S̃ =

((
0 −1
1 0

)
,
√
τ

)
.

Definition 1.4 (Vector-valued modular forms). Let V be a finite-dimensional vec-
tor space over C. For every half-integer k, define a right-action of Γ̃ on the space of
functions F : H→ V in the following way:

(F, Ã) 7→ F|kÃ(τ) := w(τ)−2kF(Aτ).

Let ρ : Γ̃→ Aut(V) be a finite-dimensional representation of Γ̃, whose kernel has finite
index in Γ̃. A vector-valued modular form of weight k for ρ is a holomorphic function
F : H→ V which satisfies

F|kÃ(τ) = ρ(Ã)F(τ)

for every element Ã of Γ̃. Denote the C-vector space of all such functions by Mk(ρ).

Let In denote the n × n identity matrix and set En =
(

0 In
−In 0

)
. The symplectic group

Spn(R) is the set of 2n × 2n matrices M in GLn(R) satisfying MT EnM = En. We often
consider its subgroup Spn(Z) of matrices with integer entries. The Siegel upper half-
space of degree n, denoted by Hn, is the set of complex, symmetric n × n matrices with
positive-definite imaginary part. The group Spn(R) acts on Hn via((

A B
C D

)
,Z

)
7→

(
A B
C D

)
Z := (AZ + B)(CZ + D)−1.

Let k ∈ Z and n ∈ N such that n > 1 and let G be a subgroup of Spn(Z). A Siegel
modular form of weight k and degree n for G is a holomorphic function F : Hn → C
which satisfies

F
((

A B
C D

)
Z
)

= det(CZ + D)kF(Z)

for every
( A B

C D
)

in G. An analogous definition can be given for every finite index sub-
group of Spn(Z).
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1.2. Lattices

Let R be a commutative ring and let L and N be R-modules, with L free of finite
rank equal to g. A map β : L × L→ N is called a symmetric R-bilinear form if

β(x, y) = β(y, x) and β(x,my + nz) = mβ(x, y) + nβ(x, z)

for all x, y, z in L and all m, n in R. If N = R, then β is called integral. If β(x, y) = 0
for all y in L if and only if x = 0, then β is called non-degenerate. Let {e1, . . . , eg} be an
R-basis of L. The matrix G = (β(ei, e j))i, j is called the Gram matrix of β with respect
to {e1, . . . , eg}. Let x̃ and ỹ be the column vectors whose entries are the coefficients of x
and y with respect to {e1, . . . , eg}. Then

(1.9) β(x, y) =

g∑
i=1

g∑
j=1

x̃iỹ jβ(ei, e j) = x̃tGỹ.

Definition 1.5 (Lattice). Let L and N be R-modules, with L free of finite rank, and
let β : L × L→ N be a symmetric, non-degenerate bilinear form. The pair L = (L, β) is
called a lattice over R.

The lattice L is called integral if the associated bilinear form is integral. By abuse
of notation, denote the quadratic form associated with L by β(·), i.e.

β(x) :=
1
2
β(x, x).

Throughout this thesis, we consider only R = Z. Given an arbitrary Z-basis of L,
identify every element in the lattice with its coefficient vector and drop the tilde from
the notation, i.e. write β(x, y) = xtGy. Using the matrix formula (1.9), it is possible
to extend the domain of definition of β to L ⊗Z Q, L ⊗Z R and L ⊗Z C in a natural
way. For every z = (z1, . . . , zrk(L)) in L ⊗Z C, let <(z) = (<(z1), . . . ,<(zrk(L))) and
=(z) = (=(z1), . . . ,=(zrk(L))) denote its real and imaginary parts, respectively.

An integral lattice L = (L, β) is called positive-definite if β(x, x) > 0 for all x in L
such that x , 0. It is called even if β(x, x) is even for all x in L, otherwise it is called
odd. The rank of L = (L, β), denoted by rk(L), is defined as the rank of L as a Z-module.

Example 1.6. The following are examples of positive-definite, even lattices over Z:
(1) For every positive integer m, the lattice Lm := (Z, (x, y) 7→ 2mxy).
(2) More generally, for every positive-definite, even, g × g matrix G, the lattice

LG := (Zg, (x, y) 7→ xtGy).
(3) For every positive integer n, the Z-module

Dn = {(x1, x2, . . . , xn) ⊆ Zn : x1 + · · · + xn ∈ 2Z} ,

equipped with the Euclidean bilinear form

(x1, . . . , xn)(y1, . . . , yn) 7→ x1y1 + · · · + xnyn.

(4) For every positive integer n, the Z-module

An =
{
(x1, x2, . . . , xn+1) ∈ Zn+1 : x1 + · · · + xn+1 = 0

}
,

equipped with the Euclidean bilinear form.
(5) The Z-module

E8 =
{
(x1, x2, . . . , x8) : all xi ∈ Z or all xi ∈ Z + 1

2 , x1 + · · · + x8 ∈ 2Z
}
,

equipped with the Euclidean bilinear form.

Definition 1.7. For every lattice L = (L, β) and every m in Z, set L(m) := (L,mβ).
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If M is a free sub-module of L of finite rank equal to rk(L) and M has finite index
in L, then (M, β) is called a sublattice of L and L is called an overlattice of (M, β). Two
lattices L1 = (L1, β1) and L2 = (L2, β2) are isomorphic if there exists an isomorphism of
underlying Z-modules σ : L1

∼
−→ L2 such that β1 = β2 ◦ σ. The isomorphisms between

L and itself form the orthogonal group of L, denoted by O(L).
For the remainder of this section, assume that L = (L, β) is an even lattice over Z.

Define the following Z-module:

L# = {y ∈ L ⊗Z Q : β(y, x) ∈ Z ∀ x in L}.

The dual lattice of L is the pair L# = (L#, β). It is well-known that, if L has Gram matrix
G with respect to some basis {e1, . . . , erk(L)} of L, then a Z-basis of L# is given by the
dual basis {e#

1, . . . , e
#
rk(L)}, where

e#
i =

rk(L)∑
j=1

G−1
ji e j

and the Gram matrix of L# with respect to this basis is equal to G−1.
An integral lattice L = (L, β) is called unimodular if L# = L. For example, the

lattice E8 from Example 1.6, (5) is unimodular.
If { f1, . . . , frk(L)} is another Z-basis of L, then consider the change of coordinates

map

U : L→ L,U(ei) =

rk(L)∑
j=1

U ji f j.

Its matrix U = (Ui j)i, j is an element of GLrk(L)(Z) and, if x is the column vector whose
entries are the coefficients of x with respect to the new basis, then Ux̃ = x and the Gram
matrix of L with respect to { f1, . . . , frk(L)} is equal to G′ = (U−1)tGU−1. Let G be the
Gram matrix of L with respect to some basis of L. The determinant of L is defined as
det(L) := | det(G)|. The previous discussion implies that this quantity is independent of
change of basis. It is well-known that L#/L is a finite abelian group of order equal to
det(L).

The level of L, denoted by lev(L), is the smallest positive integer which satisfies
lev(L)β(x) ∈ Z for all x in L#. It is well-known that lev(L) is the smallest positive
integer such that lev(L)G−1 is an even matrix, independent of the choice of basis for
L [Ebe13, §3.1]. The following remark from [CS17, §14.3] plays an important role
throughout this thesis:

Remark 1.8. If L is even, then lev(L)L# ⊆ L. Furthermore, the level and the dis-
criminant of L have the same set of prime divisors: if rk(L) is even, then lev(L) | det(L) |
lev(L)rk(L) and, if rk(L) is odd, then 2 | det(L) and 4 | lev(L) | 2 det(L) | lev(L)rk(L).

Definition 1.9. Set

∆(L) :=

(−1)
rk(L)

2 det(L), if rk(L) ≡ 0 mod 2 and
(−1)b

rk(L)
2 c2det(L), if rk(L) ≡ 1 mod 2.

It is well-known that ∆(L) is a discriminant (see Lemma 14.3.20 and Remark 14.3.23
in [CS17, §14.3]).

Definition 1.10. For every a in N and every D in Q such that D∆(L) ∈ Z, set

χL(D, a) :=
(

D·∆(L)
a

)
and χL(a) := χL(1, a).
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Since ∆(L) is a discriminant, the function χL(·) is a well-defined quadratic character
modulo |∆(L)|.

Definition 1.11 (Finite quadratic module). A finite quadratic module over Z is a
pair (M,Q), such that M is an abelian group of finite order and Q : M → Q/Z is a
non-degenerate quadratic form on M, i.e

• Q(ax) = a2Q(x) for all a in Z and all x in M,
• the symmetric form β : M × M → Q/Z defined by

β(x, y) = Q(x + y) − Q(x) − Q(y)

is Z-bilinear and non-degenerate.

Theorem 1.12 ([Sko19, Thm 1.1.8]). Every finite quadratic module (M,Q) is iso-
morphic to a direct sum of finite quadratic modules of the following type (called Jordan
constituents):

• At
pn := (Z(pn), r 7→ tr2

pn + Z), for some odd prime p and some integer t such that
(t, p) = 1,
• At

2n := (Z(2n), r 7→ tr2

2n+1 + Z), for some odd integer t,
• B2n :=

(
Z(2n) × Z(2n), (r, s) 7→ r2+rs+s2

2n + Z
)
,

• C2n :=
(
Z(2n) × Z(2n), (r, s) 7→ rs

2n + Z
)
.

Definition 1.13 (Discriminant module). When L is even, the reduction of β modulo
Z induces a bilinear form on L#/L. The discriminant module associated with L is the
pair

DL :=
(
L#/L, x + L 7→ β(x) + Z

)
.

It is a finite quadratic module over Z.

The orthogonal group of DL, denoted by O(DL), consists of all group automor-
phisms α of L#/L such that β ◦α = β. Every automorphism of L extends to an automor-
phism of L#, which in turn induces an automorphism of DL. Hence, there is an induced
homomorphism between O(L) and O(DL) (which need not be injective or surjective).

For every element x in L#, let Nx denote the order of x + L in L#/L, i.e. the smallest
positive integer such that Nxx ∈ L. Let lev(x) denote the smallest positive integer such
that lev(x)β(x) ∈ Z.

Remark 1.14. Since β(x,Nxx) ∈ Z and β(Nxx,Nxx) ∈ 2Z for every x in L#, it follows
that lev(x) | 2Nx and that lev(x) | N2

x . In particular, we have lev(x) | Nx when Nx is odd.

The isotropy set of DL is

Iso(DL) := {x ∈ DL : β(x) = 0}.

Let IL denote the set of isotropic subgroups of DL.

Definition 1.15. There is an action of Z×(lev(L)) on Iso(DL) given by right multiplica-
tion. Let RIso be a set of representatives of the orbit space Iso(DL)/Z×(lev(L)). Note that
Nx = Nr if x = r in RIso.

Consider the group algebraC[L#/L] of maps L#/L→ C, with natural basis {ex}x∈L#/L.
Define a scalar product on C[L#/L] as〈 ∑

x∈L#/L

fxex,
∑

x∈L#/L

gxex

〉
:=

∑
x∈L#/L

fxgx.
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Definition 1.16 (Weil representation). The Weil representation associated with L of
Γ̃ on Aut(C[L#/L]) is defined by the following action of the generators of Γ̃ on the basis
elements of C[L#/L]:

ρL(T̃ )ex =e(β(x))ex,

ρL(S̃ )ex =
i−

rk(L)
2

det(L)
1
2

∑
y∈L#/L

e(−β(x, y))ey.

In general, write
ρL(Ã)ey =

∑
x∈L#/L

ρL(Ã)x,yex

for every element Ã of Γ̃. It is well-known that ρL is unitary and hence its dual repre-
sentation is given by the formula

ρ∗L(Ã)ey =
∑

x∈L#/L

ρL(Ã)x,yex.

Definition 1.17 (Direct sum of two lattices). Let L1 = (L1, β1) and L2 = (L2, β2) be
two even lattices and define a symmetric, non-degenerate bilinear form on L1 ⊕ L2 as
f : (L1 ⊕ L2) × (L1 ⊕ L2)→ Z,

f (x1 ⊕ x2, y1 ⊕ y2) := β1(x1, y1) + β2(x2, y2).

The direct sum of L1 and L2 is the even lattice L1 ⊕ L2 := (L1 ⊕ L2, f ).

Definition 1.18 (Stably isomorphic lattices). Two even lattices L1 and L2 are stably
isomorphic if and only if there exist even unimodular lattices U1 and U2 such that
L1 ⊕ U1 ' L2 ⊕ U2.

Theorem ([Nik80, Thm 1.3.1]). Two even integral lattices are stably isomorphic if
and only if their discriminant modules are isomorphic.

Let F be a field of characteristic different from two. A quadratic space over F is a
pair (V,Q), such that V is a finite-dimensional F-module and Q : V → F is a quadratic
form on V . Let (V1,Q1) and (V2,Q2) be two quadratic spaces over F. A representation
of V1 into V2 with respect to Q1 and Q2 is a linear map σ : V1 → V2 which satisfies

Q2 ◦ σ(x) = Q1(x), for all x in V1.

When F = Q, every such function can be extended to a function σ : V1 ⊗Z C →
V2 ⊗Z C by linearity. If β1 and β2 denote the bilinear forms associated with Q1 and Q2,
respectively, then every representation σ of V1 into V2 satisfies

β2 (σ(x), σ(y)) = β1(x, y) for all x, y in V1.

An isometry of (V1,Q1) into (V2,Q2) is an injective representation of V1 into V2 with
respect to Q1 and Q2.

Definition 1.19 (Isometry of lattices). Let L1 and L2 be lattices in (V1,Q1) and
(V2,Q2), respectively. An isometry of L1 into L2 is an isometry σ of (V1,Q1) into
(V2,Q2), such that σL1 ⊆ L2.

Fix any two Z-bases of L1 and L2 and let G1 and G2 denote the Gram matrices of
L1 and L2, respectively. Let M denote the matrix of σ with respect to these bases. The
relation Q2 ◦ σ = Q1 implies that

MtG2M = G1.
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Hence, if T and U are change of coordinates maps for L1 and L2, respectively, then the
matrix of σ with respect to the new bases is equal to UMT−1. When rk(L1) = rk(L2),
set det(σ) := | det(M)|.

1.3. Jacobi modular forms

For the remainder of this chapter, assume that L = (L, β) is a positive-definite, even
lattice over Z. In order to define the Jacobi group, we first need to define the Heisenberg
group. This group originates from quantum mechanics, more precisely in the descrip-
tion of one-dimensional mechanical systems. In number theory, it is intimately related
to theta series via its theta representation. For details on this topic, see [Mum07, §1.3].
We follow the exposition in [Ajo15] and the reader can consult the cited text for details
and proofs.

Definition 1.20 (Heisenberg group). The Heisenberg group associated with L is the
set

HL(R) := {(x, y, ζ) : x, y ∈ L ⊗ R, ζ ∈ S 1},

equipped with the following composition law:

(x1, y1, ζ1)(x2, y2, ζ2) := (x1 + x2, y1 + y2, ζ1ζ2e (β(x1, y2))) .

The integral Heisenberg group is the subgroup HL(Z) := {(x, y, 1) : x, y ∈ L} of
HL(R). Drop the third entry from the notation for this group for simplicity. This group
is sometimes called the reduced Heisenberg group in the literature.

Proposition ([Ajo15, Prop 2.2.3]). The group SL2(R) acts on HL(R) from the right
via

((x, y, ζ), A) 7→ (x, y, ζ)A := ((x, y)A, ζe2 (β ((x, y)A) − β(x, y))) ,
where (x, y)A is the vector obtained by multiplying the row vector (x, y) with A.

Definition 1.21 (Jacobi group). The real Jacobi group associated with L, denoted
by JL(R), is the semi-direct product of SL2(R) and HL(R). The composition law on this
group is

(A, h) · (A′, h′) = (AA′, hA′h′).

The following holds:

Proposition ([Ajo15, Prop 2.2.7]). The real Jacobi group acts on the left on the
space H × (L ⊗ C): if A ∈ SL2(R) and h = (x, y, ζ) ∈ HL(R), then the action of (A, h) on
a pair (τ, z) in H × (L ⊗ C) is defined as

((A, h), (τ, z)) 7→ (A, h)(τ, z) :=
(
Aτ,

z + xτ + y
j(A, τ)

)
.

The real Jacobi group also acts on the space of holomorphic, complex-valued func-
tions defined on H × (L ⊗ C).

Definition 1.22 (Jacobi slash operator). Let k be a positive integer and let φ : H ×
(L ⊗ C)→ C be a holomorphic function. For every A =

( a b
c d

)
in SL2(R), set

φ|k,LA(τ, z) := φ

(
Aτ,

z
j(A, τ)

)
j(A, τ)−ke

(
−cβ(z)
j(A, τ)

)
and, for every h = (x, y, ζ) in HL(R), set

φ|Lh(τ, z) := ζ · φ(τ, z + xτ + y) · e (τβ(x) + β(x, z)) .
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The action of JL(R) on the space of holomorphic, complex-valued functions defined on
H × (L ⊗ C) is defined as

(1.10) (φ, (A, h)) 7→ φ|k,L(A, h) := (φ|k,LA)|Lh.

Note that these actions of Γ and HL(R) do not commute.

The integral Jacobi group is the subgroup JL(Z) := SL2(Z)nHL(Z) of JL(R). From
now on, drop the word “integral” from the language and the (Z) from the notation for
this group.

Definition 1.23 (Jacobi form of lattice index). Let k be a positive integer. A Jacobi
form of weight k and index L is a holomorphic function φ : H × (L ⊗ C) → C with the
following properties:

(1) for all γ in JL, the following holds:

φ|k,Lγ(τ, z) = φ(τ, z);

(2) the function φ has a Fourier expansion of the form

(1.11) φ(τ, z) =
∑

n∈Z,r∈L#

n≥β(r)

cφ(n, r)e (nτ + β(r, z)) .

The complex numbers cφ(·, ·) are called the Fourier coefficients of φ.
For fixed weight and index, denote the C-vector space of all such functions by Jk,L.

Remark 1.24. Consider the lattice LG from Example 1.6, (2); then Jk,LG
is the space

Jk, 1
2 G of Jacobi forms of weight k and matrix index 1

2G defined in [BK93]. Consider the
lattice Lm from Example 1.6, (1); then the space Jk,Lm

is the space Jk,m of Jacobi forms
of weight k and scalar index m defined in [EZ85].

It is also possible to define Jacobi forms of half-integral weight, of odd lattice index
or with multiplier system. We do not go into further details and instead refer the reader
to [GSZ18, §III.9]. The following useful result is [Ajo15, Proposition 2.4.3]:

Proposition 1.25 ([Ajo15, Prop 2.4.3]). If φ in Jk,L has a Fourier expansion of the
form

φ(τ, z) =
∑

n∈Z,r∈L#

n≥β(r)

cφ(n, r)e (nτ + β(r, z)) ,

then cφ(n, r) depends only on n−β(r) and on r mod L. More precisely, we have cφ(n, r) =

cφ(n′, r′) whenever r ≡ r′ mod L and n − β(r) = n′ − β(r′). Furthermore,

cφ(n, r) = (−1)kcφ(n,−r).

Define the following set, called the support of L:

(1.12) supp(L) := {(D, r) : D ∈ Q≤0, r ∈ L#,D ≡ β(r) mod Z}.

Note that if (D, r) ∈ supp(L), then D ∈ 1
lev(L)Z. For every φ in Jk,L with Fourier expansion

(1.11) and for each pair (D, r) in supp(L), set Cφ(D, r) := cφ (β(r) − D, r). Proposition
1.25 implies that every φ in Jk,L has a Fourier expansion of the form

(1.13) φ(τ, z) =
∑

(D,r)∈supp(L)

Cφ(D, r)e ((β(r) − D)τ + β(r, z)) .

We will often use the interplay between these two Fourier expansions. In particular, use
the latter to define cusp forms:
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Definition 1.26 (Cusp form). A Jacobi form φ is called a cusp form if Cφ(0, r) = 0
for all r in L# such that β(r) ∈ Z. Denote the C-vector subspace of cusp forms in Jk,L by
S k,L.

Definition 1.27 (Singular term). For each φ in Jk,L, define its singular term as the
series

C0(φ)(τ, z) :=
∑
r∈L#

β(r)∈Z

Cφ(0, r)e (τβ(r) + β(r, z)) .

Definition 1.28. Let r in L# be such that β(r) ∈ Z and define the function

gL,r(τ, z) := e (τβ(r) + β(r, z))

on the space H × (L ⊗ C).

Definition 1.29. Set

JL
∞ :=

{(( 1 n
0 1

)
, (0, µ)

)
: n ∈ Z, µ ∈ L

}
.

We will show in Chapter 2 that JL
∞ is the stabilizer of the exponential functions

gL,r(·, ·) in JL. Jacobi–Eisenstein series are defined in the following way:

Definition 1.30 (Jacobi–Eisenstein series). Let k be a positive integer such that k >
rk(L)

2 +2. For each r in Iso(DL), define the Jacobi–Eisenstein series of weight k and index
L associated with r as

(1.14) Ek,L,r :=
1
2

∑
γ∈JL

∞\JL

gL,r|k,Lγ.

Define the subspace JEis
k,L of Jk,L as the set SpanC{Ek,L,r : r ∈ Iso(DL)}. The series

(1.14) converges under the imposed weight restrictions. It is possible to define Jacobi–
Eisenstein series for 1 ≤ k ≤ rk(L)

2 + 2 by using “Hecke’s convergence trick”, however
we do not pursue this further. It was shown in [Ajo15, §3.3] that

(1.15) Ek,L,r = (−1)kEk,L,−r.

Call Ek,L,0 the trivial Eisenstein series. It is also possible to define “twisted” Eisenstein
series:

Definition 1.31. Let k in N be such that k >
rk(L)

2 + 2 and let r ∈ RIso. For each
primitive Dirichlet character χ modulo F with F | Nr and χ(−1) = (−1)k, define

Ek,L,r,χ :=
∑

d∈Z×(Nr )

χ(d)Ek,L,dr.

For k ≤ rk(L) + 2, the character χ has to be non-principal (i.e. F , 1) for convergence
reasons.

For every x in L#/L, define the Jacobi theta series associated with x as the function
ϑL,x : H × (L ⊗ C)→ C,

(1.16) ϑL,x(τ, z) :=
∑
r∈L#

r≡x mod L

e (τβ(r) + β(r, z))

and set

(1.17) ΘL := SpanC{ϑL,x : x ∈ L#/L}.

It was shown in [Boy15, §3.5] that, for fixed L, the series ϑL,x(τ, ·) (x ∈ L#/L) are
linearly independent as functions of z. These functions are interesting in their own right
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and much can be said about them. We focus on their modular properties and refer the
reader to [Boy15, §3 and §4] for an in-depth discussion. Extend the definition of the
|k,L-action of Γ on holomorphic, complex-valued functions defined on H × (L ⊗ C) to Γ̃

in the following way: for every k in 1
2Z and every Ã = (A,w(τ)) in Γ̃, set

φ|k,LÃ(τ, z) := φ

(
Aτ,

z
w(τ)2

)
w(τ)−2ke

(
−cβ(z)
w(τ)2

)
.

It was proved in [Boy15, §3.5] that, for every x ∈ L#/L and every Ã as above, the theta
series ϑL,x satisfies the following:

(1.18) ϑL,x| rk(L)
2 ,LÃ =

∑
y∈L#/L

ρL(Ã)x,yϑL,y.

In particular, the set ΘL is a Γ̃-module. For each φ in Jk,L with Fourier expansion (1.13),
define the following function on the upper half-plane:

hφ,x(τ) =
∑
D∈Q

(D,x)∈supp(L)

Cφ(D, x)q−D.

We will review the modular properties of hφ,x in Subsection 1.3.2. Every Jacobi form
has a theta expansion:

Proposition ([Ajo15, Prop 2.4.7]). Every Jacobi form φ in Jk,L can be written as

(1.19) φ(τ, z) =
∑

x∈L#/L

hφ,x(τ)ϑL,x(τ, z).

Theorem 1.32 ([BS19, Thm 2.3]). Let L1 and L2 be positive-definite, even lattices
over Z and assume that j : DL1

∼
−→ DL2

is an isomorphism of finite quadratic modules.
Then the map

I j : Jk+d
rk(L2)

2 e,L2
→ Jk+d

rk(L1)
2 e,L1

defined by ∑
x∈L#

2/L2

hφ,x(τ)ϑL2,x(τ, z) 7→
∑

x∈L#
2/L2

hφ,x(τ)ϑL1, j
−1(x)(τ, z)

is an isomorphism.

Next, define a scalar product on S k,L. For every τ in H and z in L ⊗ C, let τ = u + iv
and z = x + iy be their decompositions into real and imaginary parts. In [Ajo15, §3.2],
the author defines a JL(R)-invariant volume element on H × (L ⊗ C) in the following
way:

dVL,(τ,z) := v−rk(L)−2dudvdxdy.
For every pair of functions φ and ψ which are invariant under the |k,L-action of a sub-
group Λ of JL of finite index, set

(1.20) ωφ,ψ(τ, z) := φ(τ, z)ψ(τ, z)vke−4πβ(y)v−1
.

It is easy to check that ωφ,ψ is also Λ-invariant.

Definition 1.33 (Petersson scalar product). Let Λ be a subgroup of JL of finite index
and let FΛ denote a fundamental domain for the action of Λ on H × (L ⊗ C). If φ and ψ
are two functions which are invariant under the |k,L-action of Λ and either one of them
is a cusp form, define

(1.21) 〈φ, ψ〉Λ :=
1

[JL : Λ]

∫
FΛ

ωφ,ψ(τ, z)dVL,(τ,z).
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The Petersson scalar product of two Jacobi forms does not depend on the choice of
fundamental domain, or in fact of the subgroup Λ. Thus, drop the subscript from the
notation and write 〈φ, ψ〉 := 〈φ, ψ〉Λ. Given a fundamental domain F for the action of Γ

on H and a fundamental parallelotope P for (L ⊗ C)/(τL + L), choose as a fundamental
domain for the action of JL on H × (L ⊗ C) the set

FJL := {(τ, z) ∈ H × (L ⊗ C) : τ ∈ F, z ∈ P}/{id, ι},

where ι is the reflection map (τ, z) 7→ (τ,−z). The Petersson scalar product can be
expressed in terms of theta expansions in the following way:

Proposition 1.34 ([Ajo15, Prop 3.2.10]). Let

φ =
∑

x∈L#/L

hφ,xϑL,x and ψ =
∑

x∈L#/L

hψ,xϑL,x

be Jacobi forms in Jk,L such that either one of them is a cusp form. Then

〈φ, ψ〉 = 2−
rk(L)

2 det(L)−
1
2

∫
Γ\H

∑
x∈L#/L

hφ,x(τ)hψ,x(τ)vk− rk(L)
2 −2dudv.

In the proof of this Proposition given in [Ajo15], a scalar product is defined on ΘL

by fixing a fibre τ in H in (1.21):

〈
∑

r∈L#/L

crϑL,r,
∑

s∈L#/L

dsϑL,s〉 :=
∫
P

∑
r∈L#/L

crϑL,r(τ, z)
∑

s∈L#/L

dsϑL,s(τ, z)vk−rk(L)−2e−4πβ(y)v−1
dxdy.

It was shown in [Ajo15, §3.2] that

〈
∑

r∈L#/L

crϑL,r,
∑

s∈L#/L

dsϑL,s〉 = vk− rk(L)
2 −2(2 det(L))−

rk(L)
2

∑
r∈L#/L

crdr.

Let [·, ·] denote the following normalization of the above scalar product on ΘL:

(1.22) [
∑

r∈L#/L

crϑL,r,
∑

s∈L#/L

dsϑL,s] :=
∑

r∈L#/L

crdr.

This scalar product is non-degenerate.

1.3.1. Jacobi forms of scalar index. It is useful to have a background knowledge
of the theory of Jacobi forms of scalar index. The integral scalar Jacobi group is ΓJ :=
Γ n Z2. This group acts on the right on the space of holomorphic, complex-valued
functions defined on H × C. Let k and m be positive integers. For every γ = (A, h) with
A =

( a b
c d

)
in Γ and h = (x, y) in Z2, set

φ|k,mγ(τ, z) :=φ
(
Aτ,

z + xτ + y
cτ + d

)
(cτ + d)−kem

(
−c(z + xτ + y)2

cτ + d
+ x2τ + 2xz + xy

)
.

This action agrees with Definition 1.22 when L = Lm (see Remark 1.24). The space Jk,m

of Jacobi forms of weight k and scalar index m consists of all holomorphic functions
φ : H × C→ C with the following properties:

(1) for all (A, h) in ΓJ, we have φ|k,m(A, h) = φ;
(2) the function φ has a Fourier expansion of the form

φ(τ, z) =
∑

n,r′∈Z
4mn−r′2≥0

bφ(n, r′)e(nτ + r′z), where bφ(n, r′) ∈ C.(1.23)
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Note that L#
m = 1

2mZ, det(Lm) = 2m and lev(Lm) = 4m. Substitute r′ for 2mr in (1.11)
and set bφ(n, r′) := cφ(n, r′

2m ), in order to obtain the same expression as above. A scalar
Jacobi form is called a cusp form if bφ(n, r′) = 0 whenever 4mn = r2.

Example 1.35. Let k ≥ 4 be an even integer. The Fourier expansion of the Eisenstein
series Ek,Lm,0 is computed in [EZ85, §I.2]:

(1.24) Ek,Lm,0(τ, z) =
∑

n∈Z,r∈ 1
2mZ

n≥mr2

ek,m(n, r)e(τn + 2mrz);

if n = mr2, then ek,m(n, r) = 1 if r ∈ Z and it is equal to zero otherwise; if n > mr2, then

ek,m(n, r) =
(−1)

k
2πk− 1

2

mk−12k−2Γ(k − 1
2 )

(4nm − 4m2r2)k− 3
2

∞∑
c=1

c−k
∑

λ,d mod c
(d,c)=1

ec(md−1λ2 − 2mrλ + nd),

where d−1 denotes the inverse of d modulo c. Note that we have made the substitution
r = 2ms and relabelled s = r in [EZ85, §I.2, (5)]. When m = 1, the above expression
simplifies to

ek,1(n, r) =
L4(r2−n)(2 − k)
ζ(3 − 2k)

,

where we remind the reader that LD(s) := L(s, χD) for every discriminant D. When m
is square-free,

ek,m(n, r) =
1

ζ(3 − 2k)σk−1(m)

∑
d|(n,2mr,m)

dk−1L 4m(mr2−n)
d2

(2 − k)

and it is possible to obtain a similar expression for arbitrary m. We generalize these
results in Section 2.3.

In general, write m = ab2, where a is the square-free part of m, and define

Ek,m,s(τ, z) :=
1
2

∑
γ∈J

Lm
∞ \Γ

J

qas2
ζ2abs|k,mγ,

where we remind the reader that q = e(τ) and ζ = e(z). Then

qas2
ζ2abs = e

(
mτ

( s
b

)2
+ 2mz

s
b

)
= gL, s

b
(τ, z)

and the following holds: { s
b

: s ∈ Z(b)

}
= Iso(DLm

).

To check that this is true, if r
2m ∈ L#/L, then β( r

2m ) = r2

4m is an integer if and only if
4m | r2, i.e if and only if 4ab2 | r2. This is equivalent to the condition that r = 2abs
for some s in Z. It follows that Ek,m,s = Ek,Lm,

s
b
. Twisted scalar Eisenstein series are

defined in [SZ88, §2] in the following way: for every divisor t of b and every primitive
Dirichlet character χ modulo F with F | b

t and χ(−1) = (−1)k, set

Ek,m,t,χ :=
∑

d mod b
t

χ(d)Ek,m,td.

The order of t
b in L#

m/Lm is equal to b/t and therefore

Ek,m,t,χ =
∑

d mod N t
b

χ(d)Ek,L, td
b
.
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This does not agree with Definition 1.31, since the coprimality conditions are missing
in the summation.

Example 1.36. It is also possible to define scalar Jacobi forms of half-integral weight
and half-integral index. An important example is the scalar Jacobi theta series

(1.25) ϑ(τ, z) =
∑
n∈Z

(
−4
n

)
e
(
τ

n2

8
+

nz
2

)
,

which has weight 1
2 , index 1

2 and multiplier system

vϑ(A, (x, y)) := vη(A)3 · (−1)x+y.

It can be used as a building block for Jacobi forms, together with the Dedekind η-
function.

It was proved in [SZ88] that there exists a Hecke equivariant lifting map between
Jacobi forms and elliptic modular forms. Let Wm denote the m-th Atkin–Lehner involu-
tion

( 0 −1
m 0

)
and set

Mε
k (m) := SpanC{ f ∈ Mk(m) : f |kWm = εi−k f },

where ε ∈ {+,−}. Then

f ∈ Mε
k (m) =⇒ Λm(s, f ) = εΛm(k − s, f ).

The space Mk(m) has a (not necessarily unique) basis of modular forms whose L-series
have an Euler product. Every such modular form f is an eigenform of all Hecke oper-
ators T (l) with (l,m) = 1 and has the same eigenvalues for these operators as a unique
newform g in Mk(m′) for some m′ | m. The quotient L( f , s)/L(g, s) is a finite Dirichlet
series with a product expansion of the form

L( f , s)
L(g, s)

=
∏
p| m

m′

Qp(s),

where Qp(s) is a polynomial in p−s. The completed L-function of g has a functional
equation under s 7→ k − s and, provided f is an eigenform of Wm, so does Λm( f , s).
When this is the case, each of the Qp’s has a functional equation

Qp(k − s) = ±p−vp(m′/m)(k−2s)Qp(s).

DefineMk(m) to be the subspace of Mk(m) which is spanned by all f for which the sign
in the above equation is + for all p | m

m′ and set

M
±
k (m) := Mk(m) ∩ M±

k (m).

For the definition of Hecke operators acting on Jacobi forms of lattice index, the reader
can consult Definition 3.2. The following holds:

Theorem 1.37 ([SZ88, Main Thm (2nd version)]). For k ≥ 2, the spaces Jk,m and
M−2k−2(m) are isomorphic as Hecke modules.

The lifting map is given below:

Theorem 1.38 ([SZ88, Thm 5]). Let ∆ be a fundamental discriminant and let s be
an integer such that ∆ ≡ s2 mod 4m. Then the map

S∆,s : Jk,m → M
−
2k−2(m),
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defined by ∑
n,r′∈Z

4mn−r′2≥0

b(n, r′)qnζr′ 7→
∑
l≥0

{∑
a|l

ak−2
(

∆
a

)
b
(

l2

a2 ·
∆ − s2

4m
,

l
a

s
) }

ql

commutes with Hecke operators and with Atkin–Lehner involutions, it preserves cusp
forms and Eisenstein series and a linear combination of these maps is an isomorphism.

Special care needs to be taken when l = 0 in the above equation, however we omit
the details and refer the reader to [SZ88, §3] instead.

1.3.2. Jacobi forms and vector-valued modular forms. In this subsection, we
discuss the connection between Jacobi forms and vector-valued modular forms for the
dual Weil representation (see Definitions 1.4 and 1.16). We remind the reader of the
theta expansion of a Jacobi form φ in Jk,L:

φ(τ, z) =
∑

x∈L#/L

hφ,x(τ)ϑL,x(τ, z).

It was proved in [Boy15, §3.7] that, for every x ∈ L#/L and every Ã in Γ̃, the functions
hφ,x satisfy the following:

hφ,x|k− rk(L)
2

Ã =
∑

y∈L#/L

ρL(Ã)x,yhφ,y.

These modular properties imply that the vector-valued function

hφ,L(τ) :=
∑

x∈L#/L

hφ,x(τ)ex

is an element of Mk− rk(L)
2

(ρ∗L) (see Definition 1.4). Moreover, as a result of (1.18), the
vector-valued function

θL(τ, z) :=
∑

x∈L#/L

ϑL,x(τ, z)ex

is an element of M rk(L)
2

(ρL). The main result in [Boy15, §3] is the following theorem:

Theorem 1.39 ([Boy15, Thm 3.5]). If L = (L, β) is a positive-definite, even lattice
over Z, then the map

ϕ : φ 7→ hφ,L
is an isomorphism between Jk,L and Mk− rk(L)

2
(ρ∗L).

The results in [Boy15] hold over arbitrary totally real number fields, not only over
Q. A consequence of this theorem is that Jk,L = {0} if k < rk(L)/2 and that the spaces Jk,L

are finite-dimensional. When k ∈ Z, it also gives a connection between Jacobi forms of
odd rank lattice index and half-integral weight elliptic modular forms, while for Jacobi
forms of even rank lattice index it gives a connection to integral weight elliptic modular
forms. For every fixed lattice L, the value k = rk(L)/2 is called its singular weight.
The value k = (rk(L) + 1)/2 is called the critical weight. Note that there also exists
an isomorphism between skew-holomorphic Jacobi forms of lattice index L and vector-
valued modular forms for ρL. We do not go into further details and instead refer the
reader to [CS17, §15.2], for example, where the scalar case is treated.

Another important representation in the theory of vector-valued modular forms is
the Schrödinger representation. It is typically a representation of the Heisenberg group
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on the group algebra C[D] of some finite quadratic module D. Let H be the Heisenberg
group Z3 with the following composition law:

(m, n, t)(m′, n′, t′) = (m + m′, n + n′, t + t′ + mn′ − nm′).

Definition 1.40 (Schrödinger representation). Let L be a positive-definite, even lat-
tice over Z and let x ∈ L#/L. The Schrödinger representation of H on C[L#/L] twisted
at x is the representation σx : H → Aut(C[L#/L]) defined by

σx(m, n, t)ey := e (nβ(x, y) + (t − mn)β(x)) ey−mx.

We check that σx is indeed a representation: we have σx(0, 0, 0) = Idet(L) and, for
arbitrary elements (m, n, t) and (m′, n′, t′) of H, we have(

σx(m, n, t)σx(m′, n′, t′)
)
ey =σx(m, n, t)e

(
n′β(x, y) + (t′ − m′n′)β(x)

)
ey−m′x

=e
(
n′β(x, y) + (t′ − m′n′)β(x)

)
× e

(
nβ(x, y − m′x) + (t − mn)β(x)

)
ey−m′x−mx

=e
(
(n + n′)β(x, y) +

(
t + t′ + mn′ − nm′

− (m + m′)(n + n′)
)
β(x)

)
ey−(m+m′)x

=σx
(
(m, n, t)(m′, n′, t′)

)
ey.

Every element (m, n, t) of H can be written as a product

(m, 0, 0)(0, n, 0)(0, 0, t).

We remind the reader that a representation π : G → Aut(V) is unitary if and only
if π(g)

t
π(g) = Idim(V) for all g in G. Let {y1, . . . , ydet(L)} denote the elements of L#/L.

Then σx(1, 0, 0)eyi = eyi−x and therefore the matrix of σx(1, 0, 0) is a permutation matrix
(hence it is unitary). Furthermore, σx(0, 1, 0)eyi = e(β(x, yi))eyi and σx(0, 0, 1)eyi =

e(β(x))eyi , therefore their matrices are diagonal with diagonal entries of modulus equal
to one (hence they are unitary). It follows that σx is unitary.

Define the following right-action of Γ on H, for every A =
( a b

c d
)

in Γ:

((m, n, t), A) 7→ (m, n, t)A := (ma + nc,mb + nd, t).

Lemma ([Wil18, Lemma 4]). For every Ã in Γ̃ and every (m, n, t) in H, the following
relation holds between the Weil and the Schrödinger representations:

(1.26) ρL(Ã)−1σx(m, n, t)ρL(Ã) = σx((m, n, t)A).

We include the proof, since it is not given explicitly in [Wil18]:

Proof. Check that (1.26) holds for the generators T̃ and S̃ of Γ̃:

ρL(T̃ )−1σx(m, n, t)ρL(T̃ )ey =ρL(T̃ )−1σx(m, n, t)e(β(y))ey
=ρL(T̃ )−1e (nβ(x, y) + (t − mn)β(x) + β(y)) ey−mx

=e (nβ(x, y) + (t − mn)β(x) + β(y) − β(y − mx)) ey−mx

=e((m + n)β(x, y) + (t − m(m + n))β(x))ey−mx

=σx((m, n, t)T )ey.
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For S̃ , it suffices to check that equality holds for the three generators of H. We include
the calculations in one of the three cases, since the rest can be treated analogously:

ρL(S̃ )−1σx(1, 0, 0)ρL(S̃ )ey =ρL(S̃ )−1σx(1, 0, 0)
i−

rk(L)
2

det(L)
1
2

∑
s∈L#/L

e(−β(y, s))es

=ρL(S̃ )−1 i−
rk(L)

2

det(L)
1
2

∑
s∈L#/L

e(−β(y, s))es−x

=
1

det(L)

∑
s∈L#/L

∑
r∈L#/L

e(β(s − x, r) − β(y, s))er

=
1

det(L)

∑
s∈L#/L

e(β(r − y, s))
∑

r∈L#/L

e(−β(x, r))er

=e(−β(x, y))ey = σx((1, 0, 0)S )ey,

where we have used the fact that, for every y in L#/L, we have∑
s∈L#/L

e(β(y, s)) =

det(L), if y = 0 and
0, otherwise.

�

Since σx is unitary, its dual representation is obtained by complex conjugation:

σ∗x(m, n, t)ey = e (−nβ(x, y) + (mn − t)β(x)) ey−mx.

Taking complex conjugates on both sides of (1.26), we obtain the following relation
between the duals of the Schrödinger and the Weil representations:

ρL(Ã)−1σ∗x(m, n, t)ρ
∗
L(Ã) = σ∗x((m, n, t)

A)

and therefore

(1.27) σ∗x(m, n, t) = ρ∗L(Ã)σ∗x((m, n, t)
A)ρ∗L(Ã)−1.

We will use the Schrödinger representation in Section 2.4 to define an averaging oper-
ator on Jk,L.

1.3.3. Examples of Jacobi forms. We have seen some examples of Jacobi forms
of scalar index in Subsection 1.3.1. We list examples of Jacobi forms for some of the
lattices in Example 1.6, as given in [Gri18]. We remind the reader of the definitions of
the Dedekind η-function (1.6) and the scalar Jacobi theta series (1.25).

Example 1.41. For every n in N, τ in H and z = (z1, . . . , zn) in Cn, define

(1.28) ϑZn(τ, z) := ϑ(τ, z1) . . . ϑ(τ, zn).

For 1 ≤ n ≤ 8, the following function is a Jacobi form of weight 12 − n and index Dn:

ψ12−n,Dn(τ, z) := η(τ)24−3nϑZn(τ, z).

When n = 8, this is a Jacobi form of singular weight for D8. For n ≤ 7, the function
ψ12−n,Dn is a cusp form. It is well-known that D3 = A3 and hence we also obtain a cusp
form of weight 9 and index A3.

Example 1.42. The function

ψ4,A7(τ, z) = ϑ(τ, z1) . . . ϑ(τ, z7)ϑ(τ, z1 + · · · + z7)



20 1. PRELIMINARIES

is an element of J4,A7 (we have written z = (z1, . . . , z7)). Set

Θ1,A2(τ, z1, z2) :=
ϑ(τ, z1)ϑ(τ, z2)ϑ(τ, z1 + z2)

η(τ)
.

Then ∈ J1,A2(v
8
η) and

ψ9,A2 := η16(τ)Θ1,A2(τ, z1, z2)
is an element of S 9,A2 . We also have that

ψ6,2A2(τ, z) = η8(τ)Θ1,A2(τ, z1, z2)Θ1,A2(τ, z3, z4) ∈ S 6,2A2

(where nA2 = A2 ⊕ · · · ⊕ A2︸           ︷︷           ︸
n times

) and that

ψ3,3A2(τ, z) = Θ1,A2(τ, z1, z2)Θ1,A2(τ, z3, z4)Θ1,A2(τ, z5, z6) ∈ J3,3A2 .

Examples 1.41 and 1.42 are part of the theory of theta blocks developed in [GSZ18].
Here is another example from [Gri]:

Example 1.43. Bearing in mind the modularity properties of theta series (1.18) and
the fact that E8 is a unimodular lattice, the theta series

(1.29) ϑE8(τ, z) =
∑
r∈E8

e
(
τ

(r, r)
2

+ (r, z)
)

is an element of J4,E8 . This is a Jacobi form of singular weight for E8. Furthermore, fix
an element x in E8 and set (x, x) = 2m. Then the following function defined on H×C is
a Jacobi form of weight 4 and scalar index m:

ϑE8,x(τ, z) := ϑE8(τ, zx).

It has a Fourier expansion of the form

ϑE8,x(τ, z) = 1 +
∑

n≥0,l∈Z

a(n, l)e(nτ + lz),

where
a(n, l) = #{y ∈ E8 : (y, y) = n and (x, y) = l}.

Note that the scalar Eisenstein series E4,1,0 is equal to ϑE8,( 1
2 ,...,

1
2 ).

In general, if L is an even, unimodular lattice, then

ϑL,0(τ, z) =
∑
r∈L

e(β(r)τ + β(r, z))

is a Jacobi form of singular weight rk(L)
2 and index L. The type of construction we

encountered in the last example can be extended to arbitrary lattices in the following
way: let φ ∈ Jk,L and λ ∈ L; for a variable z in C, the function φ(τ, zλ) is a Jacobi form
of weight k and scalar index β(λ).



CHAPTER 2

Poincaré and Eisenstein series

In this chapter, we define Poincaré series for Jacobi forms of lattice index and show
that they reproduce the Fourier coefficients of cusp forms under the Petersson scalar
product. We compute the Fourier expansions of Poincaré and Eisenstein series and
give an explicit formula for the Fourier coefficients of the trivial Eisenstein series in
terms of values of Dirichlet L-functions at negative integers. For even weight and fixed
index, we obtain non-trivial linear relations between the Fourier coefficients of non-
trivial Eisenstein series and those of the trivial one. This result is used to obtain formulas
for the Fourier coefficients of Eisenstein series associated with isotropic elements of
small order.

Throughout this chapter, let k be a positive integer and let L = (L, β) be a positive-
definite, even lattice over Z. For every pair (D, r) in the support of L (1.12), define the
following complex-valued function on the space H × (L ⊗ C):

gL,D,r(τ, z) := e (τ (β(r) − D) + β(r, z)) .

Lemma 2.1. The function gL,D,r is invariant under the |k,L-action of JL
∞. Furthermore,

gL,D,r|k,L(−I2)(τ, z) = (−1)kgL,D,−r(τ, z).

Proof. Let γ =
(( 1 n

0 1
)
, (0, µ)

)
be an arbitrary element of JL

∞. Then

gL,D,r|k,Lγ(τ, z) = gL,D,r (τ + n, z + µ) = gL,D,r(τ, z),

since e(n(β(r) − D)) = e(β(r, µ)) = 1. For the second part, we have

gL,D,r|k,L(−I2)(τ, z) =(−1)−ke(τ(β(r) − D) + β(r,−z))

=(−1)−ke(τ(β(−r) − D) + β(−r, z)) = (−1)kgL,D,−r(τ, z). �

Note that the function gL,r(·, ·) from Definition 1.28 is equal to gL,0,r(·, ·).

2.1. Poincaré series

In this section, we define Jacobi–Poincaré series of lattice index and deduce some
of their properties, using the methods in [BK93].

Definition 2.2. Let the pair (D, r) in supp(L) be such that D < 0. Define the Jacobi–
Poincaré series of weight k and index L associated with the pair (D, r) as the series

(2.1) Pk,L,D,r(τ, z) :=
∑

γ∈JL
∞\JL

gL,D,r|k,Lγ(τ, z).

As a consequence of Lemma 2.1, the series (2.1) is independent of the choice of
coset representatives of JL

∞ \ JL. The same lemma also implies that

(2.2) Pk,L,D,−r = (−1)kPk,L,D,r,

as was the case for Eisenstein series. The following theorem is the main result of this
section:

21
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Theorem 2.3. Let k be a positive integer and let L = (L, β) be a positive-definite,
even lattice over Z. The Poincaré series Pk,L,D,r satisfies the following:

(i) If k >
rk(L)

2 + 2, then Pk,L,D,r is absolutely and uniformly convergent on compact
subsets of H× (L⊗C) and it is an element of S k,L. Furthermore, define the constant

λk,L,D := 2−2k+
rk(L)

2 +2Γ

(
k −

rk(L)
2
− 1

)
det(L)−

1
2 (π|D|)−k+

rk(L)
2 +1.

For every cusp form φ in S k,L with Fourier expansion

(2.3) φ(τ, z) =
∑

(D′,r′)∈supp(L)

Cφ(D′, r′)e
(
(β(r′) − D′)τ + β(r′, z)

)
,

the following holds:

〈φ, Pk,L,D,r〉 = λk,L,DCφ(D, r).

(ii) For every (D, r) and (D′, r′) in supp(L) such that D < 0, set

(2.4) δL(D, r,D′, r′) :=

1, if D′ = D and r′ ≡ r mod L and
0, otherwise

and

Gk,L,D,r(D′, r′) :=δL(D, r,D′, r′) + (−1)kδL(D,−r,D′, r′) +
2πik

det(L)
1
2

×

(
D′

D

) k
2−

rk(L)
4 −

1
2 ∑

c≥1

c−
rk(L)

2 −1Jk− rk(L)
2 −1

4π(DD′)
1
2

c


×

(
HL,c(D, r,D′, r′) + (−1)kHL,c(D,−r,D′, r′)

)
,

(2.5)

where the function Jα is the J-Bessel function of index α defined in (1.1) and

HL,c(D, r,D′, r′) :=
∑

d∈Z×(c),λ∈L/cL

ec
(
(β(λ + r) − D)d−1

+ (β(r′) − D′)d + β(r′, λ + r)
)
.

(2.6)

The Poincaré series Pk,L,D,r has the following Fourier expansion:

Pk,L,D,r(τ, z) =
∑

(D′,r′)∈supp(L)
D′<0

Gk,L,D,r(D′, r′)e
(
(β(r′) − D′)τ + β(r′, z)

)
.

Note that (2.2) follows from (ii). Furthermore, it is clear from the definitions of
δL(D, r,D′, r′) and HL,c(D, r,D′, r′) that Pk,L,D,r only depends on r mod L. As a conse-
quence of this fact and of (i), we obtain the following corollary:

Corollary 2.4. The set{
Pk,L,D,r : r ∈ L#/L,D ∈ Q<0, β(r) ≡ D mod Z

}
generates S k,L.

Proof. (i) Choose {(
A, (λ, 0)A

)
: A ∈ SL2(Z)∞\SL2(Z), λ ∈ L

}



2.1. POINCARÉ SERIES 23

as a set of coset representatives for JL
∞\JL and note that (λ, 0)A = (aλ, bλ) for every

A =
( a b

c d
)

in SL2(Z). The series (2.1) can be written as

Pk,L,D,r(τ, z) =
∑

λ∈L,
( a b

c d
)
∈Γ∞\Γ

e
(
−cβ(z + (aτ + b)λ)

cτ + d
+ a2τβ(λ) + aβ(λ, z)

)

× e
(
(β(r) − D)

aτ + b
cτ + d

+ β

(
r,

z + (aτ + b)λ
cτ + d

))
(cτ + d)−k.

Using the fact that

a2τ(cτ + d) − c(aτ + b)2 = aτ − abcτ − b(ad − 1) = (aτ + b) − ab(cτ + d)

and the following well-known identity for the modular action of Γ on H:

(2.7)
aτ + b
cτ + d

=
a
c
−

1
c(cτ + d)

,

we obtain that

Pk,L,D,r(τ, z) =
∑

λ∈L,
( a b

c d
)
∈Γ∞\Γ

(cτ + d)−ke
(
β(z)

−c
cτ + d

+ β(λ)
aτ + b
cτ + d

+
β(λ, z)
cτ + d

(2.8)

+ (β(r) − D)
aτ + b
cτ + d

+
β(r, z)
cτ + d

+ β(r, λ)
aτ + b
cτ + d

)
=

∑
λ∈L,

( a b
c d

)
∈Γ∞\Γ

e
(
−D

aτ + b
cτ + d

)
(cτ + d)−ke

(
−cβ(z)
cτ + d

)

× e
(
β(λ + r)

aτ + b
cτ + d

+
β(λ + r, z)

cτ + d

)
=

∑
A∈Γ∞\Γ

e (−DAτ) j(A, τ)−ke
(
−cz

j(A, τ)

)
ϑL,r(A(τ, z)),

after rearranging terms and where c denotes the bottom-left entry of A in the above
equation. For every A =

( a b
c d

)
in Γ, let Ã denote the canonical lifting (

√
cτ + d, A) to Γ̃.

Using (1.18), we obtain that

Pk,L,D,r(τ, z) =
∑

A∈Γ∞\Γ

e (−DAτ) j(A, τ)−
(
k− rk(L)

2

)
ϑL,r| rk(L)

2 ,LÃ(τ, z)

=
∑

A∈Γ∞\Γ

e (−DAτ) j(A, τ)−
(
k− rk(L)

2

) ∑
y∈L#/L

ρL(Ã)r,yϑL,y(τ, z).(2.9)

The image of ρL is finite, by [Boy15, Theorem 3.4, (ii)]. It follows that the inner
sum in the above equation is bounded by above on compact subsets of H × L ⊗ C by a
constant which is independent of A (but dependant on the subset). Coset representatives
of SL2(Z)∞\SL2(Z) are well-known and given by matrices A =

( a b
c d

)
with (c, d) = 1

and, for each pair (c, d), choose a and b in Z such that ad−bc = 1. It is also well-known
that, for every lattice Λ in C, the series ∑

ω∈Λ\{0}

|ω|−s

converges absolutely for<(s) > 2 (see [CS17, Lemma 2.1.6], for example). Combining
this with the fact that

|e(−DAτ)| = exp
(
2πD=(Aτ)

)
≤ 1
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for every D in Q≤0, we obtain that Pk,L,D,r converges uniformly and absolutely on com-
pact subsets of H × L ⊗ C for k − rk(L)

2 > 2.
Provided we show that each Pk,L,D,r is invariant under the |k,L-action of JL, the fact

that it is an element of S k,L follows from inspecting its Fourier expansion (ii). For every
δ in JL, we have

Pk,L,D,r|k,Lδ(τ, z) =
∑

γ∈JL
∞\JL

gL,D,r|k,Lγ|k,Lδ(τ, z) =
∑

γ∈JL
∞\JL

gL,D,r|k,L(γδ)(τ, z)

=
∑

γ′∈JL
∞\JL

gL,D,r|k,Lγ
′(τ, z) = Pk,L,D,r(τ, z),

since right multiplication by δ is an automorphism of JL
∞\JL.

Let φ in S k,L have Fourier expansion (2.3). Insert the definition of Pk,L,D,r into the
definition of the Petersson scalar product of φ and Pk,L,D,r given in (1.21) and interchange
the order of integration and summation, using the fact that the integrand converges
absolutely and uniformly:

〈φ, Pk,L,D,r〉 =

∫
FJL

ωφ,Pk,L,D,r (τ, z)dVL,(τ,z) =
∑

γ∈JL
∞\JL

∫
FJL

ωφ,gL,D,r |k,Lγ(τ, z)dVL,(τ,z)(2.10)

We claim that

ωφ,gD,r |k,Lγ(τ, z) = ωφ,gD,r (γ(τ, z))

for every γ in JL. Suppose that γ = (A, (λ, µ)), with A =
( a b

c d
)

in Γ and (λ, µ) in HL(Z).
Definition (1.20) implies that

ωφ,gD,r |k,Lγ(τ, z) =φ(τ, z)(cτ + d)−ke
(
−cβ(z + λτ + µ)

cτ + d
+ τβ(λ) + β(λ, z)

)
× gL,D,r(γ(τ, z))vke−4πβ(y)v−1

=φ(τ, z)
(cτ + d)k

|cτ + d|2k

∣∣∣∣e (
−cβ(z+λτ+µ)

cτ+d + τβ(λ) + β(λ, z)
)∣∣∣∣2

e
(
−cβ(z+λτ+µ)

cτ+d + τβ(λ) + β(λ, z)
)

× gL,D,r(γ(τ, z))vke−4πβ(y)v−1
.

Since φ is invariant under the |k,L-action of JL, =(Aτ) =
=(τ)
|cτ+d|2 for every τ in H and every

A in Γ and |e(z)|2 = e−4π=(z) for every z in C, it follows that

ωφ,gD,r |k,Lγ(τ, z) =φ(γ(τ, z))gL,D,r(γ(τ, z))=(Aτ)k

× exp
(
−4π

(
β(y)v−1 + =

(
−cβ(z + λτ + µ)

cτ + d
+ τβ(λ) + β(λ, z)

)))
.

For z1, z2 in C, λ in L and z in L ⊗ C, the following equalities hold:

=(z1z2) = <(z1)=(z2) + =(z1)<(z2),

=(β(λ, z)) = β(λ,=(z)),

<(β(z)) = β(<(z)) − β(=(z)) and

=(β(z)) = β(<(z),=(z)).
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Thus,

β(y)v−1 + =

(
−cβ(z + λτ + µ)

cτ + d
+ τβ(λ) + β(λ, z)

)
=

1
v|cτ + d|2

(
|cτ + d|2β(y + vλ) + c2v2β

(
<(z + λτ + µ)

)
− c2v2

× β
(
=(z + λτ + µ)

)
− cv(cu + d)β

(
(<(z + λτ + µ),=(z + λτ + µ)

) )
= β

(
=

(z + λτ + µ

cτ + d

))
=(Aτ)−1.

Substitute (τ, z) for γ(τ, z) in (2.10). Since the volume element VL,(τ,z) is invariant under
this change of variable, we obtain by the usual unfolding argument that

〈φ, Pk,L,D,r〉 =
∑

γ∈JL
∞\JL

∫
γFJL

φ(τ, z)gL,D,r(τ, z)vke−4πβ(y)v−1
dVL,(τ,z)

=

∫
F

J
L
∞

φ(τ, z)gL,D,r(τ, z)vke−4πβ(y)v−1
dVL,(τ,z),

where FJL
∞

denotes a fundamental domain for the action of JL
∞ on H × (L ⊗ C). Each

γ =
(( 1 n

0 1
)
, (0, µ)

)
in JL

∞ acts on H × (L ⊗ C) via

(γ, (τ, z)) 7→ (τ + n, z + µ) .

Therefore, choose

FJL
∞

= {(τ, z) ∈ H × (L ⊗ C) : 0 ≤ u ≤ 1, v > 0, 0 ≤ xi ≤ 1, y ∈ L ⊗ R},

where we remind the reader that we write τ = u+ iv and z = x+ iy. It is straight-forward
to check that every pair (τ′, z′) in H × (L ⊗ C) can be written as γ(τ, z) for some γ in JL

∞

and some unique (τ, z) in our chosen fundamental domain. Insert the Fourier expansion
of φ to obtain that

〈φ, Pk,L,D,r〉 =

∫ 1

0

∫ ∞

0

∫
[0,1]rk(L)

∫
Rrk(L)

∑
(D′,r′)∈supp(L)

Cφ(D′, r′)e((β(r′) − D′)τ

+ β(r′, z))e ((β(r) − D)τ + β(r, z))vk−rk(L)−2e−4πβ(y)v−1
dydxdvdu

=
∑

(D′,r′)∈supp(L)

Cφ(D′, r′)
∫ 1

0

∫ ∞

0

∫
[0,1]rk(L)

∫
Rrk(L)

× e
(
u
[
(β(r′) − D′) − (β(r) − D)

])
e−2πv((β(r′)−D′)−(β(r)−D))

× e(β(r′ − r, x) + iβ(r + r′, y))vk−rk(L)−2e−4πβ(y)v−1
dydxdvdu

=Cφ(D, r)
∫ ∞

0
e−4π(β(r)−D)vvk−rk(L)−2

∫
Rrk(L)

e−4π(β(r,y)+β(y)v−1)dydv.

In order to obtain the last formula, we have used the orthogonality relations for the
complex exponential function

(2.11)
∫ 1

0
e(u(n′ − n))du =

1, if n = n′ and
0, otherwise

and the fact that a similar result holds in higher dimensions:

(2.12)
∫

[0,1]rk(L)
e(β(r′ − r, x))dx =

1, if r ≡ r′ mod L and
0, otherwise.



26 2. POINCARÉ AND EISENSTEIN SERIES

One way to prove (2.12) is by writing the Gram matrix of β in Smith normal form, i.e.
write G = UDV , such that U = (ui j)i, j and V = (vi j)i, j are matrices in GLrk(L)(Z) and
D = diag(d1, . . . , drk(L)), where d1 | d2 | · · · | drk(L) are the elementary divisors of G. It is
clear that (2.11) implies that ∫

[0,1]rk(L)
e(β(L, x))dx = 1.

Every s , 0 in L#/L can be written as s = dkλ, where dk is one of the elementary
divisors of G and λ ∈ L. It follows that∫

[0,1]rk(L)
e(β(s, x))dx =

∫
[0,1]rk(L)

e
(
[U ts]t

D(V x)
)

dx

= det(V)
rk(L)∏
i=1

∫ V2i

V1i

e
(
di[U ts]ix′i

)
dx′i

= det(V)
rk(L)∏
i=1

1
2πidi[U ts]i

e
(
x′i
)
|
di[U t s]iV2i
di[U t s]iV1i

,

under the substitution x′ = V x and where [V1i,V2i] = (v1i, . . . , vrk(L)i)([0, 1]rk(L))t. In
particular, V1i and V2i are integers for all i in {1, . . . , rk(L)}. When i = k, we have
di[U ts]i ∈ Z and therefore the corresponding term in the above product vanishes.

Since L is positive-define, its Gram matrix G can be diagonalized with a real or-
thogonal matrix, i.e. G = QtDQ for some Q = (qi j)i, j in Mrk(L)(R) which satis-
fies QtQ = Irk(L) and some diagonal matrix D = diag(α1, . . . , αrk(L)). It follows that∏rk(L)

j=1 α j = det(L). Thus,

I :=
∫
Rrk(L)

e−4π(β(r,y)+β(y)v−1)dy =

∫
Rrk(L)

e−4π(rt(QtDQ)y+ 1
2 v−1yt(QtDQ)y)dy

=

∫
Rrk(L)

e−4π((Qr)tDy′+ 1
2 v−1y′tDy′)dy,

under the substitution y′ = Qy. Writing the exponents explicitly as functions of the
individual vector components and dropping the primes yields

I =

∫
Rrk(L)

e−4π
(∑rk(L)

j=1 α j(Qr) jy j+(2v)−1 ∑rk(L)
j=1 α jy2

j

)
dy =

rk(L)∏
j=1

(∫
R

e−2πα j(2(Qr) jy j+v−1y2
j )dy j

)
.

Complete the square in the exponent and obtain that

I =

rk(L)∏
j=1

(
e2πα jv(Qr)2

j

∫
R

e−2πα jv−1(y j+v(Qr) j)2
dy j

)
=

rk(L)∏
j=1

(
e2πα jv(Qr)2

j

∫
R

e−2πα jv−1y2
j dy j

)
,

by a simple change of variable. Substitute x j for (2πα jv−1)
1
2 y j and use the standard

Gaussian integral to obtain that

I = e4πv 1
2
∑rk(L)

j=1 α j(Qr)2
j

rk(L)∏
j=1

(
v

2α j

) 1
2

= 2−
rk(L)

2 det(L)−
1
2 v

rk(L)
2 e4πvβ(r).

Thus,

〈φ, Pk,L,D,r〉 =Cφ(D, r)2−
rk(L)

2 det(L)−
1
2

∫ ∞

0
e−4πvDvk− rk(L)

2 −2dv = Cφ(D, r)λk,L,D,
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as claimed. Thus, Jacobi–Poincaré series reproduce the Fourier coefficients of Jacobi
cusp forms under the Petersson scalar product up to a constant depending on the weight,
the index and the Poincaré series itself (note however that it does not depend on r).

(ii) Insert the standard choice of coset representatives of SL2(Z)∞\SL2(Z) into (2.8),
i.e. {(

a b
c d

)
∈ Γ : (c, d) = 1 and a, b are chosen such that ad − bc = 1

}
,

and split this sum up into two sums, according to whether c = 0 or c , 0.
When c = 0, we have d = ±1, a = d = ±1 and b can be any integer. Since r ∈ L#

and λ ∈ L, we have that β(r, λ), β(λ) ∈ Z and we obtain the following contribution:

∑
λ∈L

[
e (β(λ)τ + β(λ, z) + (β(r) − D)τ + β(r, z) + β(r, λ)τ)

+ (−1)−ke(β(λ)τ − β(λ, z) + (β(r) − D)τ − β(r, z) + β(r, λ)τ)
]

=
∑
λ∈L

e ((β(λ + r) − D)τ)
[
e(β(λ + r, z)) + (−1)ke(β(−(λ + r), z))

]
.

In order to express this as a standard Fourier expansion of a Jacobi form, set r′ := λ+ r,
which implies that we are summing over all r′ in L# such that r′ ≡ r mod L. Then
introduce an additional summation over all D′ in Q with D′ < 0 such that (D′, r′) ∈
supp(L) and impose the condition that D′ = D. The contribution becomes

∑
(D′,r′)∈supp(L)

D′<0

e
(
(β(r′) − D′)τ + β(r′, z)

) [
δL(D, r,D′, r′) + (−1)kδL(D, r,D′,−r′)

]
,

where δL is defined in (2.4).
For the contribution coming from terms with c , 0, Lemma 2.1 implies that the

terms with c < 0 are obtained from those with c > 0, by multiplying their contribution
with (−1)k and replacing z with −z. Thus, concentrate on the former case. Set n :=
β(r) − D and use (2.7) to write the contribution coming from terms with c > 0 as

∑
c>0

(c,d)=1

∑
λ∈L

(cτ + d)−ke
(
−c

cτ + d
β

(
z −

1
c
λ

)
+

a
c
β(λ)

+ β

(
r,

1
cτ + d

(
z −

1
c
λ

)
+

a
c
λ

)
+ n

(
a
c
−

1
c(cτ + d)

) )
.

Write d as d′ + αc, where d′ is the reduction of d modulo c and α ∈ Z. As d runs
through Z with the condition that (d, c) = 1 in the above equation, the new variable d′

runs through congruence classes modulo c which are coprime to c (drop the prime from
the notation for simplicity) and α runs through Z. Similarly, write λ as λ′+µc, where λ′

is the reduction of λ modulo cL and µ ∈ L. The new variable λ′ runs through the coset
representatives of L/cL (drop the prime from the notation) and µ runs through L. We
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obtain the contribution∑
c>0,α∈Z,d∈Z×(c)
µ∈L,λ∈L/cL

c−k

(
τ +

d
c

+ α

)−k

e
(
−1

τ + d
c + α

β

(
z −

1
c
λ − µ

)
+

a
c
β(λ)

+
1

c(τ + d
c + α)

β

(
r, z −

1
c
λ − µ

)
+

a
c
β(r, λ) + n

a
c
−

1
c2(τ + d

c + α)

 )
=

∑
c>0

c−k
∑

d∈Z×(c),λ∈L/cL

ec

(
(β(λ) + β(r, λ) + n) d−1

)
Fk,L,c;(n,r)

(
τ +

d
c
, z −

λ

c

)
,

where d−1 denotes the inverse of d modulo c. Furthermore, the function Fk,L,c;(n,r) :
H × (L ⊗ C)→ C is defined as

Fk,L,c;(n,r)(τ, z) :=
∑

α∈Z,µ∈L

(τ + α)−ke
(
−1
τ + α

β(z − µ) +
β(r, z − µ)
c(τ + α)

−
n

c2(τ + α)

)
.

It has period Z in τ and period L in z and hence it has a Fourier expansion of the form

Fk,L,c;(n,r)(τ, z) =
∑

n′∈Z,r′∈L#

f (n′, r′)e
(
n′τ + β(r′, z)

)
.

Since Pk,L,D,r is absolutely and uniformly convergent in τ and z on compact subsets of
H×(L⊗C), so is Fk,L,c;(n,r). Hence, its Fourier coefficients can be computed by integrating
it against an appropriate exponential function. For every fixed v > 0, y in L ⊗ R, m in Z
and s in L#, we have∫

[0,1]

∫
[0,1]rk(L)

Fk,L,c;(n,r)(u + iv, x + iy)e (−mu − β(s, x)) dxdu

=
∑

n′∈Z,r′∈L#

f (n′, r′)e
(
in′v + β(r′, iy)

) ∫
[0,1]

e
(
(n′ − m)u

)
du

×

∫
[0,1]rk(L)

e
(
β(r′ − s, x)

)
dx = f (m, s)e(imv)e (β(s, iy)) ,

using (2.11) and (2.12). Thus, evaluate f (n′, r′) as

f (n′, r′) =
∑

α∈Z,µ∈L

∫
[0,1]

∫
[0,1]rk(L)

(τ + α)−ke
(
−1
τ + α

β(z − µ) +
1

c(τ + α)
β(r, z − µ)

−
n

c2(τ + α)

)
e(−n′τ)e

(
−β(r′, z)

)
dxdu

=

∫ ∞

−∞

τ−ke(−n′τ)
∫ ∞

−∞

· · ·

∫ ∞

−∞

e
(
−1
τ
β(z) +

1
cτ
β(r, z) −

n
c2τ
− β(r′, z)

)
dxdu,

where we write τ = u + iv and z = x + iy as usual. Make the change of variable
z 7→ z + 1

c r − τr′. Expanding the integrand, the inner multiple integral is equal to∫ ∞

−∞

· · ·

∫ ∞

−∞

e
(
−1
τ
β(z) +

1
c2τ

β(r) + τβ(r′) −
1
c
β(r, r′) −

n
c2τ

)
dx

= ec
(
−β(r′, r)

)
e
(
τβ(r′) +

D
c2τ

) ∫ ∞

−∞

· · ·

∫ ∞

−∞

e
(
−1
τ
β(z)

)
dx.
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The multiple integral in x is standard and can be computed by diagonalizing β and using
the generalized Gaussian integral∫ ∞

−∞

exp
(
1
2

iax2 + iJx
)

dx =

(
2πi
a

) 1
2

exp
(
−iJ2

2a

)
, a, J ∈ C.

We have ∫ ∞

−∞

· · ·

∫ ∞

−∞

e
(
−1
τ
β(z)

)
dx =

∫ ∞

−∞

· · ·

∫ ∞

−∞

e
(
−zt(QtDQ)z

τ

)
dx

= e
πi
τ ytGy

∫ ∞

−∞

· · ·

∫ ∞

−∞

exp
(
−πi
τ

(Qx)tD(Qx) +
2π
τ

(Qx)tD(Qy)
)

dx

= e
πi
τ ytGy

∫ ∞

−∞

· · ·

∫ ∞

−∞

exp

rk(L)∑
j=i

(
−πi
τ
α jx2

j +
2π
τ
α j(Qy) jx j

) dx

= e
πi
τ ytGy

rk(L)∏
j=i

∫ ∞

−∞

exp
(
−πi
τ
α jx2

j +
2π
τ
α j(Qy) jx j

)
dx j

= e
πi
τ ytGy

rk(L)∏
j=i

 2πi
−2πα j

τ


1
2

exp

−i
(2πα j

iτ (Qy) j

)2

2 · −2πα j

τ


= e

πi
τ ytGy exp

−πi
τ

rk(L)∑
j=1

α j(Qy)2
j

 rk(L)∏
j=1

(
τ

iα j

) 1
2

= det(L)−
1
2

(
τ

i

) rk(L)
2
,

since
∏

j α j = det(L) and
∑

j α j(Qy)2
j = β(y, y). Set D′ := β(r′) − n′. Thus,

f (n′, r′) = det(L)−
1
2 ec

(
−β(r′, r)

) ∫ ∞

−∞

(
τ

i

) rk(L)
2
τ−ke

(
D′τ +

D
c2τ

)
du.

Consider the cases D′ ≥ 0 and D′ < 0 separately. We remind the reader that v = =(τ) is
fixed.

If D′ ≥ 0, then let R > 0 and consider the closed contour integral

(2.13)
∮

1

(u + iv)k− rk(L)
2

e
(
D′(u + iv) +

D
c2(u + iv)

)
du,

over the contour C from Figure 1, formed by traversing the line segment

L = {σ : −R ≤ σ ≤ R}

from left to right and the semi-circle

S = {Reiθ : 0 ≤ θ ≤ π}

in the counter-clockwise direction.
The integrand is holomorphic inside C and therefore (2.13) is equal to zero by

Cauchy’s Theorem. The integral we seek is

(2.14) lim
R→∞

∫
L

1

(u + iv)k− rk(L)
2

e
(
D′(u + iv) +

D
c2(u + iv)

)
du

and hence we need to estimate the integral over S as R → ∞. The estimation lemma
from complex analysis implies that its absolute value is less than or equal to

πR max
u∈S

∣∣∣∣∣∣∣ 1

(u + iv)k− rk(L)
2

e
(
D′(u + iv) +

D
c2(u + iv)

)∣∣∣∣∣∣∣ .
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R−R
σ

t

S

O L

Figure 1. The contour C

With the chosen parametrization of u = Reiθ (0 ≤ θ ≤ π), we have
R

|u + iv|k−
rk(L)

2

=
R

|R cos θ + i(R sin θ + v)|k−
rk(L)

2

=
R

(R2 + 2Rv sin θ + v2)
k
2−

rk(L)
4

.

For fixed R and v, the denominator reaches its minimum when sin θ reaches its minimum
value of zero. Since k > rk(L) + 2 by assumption, we have

lim
R→∞

R

(R2 + v2)
k
2−

rk(L)
4

= 0.

Moving on to the exponential term, we have:∣∣∣e (
D′(u + iv)

)∣∣∣ =
∣∣∣exp

(
2πiD′R(cos θ + i sin θ) − 2πD′v

)∣∣∣
=

∣∣∣exp
(
−2πD′R sin θ

)∣∣∣ ∣∣∣exp(−2πD′v)
∣∣∣ ,

and the maximum of this expression is equal to exp(−2πD′v), since D′ ≥ 0 and 0 ≤
sin θ ≤ 1 for 0 ≤ θ ≤ π. For the final estimate, we have:∣∣∣∣∣∣e

(
D

c2(u + iv)

)∣∣∣∣∣∣ =

∣∣∣∣∣∣exp
(

2πiD
c2(R cos θ + i(R sin θ + v))

)∣∣∣∣∣∣
=

∣∣∣∣∣∣exp
(

2πiDR cos θ
c2(R2 cos2 θ + (R sin θ + v)2)

+
2πD(R sin θ + v)

c2(R2 cos2 θ + (R sin θ + v)2)

)∣∣∣∣∣∣
=

∣∣∣∣∣∣exp
(

2πD(R sin θ + v)
c2(R2 + 2Rv sin θ + v2)

)∣∣∣∣∣∣ ,
and the maximum of this expression converges to 1 as R → ∞, by a similar argument
as above. Thus, the integral over S converges to zero as R → ∞. Therefore, so does
(2.14) and hence f (n′, r′) vanishes when D′ ≥ 0.

If D′ < 0, then substitute i
c

(
D
D′

)1/2
s for τ and write s = σ + it. Integrating in u from

−∞ to∞ implies that we are integrating in t from∞ to −∞ and we obtain that

f (n′, r′) = det(L)−
1
2 ec

(
−β(r′, r)

)
i−kck− rk(L)

2 −1
( D
D′

) rk(L)
4 −

k
2 + 1

2

(−1)
∫ −∞

∞

s
rk(L)

2 −k

× e
(
−

(−D′)i
c

( D
D′

)1/2

s +
(−D)

c2

[
i
c

( D
D′

)1/2

s
]−1 )

dt

= det(L)−
1
2 ec

(
−β(r′, r)

)
i−kck− rk(L)

2 −1
(

D′

D

) k
2−

rk(L)
4 −

1
2

×

∫ ∞

−∞

s−
(
k− rk(L)

2

)
exp

2π(DD′)
1
2

c

(
s − s−1

) dt.
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For fixed ω > 0 and κ > 0, the functions

f (t) =

( t
κ

)ω−1
2

Jω−1(2
√
κt), t > 0, and F(s) = s−ωe−

κ
s , <(s) > 0,

are mutually inverse with respect to the Laplace transform, i.e.

f (t) =
1

2πi

∫ T+i∞

T−i∞
F(s)estds, T > 0.

Taking t = κ =
2π(DD′)1/2

c and ω = k − rk(L)
2 , it follows that

f (n′, r′) =
2πi−k

det(L)
1
2

ec
(
−β(r′, r)

)
ck− rk(L)

2 −1
(

D′

D

) k
2−

rk(L)
4 −

1
2

Jk− rk(L)
2 −1

4π(DD′)
1
2

c


(note that ds = idt) and the terms with c > 0 give the following contribution:∑

c>0

∑
d∈Z×(c),λ∈L/cL

ec

(
(β(λ) + β(r, λ) + n) d−1 − β(r′, r)

) ∑
n′∈Z,r′∈L#

β(r′)<n′

2πi−k

det(L)
1
2

c−
rk(L)

2 −1

×

(
D′

D

) k
2−

rk(L)
4 −

1
2

Jk− rk(L)
2 −1

4π(DD′)
1
2

c

 e
(
n′

(
τ +

d
c

)
+ β

(
r′, z −

λ

c

))
.

Writing i−1 = −i and substituting λ 7→ −λ in the lattice sum, the above is equal to

∑
(D′,r′)∈supp(L)

2πik

det(L)
1
2

(
D′

D

) k
2−

rk(L)
4 −

1
2 ∑

c>0

c−
rk(L)

2 −1Jk− rk(L)
2 −1

4π(DD′)
1
2

c

 (−1)k

×
∑

d∈Z×(c),λ∈L/cL

ec

(
(β(λ − r) − D)d−1 + (β(r′) − D′)d + β(r′, λ − r)

)
× e

(
(β(r′) − D′)τ + β(r′, z)

)
.

Terms with c < 0 give the same contribution, multiplied by (−1)k and with z replaced
by (−z) and therefore they give a contribution of

∑
(D′,r′)∈supp(L)

2πik

det(L)
1
2

(
D′

D

) k
2−

rk(L)
4 −

1
2 ∑

c>0

c−
rk(L)

2 −1Jk− rk(L)
2 −1

4π(DD′)
1
2

c


×

∑
d∈Z×(c),λ∈L/cL

ec

(
(β(λ − r) − D)d−1 + (β(r′) − D′)d + β(r′, λ − r)

)
× e

(
(β(r′) − D′)τ + β(r′,−z)

)
=

∑
(D′,r′)∈supp(L)

2π(−i)k

det(L)
1
2

(
D′

D

) k
2−

rk(L)
4 −

1
2 ∑

c>0

c−
rk(L)

2 −1Jk− rk(L)
2 −1

4π(DD′)
1
2

c


×

∑
d∈Z×(c),µ∈L/cL

ec

(
(β(µ + r) − D)d−1 + (β(−r′) − D′)d + β(−r′, µ + r)

)
× e

(
(β(−r′) − D′)τ + β(−r′, z)

)
.

We have made the substitution µ = −λ. Substitute r′ for −r′ in the above by abuse of
notation. The observation that HL,c(D, r,D′,−r′) = HL,c(D,−r,D′, r′) for every r and r′

in L# concludes the proof. �



32 2. POINCARÉ AND EISENSTEIN SERIES

The lattice sum HL,c(D, r,D′, r′) can be re-written in terms of Kloosterman sums
(1.2) as

HL,c(D, r,D′, r′) =
∑
λ∈L/cL

ec(β(r′, λ + r))S (β(r′) − D′, β(λ + r) − D; c).

As a consequence of Theorem 2.3, the following estimates for the Fourier coefficients
of Jacobi cusp forms hold:

Proposition 2.5. Suppose that k > rk(L) + 2. Let φ in S k,L have Fourier expansion
(2.3). Then there exists an ε > 0 such that

Cφ(D′, r′) �ε,k

(
1 + 2

rk(L)2

2 +rk(L)+ε det(L)ε−
1
2 |D′|

rk(L)
2 +ε

)1/2

× det(L)
1
4 2

k
2−rk(L)− 1

2 +k rk(L)
2 −

rk(L)2

4 |D′|
k
2−

rk(L)
4 −

1
2
√
〈φ, φ〉.

This result is [BK93, §1, Proposition 1], under the substitutions G = 2m, r′ = G−1rt

and D′ = −D
2 det(L) .

It is also possible to define Jacobi–Poincaré square series, which were studied
in [Wil18] for vector-valued modular forms for the Weil representation and used to
construct automorphic products. For every r in L#/L and every D in Q<0 such that
β(r) ≡ D mod Z, define the Poincaré square series of weight k and index L associated
with the pair (D, r) as

Qk,L,D,r :=
∑
n∈Z

Pk,L,n2D,nr,

where Pk,L,0,0 := Ek,L,0. This series converges absolutely for k > rk(L)
2 + 3 and, in view of

(2.2), it can be written as

Qk,L,D,r = Ek,L,0 +
∑
n∈N

(
1 + (−1)k

)
Pk,L,n2D,nr.

When k is odd, equation (1.15) implies that Ek,L,0 vanishes identically and hence so does
Qk,L,D,r. When k is even, we obtain that

Qk,L,D,r = Ek,L,0 + 2
∑
n∈N

Pk,L,n2D,nr

and, using (1.4), that
1
2

∑
d∈N

µ(d)
(
Qk,L,d2D,dr − Ek,L,0

)
=

∑
d∈N

µ(d)
∑
n∈N

Pk,L,d2n2D,dnr =
∑
n∈N

∑
d|n

µ(d)Pk,L,n2D,nr

=Pk,L,D,r.

In other words, Poincaré series can be recovered from the Poincaré square series.

2.2. Eisenstein series

In this section, we prove analogous results to Theorem 2.3 for Jacobi–Eisenstein
series:

Theorem 2.6. Let k be a positive integer and let L = (L, β) be a positive-definite,
even lattice over Z. The Eisenstein series Ek,L,r satisfies the following:

(i) If k >
rk(L)

2 + 2, then Ek,L,r is absolutely and uniformly convergent on compact
subsets of H× (L⊗C) and it is an element of Jk,L. Furthermore, it is orthogonal to
cusp forms. That is, for every φ in S k,L, the following holds:

〈φ, Ek,L,r〉 = 0.
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(ii) For every (D′, r′) in supp(L), set

Gk,L,r(D′, r′) :=
(2π)k− rk(L)

2 ik(−D′)k− rk(L)
2 −1

2 det(L)
1
2 Γ

(
k − rk(L)

2

)
×

∑
c≥1

c−k
(
HL,c(r,D′, r′) + (−1)kHL,c(−r,D′, r′)

)
,

(2.15)

where

(2.16) HL,c(r,D′, r′) :=
∑

d∈Z×(c),λ∈L/cL

ec

(
β(λ + r)d−1 + (β(r′) − D′)d + β(r′, λ + r)

)
.

The Eisenstein series Ek,L,r has the following Fourier expansion:

Ek,L,r(τ, z) =
1
2

(
ϑL,r(τ, z) + (−1)kϑL,−r(τ, z)

)
+

∑
(D′,r′)∈supp(L)

D′<0

Gk,L,r(D′, r′)e
(
(β(r′) − D′)τ + β(r′, z)

)
,

where ϑL,r is a theta series as in (1.16).

Note that HL,c(r,D′, r′) = HL,c(0, r,D′, r′) with the notation in (2.6) and that (1.15)
follows from (ii). Furthermore, it is clear from the definition of HL,c(r,D′, r′) that Ek,L,r

only depends on r mod L (this fact was also pointed out in [Ajo15]).

Proof. (i) The same arguments used in the proof of Theorem 2.3, (i), imply that
the series defined in (1.14) converges absolutely and uniformly on compact subsets of
H × (L ⊗ C) for k > rk(L)

2 + 2. It was also shown that it is independent of the choice of
coset representatives of JL

∞ \ JL and that it is invariant under the |k,L-action of Jk,L. The
fact that it is an element of Jk,L follows from inspecting its Fourier expansion (ii).

We remind the reader that the Petersson scalar product of two Jacobi forms con-
verges if either one of them is a cusp form. The Petersson scalar product of Ek,L,r and
an arbitrary cusp form φ in S k,L can be computed in the same way as in the proof of
Theorem 2.3, (i). Since φ is a cusp form, its Fourier coefficients Cφ(0, r) vanish and
therefore so does 〈φ, Ek,L,r〉.

(ii) This can be proved by following the steps in the proof of Theorem 2.3, (ii), up
to a certain point. We pick up from where the differences arise. When analysing the
contribution coming from terms with c = 0 in the Fourier expansion of Ek,L,r, set r′ :=
λ + r as before, which implies we are summing over r′ in L# such that r′ ≡ r mod L.
Since D = 0 in this case, the contribution is equal to

1
2

∑
r′∈L#

r′≡r mod L

e
(
β(r′)τ

) (
e
(
β(r′, z)

)
+ (−1)ke

(
β(−r′, z)

))
=

1
2

(
ϑL,r(τ, z) + (−1)kϑL,−r(τ, z)

)
,

as claimed. In the contribution coming from terms with c , 0, the change arises in the
Fourier coefficients of Fk,L,c;(n,r). They are now given by the equation

f (n′, r′) = det(L)−
1
2 ec

(
−β(r′, r)

) ∫ ∞

−∞

(
τ

i

) rk(L)
2
τ−ke

(
D′τ

)
du,
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where τ = u + iv and v > 0 is fixed. If D′ ≥ 0, then applying similar estimates to before
yields f (n′, r′) = 0. When D′ < 0, we need to compute the integral

I :=
∫ ∞+iv

−∞+iv

(
τ

i

) rk(L)
2
τ−ke

(
D′τ

)
dτ.

Substitute s for 2πiD′τ in order to obtain that

I = i1−k(−2πD′)k− rk(L)
2 −1

∫ C−i∞

C+i∞
s−

(
k− rk(L)

2

)
esds,

where C := −2πD′v is a positive constant. For fixed ν > 0, the functions

f (t) = tν−1 and F(s) = Γ(ν)s−ν

are mutually inverse with respect to the Laplace transform. Taking ν = k − rk(L)
2 implies

that

I = i1−k(−2πD′)k− rk(L)
2 −1 (−2πi) f (1)

Γ
(
k − rk(L)

2

) =
(2π)k− rk(L)

2 i−k

Γ
(
k − rk(L)

2

) (−D′)k− rk(L)
2 −1

and hence

f (n′, r′) = det(L)−
1
2 ec

(
−β(r′, r)

) (2π)k− rk(L)
2 i−k

Γ
(
k − rk(L)

2

) (−D′)k− rk(L)
2 −1.

Thus, terms with c > 0 give the following contribution:∑
c>0

c−k
∑

d∈Z×(c),λ∈L/cL

ec

(
(β(λ) + β(r, λ) + β(r)) d−1 − β(r′, r)

) ∑
n′∈Z,r′∈L#

β(r′)<n′

i−k

×
(2π)k− rk(L)

2 (−D′)k− rk(L)
2 −1

det(L)
1
2

(
k − rk(L)

2 − 1
)
!
e
(
n′

(
τ +

d
c

)
+ β

(
r′, z −

λ

c

))

=
∑

(D′,r′)∈supp(L)

(2π)k− rk(L)
2 ik(−D′)k− rk(L)

2 −1

det(L)
1
2

(
k − rk(L)

2 − 1
)
!

∑
c>0

c−k(−1)k
∑

d∈Z×(c),λ∈L/cL

× ec

(
β(λ − r)d−1 + (β(r′) − D′)d + β(r′, λ − r)

)
e
(
(β(r′) − D′)τ + β(r′, z)

)
.

Terms with c < 0 give the same contribution, multiplied by (−1)k and with z replaced
by (−z) and therefore they give a contribution of∑

(D′,r′)∈supp(L)

(2π)k− rk(L)
2 ik(−D′)k− rk(L)

2 −1

det(L)
1
2 Γ

(
k − rk(L)

2

) ∑
c>0

c−k
∑

d∈Z×(c),λ∈L/cL

× ec

(
β(λ − r)d−1 + (β(r′) − D′)d + β(r′, λ − r)

)
e
(
(β(r′) − D′)τ + β(r′,−z)

)
=

∑
(D′,r′)∈supp(L)

(2π)k− rk(L)
2 ik(−D′)k− rk(L)

2 −1

det(L)
1
2 Γ

(
k − rk(L)

2

) ∑
c>0

c−k
∑

d∈Z×(c),µ∈L/cL

ec

(
β(µ + r)d−1

)
× ec

(
(β(−r′) − D′)d + β(−r′, µ + r)

)
e
(
(β(−r′) − D′)τ + β(−r′, z)

)
.

We have made the substitution µ = −λ. Substitute r′ for −r′ in the above by abuse of
notation, in order to obtain the desired result and complete the proof. �
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Remark 2.7. For k > rk(L) + 2, the non-singular Fourier coefficients of Ek,L,r can
be obtained from those of Pk,L,D,r. Consider (D, r) and (D′, r′) in supp(L) such that
D,D′ < 0 and let c ∈ N. We have

2πik

det(L)
1
2

(
D′

D

) k
2−

rk(L)
4 −

1
2

c−
rk(L)

2 −1Jk− rk(L)
2 −1

4π(DD′)
1
2

c


=

2πik

det(L)
1
2

(
−D′

−D

) k
2−

rk(L)
4 −

1
2

c−
rk(L)

2 −1
∑
n≥0

(−1)n

n!Γ
(
n + k − rk(L)

2

) 2π(−D)
1
2 (−D′)

1
2

c

2n+k− rk(L)
2 −1

=
ik

det(L)
1
2

∑
n≥0

(−1)n(2π)2n+k− rk(L)
2 (−D′)n+k− rk(L)

2 −1(−D)nc−2n−k

n!Γ
(
n + k − rk(L)

2

) .

The J-Bessel function Jα is finite at the point x = 0 for positive α. Hence, view D as a
parameter in R and take the limit as D→ 0 in (2.5), using the above calculation:

lim
D→0

Gk,L,D,r(D′, r′) =
ik(2π)k− rk(L)

2 (−D′)k− rk(L)
2 −1

det(L)
1
2 Γ

(
k − rk(L)

2

) ∑
c≥1

c−kHL,c(0, r,D′, r′).

The singular term of Ek,L,r as given in Theorem 2.6 is

(2.17) C0(Ek,L,r)(τ, z) =
1
2

(
ϑL,r(τ, z) + (−1)kϑL,−r(τ, z)

)
.

The following result was stated in the proof of [Ajo15, Lemma 3.3.14]:

Lemma 2.8. The Eisenstein series Ek,L,r are linearly independent for r in the set
Iso(DL)/{±1}. Furthermore, if k is even, then JEis

k,L is spanned by{
Ek,L,r : r ∈ Iso(DL)/{±1}

}
and if k is odd, then JEis

k,L is spanned by{
Ek,L,r : r ∈ Iso(DL)/{±1}, r . −r mod L

}
.

We include the proof:

Proof. Suppose that k is even. Equation (1.15) implies that Ek,L,r = Ek,L,−r and
therefore all Eisenstein series are represented by the set{

Ek,L,s : s ∈ Iso(DL)/{±1}
}
.

The elements of this set are linearly independent, as a consequence of (2.17) and of the
fact that theta series are linearly independent (see [Boy15, §3.5]).

If k is odd, then (1.15) implies that Ek,L,r = −Ek,L−r and therefore Ek,L,r = 0 if
r ≡ −r mod L. Hence, all Eisenstein series are represented by the set{

Ek,L,s : s ∈ Iso(DL)/{±1} : s . −s mod L
}
.

Linear independence is a consequence of the fact that theta series are linearly indepen-
dent. �

We would like to obtain a closed formula for (2.15). The first observation regarding
the non-singular Fourier coefficients of Ek,L,r is that (2.16) can be re-written in terms of
the Kloosterman sums (1.2) in the following way:

HL,c(r,D′, r′) =
∑
λ(c)

ec(β(r′, λ + r))S (β(r′) − D′, β(λ + r); c)
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One way to simplify (2.15) is inspired by calculations for scalar Jacobi–Eisenstein se-
ries from [EZ85, §I.2]. Let b be a positive integer. For every quadratic polynomial
Q : L→ Z, define the representation numbers

(2.18) Rb(Q) := #{λ ∈ L/bL : Q(λ) ≡ 0 mod b}.

For every r in Iso(DL), d in N and (D, x) in supp(L), define a quadratic polynomial
Qr,D,x,d : L→ Z by the formula

Qr,D,x,d(λ) := β(λ + dr + x) − D

and set QD,x := Q0,D,x,d. Furthermore, define

db :=

d−1 mod b, if (d, b) = 1 and
0, otherwise.

The following holds:

Lemma 2.9. If r ∈ Iso(DL) and (D, x) ∈ supp(L) such that D > 0, then∑
c≥1

c−kHL,c(r,D, x) =
∑
b≥1

b−k
∑

d∈Z(b)

∑
λ∈L/bL

eb

(
dQr,D,x,db

(λ)
)

+

(
1

ζ(k − rk(L))
− 1

)∑
b≥1

Rb(QD,x)
bk−1 .

(2.19)

Proof. Set λ′ := d−1λ on the right-hand side of (2.16). Since (d, c) = 1, this change
of variables is an automorphism of L/cL. Change the notation of the pair (D′, r′) to
(D, x) and drop the prime from the new summation over λ′ for simplicity. Use the fact
that r ∈ Iso(DL) in order to write ec(β(λ + r)) = ec(β(λ + d−1dr)) and ec(β(λ, r)) =

ec(β(λ, d−1dr)). We obtain that

HL,c(r,D, x) =
∑

d∈Z×(c),λ∈L/cL

ec

(
d
(
β(λ + d−1r + x) − D

))
(note that this method would not work for HL,c(D, r,D′, r′)). Remove the coprimality
condition between d and c using (1.4):

HL,c(r,D, x) =
∑

d∈Z(c),λ∈L/cL

∑
a|(d,c)

µ(a)ec

(
d
(
β(λ + dcr + x) − D

))
.

Write c = ab in order to obtain that

(2.20)
∑
c≥1

c−kHL,c(r,D, x) =
∑
a≥1

∑
b≥1

µ(a)
(ab)k

∑
d∈Z(ab)

a|d

∑
λ∈L/abL

eab

(
d
(
β(λ + dabr + x) − D

))
.

The condition that d ∈ Z(ab) and a | d is equivalent to the condition that d
a ∈ Z(b). The

expression eb

(
d
a

(
β(λ + dabr + x) − D

))
only depends on λ modulo b and therefore∑

λ∈L/abL

eb

(
d
a

(
β(λ + dabr + x) − D

))
= ark(L)

∑
λ∈L/bL

eb

(
d
a

(
β(λ + dabr + x) − D

))
.

Separate the term with a = 1 from the rest in (2.20) and note that dab = 0 in the sum
over a ≥ 2, since a | d. Furthermore, substitute d for d

a in the latter sum by abuse of
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notation in order to obtain that∑
c≥1

c−kHL,c(r,D, x) =
∑
b≥1

b−k
∑

d∈Z(b)

∑
λ∈L/bL

eb

(
dQr,D,x,db

(λ)
)

+
∑
a≥2

µ(a)
ak−rk(L)

∑
b≥1

b−k
∑

d∈Z(b)

∑
λ∈L/bL

eb
(
dQD,x(λ)

)
.

The following identity holds:

(2.21)
1
b

∑
λ∈L/bL

∑
d∈Z(b)

eb(dQD,x(λ)) = Rb(QD,x).

To check that this is true, assume that λ in L/bL satisfies QD,x(λ) ≡ 0 mod b. Then
eb(dQD,x(λ)) = 1 and, as d runs through congruence classes modulo b, we obtain a con-
tribution of |Z(b)| on the left-hand side of (2.21) from every such λ. On the other hand,
if λ is such that b - QD,x(λ), then set M := (b,QD,x(λ)). The fact that

∑
d∈Z(n)

en(dm) = 0
when (n,m) = 1 implies that∑

d∈Z(b)

eb(dQD,x(λ)) = M
∑

d∈Z( b
M )

e b
M

(
d

QD,x(λ)
M

)
= 0.

In order to complete the proof of the lemma, combine (2.21) with the following well-
known identity involving the Riemann zeta function:

1
ζ(s)

=
∑
n≥1

µ(n)
ns . �

2.3. Fourier coefficients of trivial Eisenstein series

Lemma 2.9 implies that Theorem 2.6, (ii) can be simplified in the following way
when r = 0:

Lemma 2.10. The Eisenstein series Ek,L,0 vanishes identically when k is odd. When
k is even, it has the following Fourier expansion:

Ek,L,0(τ, z) = ϑL,0(τ, z) +
∑

(D,x)∈supp(L)
D<0

Gk,L,0(D, x)e ((β(x) − D)τ + β(x, z)) ,

where

Gk,L,0(D, x) =
(2π)k− rk(L)

2 ik(−D)k− rk(L)
2 −1

det(L)
1
2 Γ

(
k − rk(L)

2

)
ζ(k − rk(L))

∑
b≥1

Rb(QD,x)
bk−1 .(2.22)

Proof. It is clear from (2.17) that C0(Ek,L,0) is equal to zero if k is odd and to ϑL,0

otherwise. Set r = 0 in (2.19) and substitute this formula in (2.15):

Gk,L,0(D, x) =
(2π)k− rk(L)

2 ik(−D)k− rk(L)
2 −1

2 det(L)−
1
2 Γ

(
k − rk(L)

2

)
ζ(k − rk(L))

∑
b≥1

(
1 + (−1)k

) Rb(QD,x)
bk−1 .

The result follows. �

An element λ in L/bL solves the modular equation

QD,x(λ) ≡ 0 mod b

if and only if (−λ) solves the modular equation

QD,−x(−λ) ≡ 0 mod b.
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It follows that Rb(QD,x) = Rb(QD,−x) and hence, in the notation of [BK01], Rb(QD,x) =

Nx,−D(b) and the Dirichlet series

L(s) :=
∑
b≥1

b−sRb(QD,x)

is equal to Lx,−D

(
s − rk(L)

2 + 1
)
. This L-series converges for <(s) > rk(L) and it can be

continued meromorphically to<(s) > rk(L)
2 + 1, with a simple pole at s = rk(L).

In order to compute L(s), analyse the representation numbers

Rb := Rb(QD,x)

in more detail. Set x̃ := Nxx and D̃ := N2
x D. Then x̃ ∈ L and D̃ ∈ Z (since D ≡

β(x) mod Z). Assume that (b, det(L)) = 1. Then (b,Nx) = 1 and therefore

β(λ + x) − D ≡ 0 mod b ⇐⇒ β(Nxλ + x̃) ≡ D̃ mod b.

The sets {Nxλ + x̃ : λ ∈ L/bL} and L/bL are in bijection. In other words, the following
holds when (b,Nx) = 1:

(2.23) Rb = #{λ ∈ L/bL : β(λ) ≡ D̃ mod b}.

For arbitrary b in N, we have

β(λ + x) − D ≡ 0 mod b ⇐⇒ β(Nxλ + x̃) ≡ D̃ mod N2
x b

and (Nxλ + x̃) runs through representatives of the set

L/NxbL ∩ {λ ∈ L : λ ≡ x̃ mod NxL}

as λ runs through L/bL. In other words,

Rb = #{λ ∈ L/NxbL : β(λ) ≡ D̃ mod N2
x b and λ ≡ x̃ mod NxL}.

The representation numbers Rb satisfy the following:

Lemma 2.11. The arithmetic function b 7→ Rb is multiplicative.

Proof. Suppose that b = b1b2. If λ in L/bL satisfies QD,x(λ) ≡ 0 mod b, then λ
can be viewed as an element of L/b1L such that QD,x(λ) ≡ 0 mod b1 and it can also be
viewed as an element of L/b2L such that QD,x(λ) ≡ 0 mod b2. Thus, the map defined
by λ 7→ (λ mod b1L, λ mod b2L) gives the following embedding:

{λ ∈ L/bL : b | QD,x(λ)} ↪→
{λ ∈ L/b1L :b1 | QD,x(λ)} × {λ ∈ L/b2L : b2 | QD,x(λ)}.

(2.24)

Conversely, suppose that (b1, b2) = 1. Given λ1 in L/b1L satisfying b1 | QD,x(λ1)
and λ2 in L/b2L satisfying b2 | QD,x(λ2), let λ = (λ1, . . . , λrk(L))t be the lattice element
whose coordinates are the unique solutions modulo b1b2 to the rk(L) systems of modular
equations x ≡ λi

1 mod b1 and
x ≡ λi

2 mod b2

given by the Chinese remainder theorem. Then λ ≡ λ1 mod b1L and λ ≡ λ2 mod b2L
and therefore QD,x(λ) ≡ 0 mod b1 and QD,x(λ) ≡ 0 mod b2. Since (b1, b2) = 1, this
implies that QD,x(λ) ≡ 0 mod b1b2. In other words,

{λ ∈ L/b1L :b1 | QD,x(λ)} × {λ ∈ L/b2L : b2 | QD,x(λ)} ↪→ {λ ∈ L/bL : b | QD,x(λ)}

and, in view of (2.24), equality holds between these two sets. In particular, they have
the same number of elements. �
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It follows from Lemma 2.11 that L(s) can be written as an Euler product:

L(s) =
∏

p prime

Lp(s),

where

(2.25) Lp(s) =

∞∑
l=0

p−lsRpl .

Lemma 2.10 implies that the Fourier coefficients Gk,L,0(D, x) are the values of the ana-
lytic continuation of

(2π)k− rk(L)
2 ik(−D)k− rk(L)

2 −1

det(L)
1
2 Γ

(
k − rk(L)

2

)
ζ(s − rk(L) + 1)

∏
p prime

Lp(s)

at s = k−1. Before we state the following result from [Sie35] on representation numbers
of quadratic forms modulo prime powers, note that

β(x) − D = n ⇐⇒ β(Nxx, x) − 2NxD = 2Nxn

and 2Nxn and β(Nxx, x) are integers, implying that 2NxD is an integer.

Lemma ([BK01, Lemma 5]). Let p be a prime and set wp := 1 + 2vp(2NxD). If
l ≥ wp, then the following recurrence relation holds:

Rpl+1 = prk(L)−1Rpl .

In other words, we have Rpwp+l = pl(rk(L)−1)Rpwp and therefore

Lp(s) =

wp−1∑
l=0

p−lsRpl +
p−wp sRpwp

1 − p−(s−rk(L)+1) .

Define the local Euler factor

(2.26) L̃p(s) :=
(
1 − p−(s−rk(L)+1)

)
Lp(s)

and note that L̃p(s) = Lx,−D

(
s − rk(L)

2 + 1, p
)

in the notation of [BK01]. Then

(2.27) L(s) = ζ(s − rk(L) + 1)
∏

p prime

L̃p(s).

We remind the reader of Definition 1.10 of χL. To compute the L̃p’s, use the following
result:

Theorem 2.12 ([Sie35, Hilfssatz 16]). Let p be a prime which is coprime to 2 det(L)
and set κ := vp(D). If l in Z is such that l > κ, the following holds:

(i) If rk(L) is even, then

pl(1−rk(L))Rpl =

(
1 + χL(p)p1− rk(L)

2 + · · · + χL(pκ)pκ(1−
rk(L)

2 )
) (

1 − χL(p)p−
rk(L)

2

)
.

(ii) If rk(L) is odd, then write D = D0 f 2, with D0 in Q<0 and f in N such that
( f , 2 det(L)) = 1 and v`(D0) ∈ {0, 1} for all primes ` which are coprime to 2 det(L)
and set D̃0 := N2

x D0. If rk(L) = 1, then

Rpl =
(
χL(D̃0, p) + χL(D̃0, p)2

)
pvp( f )
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and, if rk(L) ≥ 3, then

pl(1−rk(L))Rpl =

(
σ2−rk(L)

(
pvp( f )

)
− χL(D̃0, p)p−b

rk(L)
2 cσ2−rk(L)

(
pvp( f )−1

))
×

1 − p1−rk(L)

1 − χL(D̃0, p)p−b
rk(L)

2 c
.

If the rank of L is odd, then the decomposition of D into D = D0 f 2 can be refor-
mulated in an explicit way. Write D = A

B , with A and B coprime integers, A > 0 and
B < 0. Since N2

x D is an integer, the prime factors of B are among the prime factors of
Nx. Define

f :=
∏
p|A

p-2 det(L)

pb
vp(A)

2 c and D0 :=
D
f 2 =

1
B

∏
p|A

p|2 det(L)

pvp(A)
∏
p|A

p-2 det(L)

pep ,(2.28)

where, for every prime p,

ep :=

1, if vp(A) ≡ 1 mod 2 and
0, otherwise.

Then f and D0 satisfy the conditions of Theorem 2.12. This theorem implies the fol-
lowing result:

Lemma 2.13. Let L̃p(·) denote the Euler factor (2.26). If rk(L) is even, then∏
p

L̃p(s) =
1

L
(
s − rk(L)

2 + 1, χL

) ∏
p|2D̃ det(L)

L̃p(s)

1 − χL(p)p−(s− rk(L)
2 +1)

and if rk(L) is odd, then∏
p

L̃p(s) =
L
(
s − b rk(L)

2 c, χL(D̃0, ·)
)

ζ(2s − rk(L) + 1)

∏
p|D̃ det(L)

1 − χL(D̃0, p)p−
(
s−b rk(L)

2 c
)

1 − p−(2s−rk(L)+1) L̃p(s).

Proof. We remind the reader that D̃ = N2
x D and that D̃0 = N2

x D0. Therefore, if
(p, 2D̃ det(L)) = 1, then wp = 1 and equation (2.26) can be reformulated as

L̃p(s) = 1 − p−(s−rk(L)+1) + p−sRp.

If rk(L) is even, then Theorem 2.12, (i) implies that

Rp = prk(L)−1(1 − χL(p)p−
rk(L)

2 )

for every prime p which is coprime to 2D̃ det(L) and hence∏
p

L̃p(s) =
∏

p-2D̃ det(L)

(
1 − χL(p)p−(s−rk(L)+1)

) ∏
p|2D̃ det(L)

L̃p.

If rk(L) is odd and p is coprime to 2D̃ det(L), then write D = D0 f 2 with the required
conditions and note that vp( f ) = 0 (since D̃ is a multiple of f ) and χL(D̃0, p) ∈ {±1}. If
rk(L) = 1, then Theorem 2.12, (ii) implies that Rp = χL(D̃0, p) + 1 and, if rk(L) ≥ 3,
then

p1−rk(L)Rp =
1 − p1−rk(L)

1 − χL(D̃0, p)p−b
rk(L)

2 c
= 1 + χL(D̃0, p)p−b

rk(L)
2 c.

Thus,
L̃p(s) = 1 + χL(D̃0, p)p−(s−b rk(L)

2 c)
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and hence ∏
p

L̃p(s) =
∏

p-2D̃ det(L)

1 − p−(2s−rk(L)+1)

1 − χL(D̃0, p)p−
(
s−b rk(L)

2 c
) ∏

p|2D̃ det(L)

L̃p(s),

completing the proof. �

When rk(L) is even, write ∆(L) = df2, with d the discriminant of the quadratic field
Q(

√
∆(L)) and f in N. When rk(L) is odd, for every pair (D, r) in the support of L such

that D < 0, set D̃0,x := D0N2
x and write D̃0,x∆(L) = dD,xf

2
D,x, with dD,x the discriminant

of the quadratic field Q(
√

D̃0,x∆(L)) and fD,x in N. We remind the reader that LD(·)
denotes the Dirichlet L-function of the quadratic character χD for every discriminant D.
The main result of this section is the following:

Theorem 2.14. Let L be a positive-definite, even lattice over Z and let k be a positive,
even integer such that k > rk(L)

2 + 2. Let the pair (D, x) in supp(L) be such that D < 0
and let Gk,L,0(·, ·) denote the non-singular Fourier coefficients of Ek,L,0. If rk(L) is even,
then

Gk,L,0(D, x) =
2(−1)d

rk(L)
4 e(−D|d|)k− rk(L)

2 −1

fLd
(
1 − k +

rk(L)
2

)∑
d|f µ(d)χd(d)d

rk(L)
2 −kσ1−2k+rk(L)

(
f

d

)
×

∏
p|2D̃ det(L)

L̃p(k − 1)

1 − χL(p)p
rk(L)

2 −k

(2.29)

and if, rk(L) is odd, then

Gk,L,0(D, x) =
χ8

(
rk(L)

)
22k−rk(L)

(
d

rk(L)
2 e − k

)
(DD̃0,x)

1
2 (−D)k−d rk(L)

2 e−1

B2k−rk(L)−1fD,x|dD,x|
k−d rk(L)

2 e

× LdD,x
(
1 − k + d

rk(L)
2 e

) ∑
d|fD,x

µ(d)χdD,x(d)dd
rk(L)

2 e−k

× σ2−2k+rk(L)

(
fD,x

d

) ∏
p|D̃ det(L)

1 − χL(D̃0, p)pd
rk(L)

2 e−k

1 − p1−2k+rk(L) L̃p(k − 1).

(2.30)

Proof. Equations (2.22) and (2.27) and Lemma 2.13 imply that

Gk,L,0(D, x) =
(2π)k− rk(L)

2 ik(−D)k− rk(L)
2 −1

det(L)
1
2 Γ

(
k − rk(L)

2

)
L
(
k − rk(L)

2 , χL(1, ·)
) ∏

p|2D̃ det(L)

L̃p(k − 1)

1 − χL(p)p−(k− rk(L)
2 )

if rk(L) is even and that

Gk,L,0(D, x) =
(2π)k− rk(L)

2 ik(−D)k− rk(L)
2 −1L

(
k − d rk(L)

2 e, χL(D̃0,x, ·)
)

det(L)
1
2 Γ

(
k − rk(L)

2

)
ζ(2k − rk(L) − 1)

×
∏

p|D̃ det(L)

1 − χL(D̃0,x, p)p−
(
k−d rk(L)

2 e
)

1 − p−(2k−rk(L)−1) L̃p(k − 1)

if rk(L) is odd.
Suppose that rk(L) is even and that the pair (D, x) in the support of L (D < 0) is

fixed. Then ∆(L) is a discriminant, i.e. it is congruent to 0 or 1 modulo 4, and hence
χL(·) =

(
∆(L)
·

)
is a quadratic character modulo |∆(L)|. Write ∆(L) = df2, with d the
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discriminant of Q(
√

∆(L)) and f in N. It follows that χd(·) =
(
d

·

)
is a primitive quadratic

character modulo |d|. It was shown in [Zag77, §4] that the Dirichlet L-function of χL

satisfies the following:

(2.31) L(s, χL) = Ld(s)
∑
d|f

µ(d)
(
d

d

)
d−sσ1−2s

(
f

d

)
.

Write Gk,L,0(D, x) = A × B, with

A :=
2k− rk(L)

2 ik(−D)k− rk(L)
2 −1∑

d|f µ(d)
(
d

d

)
d

rk(L)
2 −kσ1+rk(L)−2k

(
f

d

) ∏
p|2D̃ det(L)

L̃p(k − 1)

1 − χL(p)p−(k− rk(L)
2 )

and

B :=
πk− rk(L)

2

det(L)
1
2 Γ

(
k − rk(L)

2

)
Ld

(
k − rk(L)

2

) .
Since k and rk(L) are even, it follows that A is a rational number. Re-write the expres-
sion for B using functional equations of Dirichlet L-series (1.5):

B =
πk− rk(L)

2

(
|d|

π

) k−rk(L)/2+aχd
2

Γ
( k−rk(L)/2+aχd

2

)
det(L)

1
2 Γ

(
k − rk(L)

2

)
Λ

(
k − rk(L)

2 , χd
)

=
iaχd |d|

1
2π

k
2−

rk(L)
4 −

aχd
2 |d|

k
2−

rk(L)
4 +

aχd
2 Γ

(
k
2 −

rk(L)
4 +

aχd
2

)
det(L)

1
2 Γ

(
k − rk(L)

2

)
G(χd)Λ

(
1 − k +

rk(L)
2 , χd

)
=

iaχdπ
1
2 |d|k−

rk(L)
2

det(L)
1
2 G(χd)Ld

(
1 − k +

rk(L)
2

) · Γ
(

k
2 −

rk(L)
4 +

aχd
2

)
Γ
(
k − rk(L)

2

)
Γ
( 1+aχd

2 − k
2 +

rk(L)
4

) ,
since χd is a real character. We remind the reader that

∆(L) = (−1)
rk(L)

2 det(L) = df2

and therefore d > 0 if rk(L) ≡ 0 mod 4 and d < 0 if rk(L) ≡ 2 mod 4. The Kronecker
symbol

(
n
−1

)
is equal to sign(n) and therefore

aχd =

0, if rk(L) ≡ 0 mod 4 and
1, if rk(L) ≡ 2 mod 4.

The Gauss sum G(χd) is equal to d
1
2 , since d is a fundamental discriminant (see [CS17,

§3.4.2] for a proof, for example), and

det(L)
1
2 G(χd) = (det(L)d)

1
2 = ((−1)

rk(L)
2 d

2
f
2)

1
2 = iaχd |d|f.

The Gamma function satisfies the following duplication formula:

(2.32) Γ(z)Γ
(
z +

1
2

)
= 21−2zπ

1
2 Γ(2z).

Thus,
Γ
(

k
2 −

rk(L)
4 +

aχd
2

)
Γ
(
k − rk(L)

2

) =
21−

(
k− rk(L)

2

)
π

1
2

Γ
(

k
2 −

rk(L)
4 +

1−aχd
2

) .
The Gamma function satisfies Euler’s reflection formula:

(2.33) Γ(1 − z)Γ(z) =
π

sin(πz)
, z < Z.
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Furthermore, we have sin(π(n + 1/2)) = (−1)n for integer n. It follows that

Γ
(

k
2 −

rk(L)
4 +

aχd
2

)
Γ
(
k − rk(L)

2

)
Γ
( 1+aχd

2 − k
2 +

rk(L)
4

) =
21−

(
k− rk(L)

2

)
π

1
2

(−1)
k
2−

rk(L)
4 −

aχd
2 .

Thus,

B =
21−

(
k− rk(L)

2

)
(−1)

k
2−d

rk(L)
4 e|d|k−

rk(L)
2 −1

fLd
(
1 − k +

rk(L)
2

)
when rk(L) is even.

Suppose that rk(L) is odd. Then ∆(L) is congruent to 0 modulo 4 (see Remark

1.8) and hence χL(D̃0, ·) :=
(

D̃0∆(L)
·

)
is a quadratic character modulo |D̃0∆(L)|. Write

D̃0∆(L) = df2, with d the discriminant of Q(
√

D̃0∆(L)) and f in N. As before, the
L-function of χL(D̃0, ·) satisfies the following:

L(s, χL(D̃0, ·)) = Ld(s)
∑
d|f

µ(d)
(
d

d

)
d−sσ1−2s

(
f

d

)
.

The values of the Riemann zeta function at positive even integers are well-known:

ζ(2k − rk(L) − 1) =
(−1)k− rk(L)−1

2 B2k−rk(L)−1(2π)2k−rk(L)−1

2Γ(2k − rk(L))
.

Write Gk,L,0(D, x) = A × B, with

A :=
2ik(−D)k−d rk(L)

2 e−1 ∑
d|f µ(d)

(
d

d

)
dd

rk(L)
2 e−kσ2+rk(L)−2k

(
f

d

)
(−1)k−b rk(L)

2 cB2k−rk(L)−1

×
∏

p|D̃ det(L)

1 − χL(D̃0, p)p−
(
k−d rk(L)

2 e
)

1 − p−(2k−rk(L)−1) L̃p(k − 1)

and note that A is a rational number. Applying the functional equation (1.5) to χd yields

B =
(2π)k− rk(L)

2 (−D)
1
2 Γ

(
2k − rk(L)

)
Ld

(
k − d rk(L)

2 e
)

det(L)
1
2 Γ

(
k − rk(L)

2

)
(2π)2k−rk(L)−1

=
(−D)

1
2 G(χd)Ld

(
1 − k + d

rk(L)
2 e

)
iaχd det(L)

1
2 2k− rk(L)

2 −1|d|k−d
rk(L)

2 e
·

Γ
( 1+aχd

2 − k
2 +

rk(L)+1
4

)
Γ
(
2k − rk(L)

)
Γ
(
k − rk(L)

2

)
Γ
(

k
2 −

rk(L)+1
4 +

aχd
2

) .

We remind the reader that

D̃0∆(L) = D̃0(−1)b
rk(L)

2 c2 det(L) = df2

and D̃0 < 0 and therefore d > 0 if rk(L) ≡ 3 mod 4 and d < 0 if rk(L) ≡ 1 mod 4. It
follows that

aχd =

0, if rk(L) ≡ 3 mod 4 and
1, if rk(L) ≡ 1 mod 4.

The Gauss sum G(χd) is equal to d
1
2 and

G(χd)

det(L)
1
2

=

(
d

det(L)

) 1
2

=

 (−1)b
rk(L)

2 c2D̃0

f2


1
2

=
iaχd (−D̃0)

1
2 2

1
2

f
.
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The duplication formula (2.32) implies that

Γ
(
2k − rk(L)

)
Γ
(
k − rk(L)

2

) =
Γ
(
k − rk(L)−1

2

)
21−(2k−rk(L))π

1
2

.

Euler’s reflection formula (2.33) implies that

Γ

(
1 + aχd

2
−

k
2

+
rk(L) + 1

4

)
=Γ

(
1 −

(
k
2
−

rk(L) − 1 + 2aχd
4

))
=

π

sin
(
π
(

k
2 −

rk(L)−1+2aχd
4

))
Γ
(

k
2 −

rk(L)−1+2aχd
4

)
=

π

(−1)
k
2−

rk(L)+1+2aχd
4 Γ

(
k
2 −

rk(L)−1+2aχd
4

) .
Finally, using the duplication formula, we have

Γ

(
k
2
−

rk(L) + 1
4

+
aχd
2

)
Γ

(
k
2
−

rk(L) − 1 + 2aχd
4

)
= Γ

(
k
2
−

rk(L) + 1
4

)
Γ

(
k
2
−

rk(L) − 1
4

)
= 2

rk(L)+3
2 −kπ

1
2 Γ

(
k −

rk(L) + 1
2

)
and it follows that

Γ
( 1+aχd

2 − k
2 +

rk(L)+1
4

)
Γ
(
2k − rk(L)

)
Γ
(
k − rk(L)

2

)
Γ
(

k
2 −

rk(L)+1
4 +

aχd
2

) =
π

1
2 (−1)

k
2−

rk(L)+1+2aχd
4 Γ

(
k − rk(L)−1

2

)
21−(2k−rk(L))2

rk(L)+3
2 −kπ

1
2 Γ

(
k − rk(L)+1

2

)
=

(−1)
k
2−

rk(L)+1+2aχd
4

(
k − rk(L)+1

2

)
2

5
2−3k+

3rk(L)
2

.

Thus,

B =
(−1)

k
2−d

rk(L)
4 e

(
k − d rk(L)

2 e
)

(DD̃0)
1
2 Ld

(
1 − k + d

rk(L)
2 e

)
f2rk(L)−2k+1|d|k−d

rk(L)
2 e

when rk(L) is odd. Note that

(−1)b
rk(L)

2 c−d
rk(L)

4 e =

1, if rk(L) ≡ ±3 mod 8 and
−1, if rk(L) ≡ ±1 mod 8

and we remind the reader that(
2
p

)
=

1, if p ≡ ±1 mod 8 and
−1, if p ≡ ±3 mod 8

for every odd prime p, which completes the proof. �

An important consequence of Theorem 2.14 is the following rationality result:

Corollary 2.15. The Fourier coefficients of Ek,L,0 are rational numbers.

Proof. The values of Ld(·) at negative integers can be expressed in terms of Bernoulli
polynomials (1.3) (see [Zag81, §1.7] for a proof, for example):

(2.34) Ld (−n) = −
|d|n

n + 1

|d|∑
m=1

χd(m)Bn+1

(
m
|d|

)
.
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Furthermore, when rk(L) is odd, we have

(DD̃0)
1
2 =

(
N2

x D2

f 2

) 1
2

=
−NxD

f
.

Every other quantity appearing in (2.29) and (2.30) is rational. The result follows. �

While the formulas obtained in Theorem 2.14 are explicit, we want to investigate
the Euler factors L̃p at primes dividing 2D̃ det(L). First, compute the product expansion
of the sum on the right-hand side of (2.31). The following holds:

Lemma 2.16. If d is a fundamental discriminant and s is a complex parameter, then
the arithmetic function Fs : N→ C, defined by

Fs(f) :=
∑
d|f

µ(d)χd(d)d−sσ1−2s

(
f

d

)
,

has the following product expansion:

(2.35) Fs(f) =
∏

p|f

(
1 +

(
1 − χd(p)ps−1

) 1 − pvp(f)(1−2s)

p2s−1 − 1

)
.

Proof. Assume that a and b in N are such that (a, b) = 1. Then every divisor d of
ab can be written as d = dadb, with da | a, db | b and (da, db) =

(
a
da
, b

db

)
= 1 and therefore

Fs(ab) =
∑
da |a

µ(da)χd(da)d−s
a σ1−2s

(
a
da

)∑
db |b

µ(db)χd(db)d−s
b σ1−2s

(
b
db

)
= Fs(a)Fs(b),

since µ(·), χd(·) and σ1−2s(·) are multiplicative functions. It follows that Fs is multiplica-
tive. In particular, it suffices to prove (2.35) for f equal to a prime power, say f = pt for
some prime p and some t in N. We have

Fs(pt) = σ1−2s(pt) − χd(p)p−sσ1−2s(pt−1).

Using the product expansion of the divisor sum, we obtain that

Fs(pt) =
p(t+1)(1−2s) − 1

p1−2s − 1
− χd(p)p−s pt(1−2s) − 1

p1−2s − 1
= 1 +

(
1 − χd(p)ps−1

) 1 − pt(1−2s)

p2s−1 − 1
,

as claimed. �

When p | d, we have χd(p) = 0 and Lemma 2.16 implies that

Fs(f) =
∏
p|d

p(vp(f)+1)(1−2s) − 1
p1−2s − 1

∏
p|f,p-d

(
1 +

(
1 − χd(p)ps−1

) 1 − pvp(f)(1−2s)

p2s−1 − 1

)

=σ1−2s(g)
∏

p|f,p-d

(
1 +

(
1 − χd(p)ps−1

) 1 − pvp(f)(1−2s)

p2s−1 − 1

)
,

where g =
∏

p|d pvp(f).
Let d and f be defined as in the proof of Theorem 2.14. We compute their prime

decomposition. If rk(L) is odd, then Definition 1.9 and equation (2.28) imply that

D̃0∆(L) =N2
x D0(−1)b

rk(L)
2 c2 det(L) = (−1)d

rk(L)
2 e2v2(2D̃ det(L))

∏
p|det(L)

p,2

pvp(D̃ det(L))
∏

p-det(L)

pep .
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For every odd prime p | D̃ det(L), define the constant

gp :=

1, if vp(D̃ det(L)) ≡ 1 mod 2 and
0, otherwise.

We remind the reader that a fundamental discriminant is an integer which is either
congruent to 1 modulo 4 and square-free, or equal to 4n, for some square-free n which
is congruent to 2 or 3 modulo 4. It follows that the sign of D̃0∆(L) is important and we
must distinguish between the cases where rk(L) ≡ 1 mod 4 and rk(L) ≡ 3 mod 4. Write
D = A

B , with A and B coprime integers, A > 0 and B < 0 and set

S := {p ≡ 3 mod 4 : (p | A, p - det(L), ep = 1) or (p | det(L), gp = 1)}.

If rk(L) ≡ 1 mod 4, then D̃0∆(L) is negative and therefore

d = −
∏

p-det(L)

pep
∏

p|det(L)
p,2

pgp ×


1, if v2(2D̃ det(L)) is even and |S | is odd,
4, if v2(2D̃ det(L)) and |S | are even and
8, if v2(2D̃ det(L)) is odd

and

f =
∏

p|det(L)
p,2

pb
vp(D̃ det(L))

2 c ×


2

v2(2D̃ det(L))
2 , if v2(2D̃ det(L)) even and |S | odd,

2
v2(D̃ det(L)/2)

2 , if v2(2D̃ det(L)) and |S | even and

2
v2(D̃ det(L)/4)

2 , if v2(2D̃ det(L)) is odd.

On the other hand, if rk(L) ≡ 3 mod 4, then D̃0∆(L) is positive and therefore

d =
∏
p|A

p-det(L)

pep
∏

p|det(L)
p,2

pgp ×


1, if v2(2D̃ det(L)) and |S | are even,
4, if v2(2D̃ det(L)) is even and |S | is odd and
8, if v2(2D̃ det(L)) is odd

and

f =
∏

p|det(L)
p,2

pb
vp(D̃ det(L))

2 c ×


2

v2(2D̃ det(L))
2 , if v2(2D̃ det(L)) and |S | are even,

2
v2(D̃ det(L)/2)

2 , if v2(2D̃ det(L)) even and |S | odd and

2
v2(D̃ det(L)/4)

2 , if v2(2D̃ det(L)) is odd.

It follows that, when rk(L) is odd, the primes that divide both d and f are those odd
primes dividing det(L), which have odd valuation greater than or equal to 3 in D̃ det(L),
and possibly the prime 2. Primes that divide d, but not f, are odd primes dividing D̃,
but not det(L), which have odd valuation in A, odd primes dividing det(L), which have
valuation equal to 1 in D̃ det(L), and possibly 2. Lastly, primes that divide f, but not d,
are those odd primes dividing det(L), which have positive, even valuation in D̃ det(L),
and possibly 2.

In the case where rk(L) is even, Definition 1.9 implies that

∆(L) =(−1)
rk(L)

2 det(L) = (−1)
rk(L)

2 2v2(det(L))
∏

p|det(L)
p,2

pvp(det(L)).

It follows that we must distinguish between the cases where rk(L) ≡ 0 mod 4 and
rk(L) ≡ 2 mod 4. For every odd prime p | det(L), define the constant

gp :=

1, if vp(det(L)) ≡ 1 mod 2 and
0, otherwise.
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Let S denote the set of primes {p ≡ 3 mod 4 : p | det(L), gp = 1)}. If rk(L) ≡ 2 mod 4,
then ∆(L) is negative and therefore

d = −
∏

p|det(L)
p,2

pgp ×


1, if v2(det(L)) is even and |S | is odd,
4, if v2(det(L)) and |S | are even and
8, if v2(det(L)) is odd

and

f =
∏

p|det(L)
p,2

pb
vp(det(L))

2 c ×


2

v2(det(L))
2 , if v2(det(L)) is even and |S | is odd,

2
v2(det(L)/4)

2 , if v2(det(L)) and |S | are even and

2
v2(det(L)/8)

2 , if v2(det(L)) is odd.

On the other hand, if rk(L) ≡ 0 mod 4, then ∆(L) is positive and therefore

d =
∏

p|det(L)
p,2

pgp ×


1, if v2(det(L)) and |S | are even,
4, if v2(det(L)) is even and |S | is odd and
8, if v2(det(L)) is odd

and

f =
∏

p|det(L)
p,2

pb
vp(det(L))

2 c ×


2

v2(det(L))
2 , if v2(det(L)) and |S | are even,

2
v2(det(L)/4)

2 , if v2(det(L)) is even and |S | is odd and

2
v2(det(L)/8)

2 , if v2(det(L)) is odd.

It follows that, when rk(L) is even, the primes that divide both d and f are those odd
primes dividing det(L), which have odd valuation greater than or equal to 3 in det(L),
and possibly the prime 2. Primes that divide d, but not f, are those odd primes dividing
det(L), which have valuation equal to 1 in det(L), and possibly 2. Lastly, primes that
divide f, but not d, are those odd primes dividing det(L), which have positive, even
valuation in det(L), and possibly 2.

Example 2.17 (Eisenstein-series of index L1)). The lattice L1 = (Z, (x, y) 7→ 2xy
has rank one and its dual is 1

2Z. It follows that its determinant is equal to 2 and its
level equals its discriminant ∆(L1) = 4. The discriminant module of L1 is DL1

=({
0, 1

2

}
, x 7→ x2 mod Z

)
and hence JEis

k,L1
= CEk,L1,0 is a one dimensional vector space

over C. The theta series in the singular term of Ek,L1,0 is

ϑL1,0(τ, z) =
∑
x∈Z

e
(
x2τ + 2xz

)
,

which is one of the four classical Jacobi theta functions. The Eisenstein series Ek,L1,0

has the following Fourier expansion:

Ek,L1,0(τ, z) =ϑL1,0(τ, z) +
∑

x∈ 1
2Z,D∈Q<0

D≡x2 mod Z

Gk,L1,0(D, x)e
((

x2 − D
)
τ + 2xz

)
=ϑL1,0(τ, z) +

∑
x∈Z,D∈Z<0

Gk,L1,0(D, x)e
((

x2 − D
)
τ + 2xz

)
+

∑
x∈Z+ 1

2 ,D≡
1
4 mod Z

D<0

Gk,L1,0(D, x)e
((

x2 − D
)
τ + 2xz

)
.
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The Fourier coefficients Gk,L1,0(D, x) can be computed using (2.30). If x ∈ Z, then
Nx = 1. Write D = D0 f 2, with

f =
∏

p|D is odd

pb
vp(D)

2 c and D0 = −2v2(D)
∏

p|D is odd
vp(D) is odd

p;

it follows that D̃ = D and D̃0,x = D0. The discriminant of Q
(√

4D0

)
is

d := dD,x =


D0

2v2(D) , if v2(D) is even and #{p | D0 : p ≡ 3 mod 4} is odd,
4D0

2v2(D) , if v2(D) and #{p | D0 : p ≡ 3 mod 4} are even and
8D0

2v2(D) , if v2(D) is odd.

and therefore

f := fD,x =


2

v2(D)+2
2 , if v2(D) is even and #{p | D0 : p ≡ 3 mod 4} is odd,

2
v2(D)

2 , if v2(D) and #{p | D0 : p ≡ 3 mod 4} are even and
2

v2(D)−1
2 , if v2(D) is odd.

The bad primes dividing det(L1)D̃ are 2 and the odd primes dividing D. The quadratic
character χL1

(D̃0, ·) is equal to
(

4D0
·

)
and therefore χL1

(D̃0, 2) = 0 and χL1
(D̃0, p) = χd(p)

for all odd primes. Thus, when x ∈ Z, we obtain that

Gk,L1,0(D, x) = −
22k−1 (k − 1) (DD0)

1
2 Dk−2

B2k−2f|d|
k−1 Ld (2 − k) ×

L̃2(k − 1)
1 − 22−2k

×
∑
d|f

µ(d)
(
d

d

)
d1−kσ3−2k

(
f

d

) ∏
p|D,p,2

1 − χd(p)p1−k

1 − p2−2k L̃p(k − 1).

Lemma 2.16 implies that∑
d|f

µ(d)
(
d

d

)
d1−kσ3−2k

(
f

d

)
= 1 +

(
1 − χd(2)2k−2

) 1 − 2v2(f)(3−2k)

22k−3 − 1
.

Combining this with (2.34), we obtain that

Gk,L1,0(D, x) =
f fDk−2

B2k−2

|d|∑
m=1

χd(m)Bk−1

(
m
|d|

)
×

22k−3L̃2(k − 1)
1 − 22−2k

×

(
1 +

(
1 − χd(2)2k−2

) 1 − 2v2(f)(3−2k)

22k−3 − 1

) ∏
p|D is odd

1 − χd(p)p1−k

1 − p2−2k L̃p(k − 1).

When x ∈ Z + 1
2 , its order is equal to 2 and D ∈ 1

4 (4Z + 1). We have D = D0 f 2, with

f =
∏
p|4D

pb
vp(4D)

2 c and D0 = −
1
4

∏
p|4D

vp(4D) is odd

p;

it follows that D̃ = 4D and D̃0,x = 4D0. The discriminant of Q
( √

4D̃0

)
is

d := dD,x = D̃0,x = −
∏
p|4D

vp(4D) is odd

p

and therefore fD,x = 2. This is because 4D0 ≡ 4D ≡ 1 mod 4. The bad primes dividing
det(L1)D̃ are 2 and the primes dividing 4D. The quadratic character χL1

(D̃0, ·) is equal to
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16D0
·

)
and therefore χL1

(D̃0, 2) = 0 and χL1
(D̃0, p) = χ4D0(p) for all odd primes. Thus,

when x ∈ Z + 1
2 , we obtain that

Gk,L1,0(D, x) = −
22k−2 (k − 1) (4DD0)

1
2 Dk−2

B2k−2|4D0|
k−1 L4D0 (2 − k)

L̃2(k − 1)
1 − 22−2k

×
(
1 + 23−2k − χ4D0(2)21−k

)∏
p|4D

1 − χ4D0(p)p1−k

1 − p2−2k L̃p(k − 1)

=
f Dk−2

B2k−2

|4D0 |∑
m=1

χ4D0(m)Bk−1

(
m
|4D0|

) (
1 + 22k−3 − χ4D0(2)2k−2

)
×

L̃2(k − 1)
1 − 22−2k

∏
p|4D

1 − χ4D0(p)p1−k

1 − p2−2k L̃p(k − 1).

It follows that

Ek,L1,0(τ, z) =ϑL1,0(τ, z) +
∑

x∈Z,D∈Z<0

f fDk−2

B2k−2

[ |d|∑
m=1

χd(m)Bk−1

(
m
|d|

)
L̃2(k − 1)
1 − 22−2k

×

(
22k−3 +

(
1 − χd(2)2k−2

) 1 − 2v2(f)(3−2k)

1 − 23−2k

)
×

∏
p|D,p,2

1 − χd(p)p1−k

1 − p2−2k L̃p(k − 1)
]
e
((

x2 − D
)
τ + 2xz

)
+

∑
x∈Z+ 1

2 ,D≡
1
4 mod Z

D<0

f Dk−2

B2k−2

[ |4D0 |∑
m=1

χ4D0(m)Bk−1

(
m
|4D0|

) (
22k−3 + 1 − χ4D0(2)2k−2

)

×
L̃2(k − 1)
1 − 22−2k

∏
p|4D

1 − χ4D0(p)p1−k

1 − p2−2k L̃p(k − 1)
]
e
((

x2 − D
)
τ + 2xz

)
.

In the following subsection, we discuss an alternative method for computing the
Euler factors L̃p, which also works for the bad primes p | 2D̃ det(L).

2.3.1. Igusa zeta functions and representation numbers. A different method to
compute the Euler factors (2.25) is based on results from [CKW17] on calculating
the Igusa local zeta function (see Definition 1.1). We remind the reader of the defini-
tion (2.18) of the representation numbers Rb(Q). For every quadratic polynomial f in
Zp[X1, . . . , Xrk(L)], the following holds:

1 − p−sζ( f ; p; s)
1 − p−s =

∞∑
l=0

Rpl( f )p−l(s+rk(L)),

in other words

(2.36) Lp(s) =
ps−rk(L) − ζ(QD,x; p; s − rk(L))

ps−rk(L) − 1
.

A quadratic form Q : Zn
p → Zp is said to be unimodular if the determinant of its Gram

matrix is invertible in Zp. By the direct sum of two quadratic forms Q1 : Zn
p → Zp and

Q2 : Zm
p → Zp we mean the quadratic form Q1 ⊕ Q2 : Zn+m

p → Zp,

Q1 ⊕ Q2(x1, . . . , xn, y1, . . . , ym) = Q1(x1, . . . , xn) + Q2(y1, . . . , ym).
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A quadratic polynomial Q is said to be in normal form if Q = ⊕i∈N∪{0}piQi + c, where
each Qi is a unimodular quadratic form over Zp and c is a constant in Zp. It was shown
in [CKW17, §4.9] that every quadratic polynomial f as above is isospectral at p to a
polynomial Q which is in normal form, meaning that Rpl( f ) = Rpl(Q) for ever l in N.

For every prime p and every integers a, r and d, define the following helper function:
• if r is odd, then

Ia(r, d)(s) :=


(1 − p−s−r)

p − 1
p − p−s , p | a,[

1 + p−s−d r
2 e

(
ad(−1)d

r
2 e

p

)] p − 1
p − p−s −

1
pr −

1
pd

r
2 e

(
ad(−1)d

r
2 e

p

)
, p - a;

• if r is even, then

Ia(r, d)(s) :=


[
1 − p−

r
2

(
(−1)−

r
2 d

p

)] [
1 + p−s− r

2

(
(−1)−

r
2 d

p

)] p − 1
p − p−s , p | a,[

1 − p−
r
2

(
(−1)−

r
2 d

p

)] [ p − 1
p − p−s + p−

r
2

(
(−1)−

r
2 d

p

)]
, p - a.

Theorem 2.18 ([CKW17, Thm 2.1]). Let p be an odd prime and Q = ⊕i∈N∪{0}piQi +

c be a quadratic polynomial over Zp which is in normal form, where each Qi is a
unimodular quadratic form of rank ri and discriminant di over Zp and c is a constant in
Zp. Set κ := vp(c) and, for every j in N ∪ {0}, set

Q( j) :=
⊕
0≤i≤ j

i≡ j mod 2

Qi, d( j) := disc(Q( j)) =
∏
0≤i≤ j

i≡ j mod 2

di,

r( j) := rk(Q( j)) =
∑
0≤i≤ j

i≡ j mod 2

ri, p( j) := p
∑

0≤i< j r(i).

Then

ζ(Q; p; s) =
∑

0≤l≤κ

Ic/pl (r(l), d(l)) (s)
p(l)

p−ls +
1

p(κ + 1)
p−κs.

When p = 2, the Igusa zeta function ζ(2; s) can be computed using [CKW17, Theorem
2.3].

Set ζ(p; s) := ζ(QD,x; p; s) for simplicity. Let us redo the calculations for Lp(s)
at good primes p using (2.36) and Theorem 2.18. We remind the reader that, when
(p, 2 det(L)D̃) = 1, (2.23) implies that

(2.37) Rpl = #{λ ∈ L/plL : 2β(λ) − 2D̃ ≡ 0 mod pl} = Rpl(2β(λ) − 2D̃),

and the quadratic polynomial 2β(λ) − 2D̃ is in normal form. Since κ = 0 in this case, it
follows that

ζ(p; s) =
I−2D̃ (r(0), d(0)) (s)

p(0)
+

1
p(1)

.

We have

d(0) =d0 = det(L), r(0) =r0 = rk(L),

p(0) =p0 = 1, p(1) =pr(0) = prk(L).

If rk(L) is even, then

I−2D̃ (r(0), d(0)) (s) =

(
1 − p−

rk(L)
2 χL(p)

) ( p − 1
p − p−s + p−

rk(L)
2 χL(p)

)
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and Theorem 2.18 implies that

ζ(p; s) =
1 − p − p−

rk(L)
2 χL(p) + p−

rk(L)
2 −s χL(p)

p−s − p

after a straight-forward calculation. It follows from (2.36) that

Lp(s) =

p−(s−rk(L))
(
p + p−

rk(L)
2 χL(p) − p−

rk(L)
2 −(s−rk(L)) χL(p)

)
− p(

p−(s−rk(L)) − p
) (

1 − p−(s−rk(L)))
=

p−(s−rk(L)) − 1 + p−s+ rk(L)
2 −1 χL(p)

(
1 − p−(s−rk(L))

)(
p−(s−rk(L)+1) − 1

) (
1 − p−(s−rk(L)))

=
1 − χL(p)p−(s− rk

2 +1)

1 − p−(s−rk(L)+1)

and these calculations lead to the same result as Lemma 2.13.
If rk(L) is odd, then −2 det(L)(−1)d

rk(L)
2 e = ∆(L) and D̃0 f 2 = D̃ and hence(

−2D̃(−1)d
rk(L)

2 e det(L)
p

)
= χL(D̃0, p).

Thus,

I−2D̃ (r(0), d(0)) (s) =

(
1 + p−s−d rk(L)

2 e χL(D̃0, p)
) p − 1

p − p−s − p−rk(L) −
χL(D̃0, p)

pd
rk(L)

2 e

and hence

ζ(p; s) =
p − 1 + χL(D̃0, p)p1−d rk(L)

2 e(p−s − 1)
p − p−s

after a straight-forward calculation. It follows that

Lp(s) =

p − p−(s−rk(L))
(
p + χL(D̃0, p)p1−d rk(L)

2 e
(
p−(s−rk(L)) − 1

))
(
p − p−(s−rk(L))) (1 − p−(s−rk(L)))

=

(
1 − p−(s−rk(L))

)
+ χL(D̃0, p)p−d

rk(L)
2 e−s+rk(L)

(
1 − p−(s−rk(L))

)(
1 − p−(s−rk(L)+1)) (1 − p−(s−rk(L)))

=
1 + χL(D̃0, p)p−(s−b rk

2 c)

1 − p−(s−rk(L)+1)

and these calculations lead to the same result as Lemma 2.13.
If p is a prime such that (p, 2 det(L)) = 1, but vp(D̃) > 0, then (2.37) still holds and

Theorem 2.18 can be used to compute Lp(·). We illustrate this method in the case where
rk(L) is even.

Proposition 2.19. If rk(L) is even and p is a prime such that (p, 2 det(L)) = 1 and
κ := vp(D̃) > 0, then the following holds:

L̃p(s) = χL(pκ)p−κ
(
s− rk(L)

2

) (
1 − χL(p)p−

(
s− rk(L)

2 +1
)) (

χL(p)ps− rk(L)
2

)κ+1
− 1

χL(p)ps− rk(L)
2 − 1

.
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Furthermore, set g :=
∏

p|D̃,p-2 det(L) pvp(D̃). Then

∏
p|D̃

p-2 det(L)

L̃p(k − 1)

1 − χd(p)p−
(
k− rk(L)

2

) =χd(g)g−
(
k− rk(L)

2 −1
)
σ
χd

k− rk(L)
2 −1

(g).

Proof. Consider Q = 2β − 2D̃ in Theorem 2.18. Then

d(l) =

det(L), l ≡ 0 mod 2,
1, l ≡ 1 mod 2,

r(l) =

rk(L), l ≡ 0 mod 2,
0, l ≡ 1 mod 2,

p(l) = prk(L)d l
2 e

for every positive integer l.
Suppose that κ is odd. Then

I−2D̃/pκ (r(κ), d(κ)) (s) = I−2D̃/pκ (0, 1) (s) = 0.

For every 0 ≤ l < κ, we have p | (−2D̃/pl) and hence, if l is odd, then

(2.38) I−2D̃/pl (r(l), d(l)) (s) = I−2D̃/pl (0, 1) (s) = 0

and, if l is even, then

I−2D̃/pl (r(l), d(l)) (s) =I−2D̃/pl(rk(L), det(L))(s)

=

[
1 − p−

rk(L)
2 χL(p)

] [
1 + p−s− rk(L)

2 χL(p)
] p − 1

p − p−s .
(2.39)

Theorem 2.18 implies that

ζ(p; s) =
∑

0≤l≤ κ−1
2

I−2D̃/p2l
(
rk(L), det(L)

)
(s)p−l(rk(L)+2s)

+ p−s−rk(L)
∑

0≤l≤ κ−1
2

I−2D̃/p2l+1 (0, 1) (s)p−l(rk(L)+2s) + p−κ
(
s+ rk(L)

2

)
−

rk(L)
2

=

[
1 − χL(p)p−

rk(L)
2

] [
1 + χL(p)p−s− rk(L)

2

] p − 1
p − p−s

∑
0≤l≤ κ−1

2

p−l(rk(L)+2s)

+ p−κ
(
s+ rk(L)

2

)
−

rk(L)
2 .

The geometric progression sum in the above equation can be computed using the for-
mula

(2.40)
∑

0≤l≤T

p−lt =
pt − p−Tt

pt − 1
.

In order to apply (2.36), we need to compute ζ(p; s − rk(L)). We have

p−κ
(
s− rk(L)

2

)
−

rk(L)
2 =

p−(κ−2)
(
s− rk(L)

2

)
−

rk(L)
2 − p−κ

(
s− rk(L)

2

)
−

rk(L)
2 − p−(κ−1)

(
s− rk(L)

2

)
−1 + p−(κ+1)

(
s− rk(L)

2

)
−1(

1 − p−(s−rk(L)+1)) (p2s−rk(L) − 1
)



2.3. FOURIER COEFFICIENTS OF TRIVIAL EISENSTEIN SERIES 53

and[
1 − χL(p)p−

rk(L)
2

] [
1 + χL(p)p−s+ rk(L)

2

] p − 1
p − p−s+rk(L)

∑
0≤l≤ κ−1

2

p−l(2s−rk(L))

=
(
1 − p−(s−rk(L)+1)

)−1 (
p2s−rk(L) − 1

)−1 [
p2s−rk(L) − p−(κ−1)

(
s− rk(L)

2

)
− p2s−rk(L)−1

+ p−(κ−1)
(
s− rk(L)

2

)
−1 + χL(p)ps− rk(L)

2 − χL(p)p−κ
(
s− rk(L)

2

)
− χL(p)ps− rk(L)

2 −1

+ χL(p)p−κ
(
s− rk(L)

2

)
−1
− χL(p)p2s− 3rk(L)

2 + χL(p)p−(κ−1)
(
s− rk(L)

2

)
−

rk(L)
2 + χL(p)p2s− 3rk(L)

2 −1

− χL(p)p−(κ−1)
(
s− rk(L)

2

)
−

rk(L)
2 −1
− ps−rk(L) + p−κ

(
s− rk(L)

2

)
−

rk(L)
2 + ps−rk(L)−1 − p−κ

(
s− rk(L)

2

)
−

rk(L)
2 −1

]
.

Note that

(2.41) ps−rk(L) =
p3s−2rk(L) − p2s−rk(L)−1 − ps−rk(L) + p−1(

1 − p−(s−rk(L)+1)) (p2s−rk(L) − 1
) .

The above calculations combined with (2.36) imply that

Lp(s) =
(
p2s−rk(L) − p−(κ−1)

(
s− rk(L)

2

)
+ χL(p)ps− rk(L)

2 − χL(p)p−κ
(
s− rk(L)

2

)
− χL(p)ps− rk(L)

2 −1 − p−1

+ χL(p)p−κ
(
s− rk(L)

2

)
−1 + p−(κ+1)

(
s− rk(L)

2

)
−1

) (
1 − p−(s−rk(L)+1)

)−1 (
p2s−rk(L) − 1

)−1
.

It follows from (2.26) and from writing

(2.42) p2s−rk(L) − 1 =

(
χL(p)ps− rk(L)

2 − 1
) (
χL(p)ps− rk(L)

2 + 1
)

that

L̃p(s) =
χL(p)ps− rk(L)

2 − χL(p)p−κ
(
s− rk(L)

2

)
− p−1 + p−(κ+1)

(
s− rk(L)

2

)
−1

χL(p)ps− rk(L)
2 − 1

=

(
χL(p)ps− rk(L)

2 − p−1
) (

1 − p−(κ+1)
(
s− rk(L)

2

))
χL(p)ps− rk(L)

2 − 1

= χL(pκ)p−κ
(
s− rk(L)

2

) (
1 − χL(p)p−

(
s− rk(L)

2 +1
)) (

χL(p)ps− rk(L)
2

)(κ+1)
− 1

χL(p)ps− rk(L)
2 − 1

,

as claimed. We have used the fact that χL(p)κ+1 = χL(p)κ−1 = 1 when κ is odd.
Next, suppose that κ is even. Then

I−2D̃/pκ (r(κ), d(κ)) (s) =I−2D̃/pκ
(
rk(L), det(L)

)
(s)

=

[
1 − p−

rk(L)
2 χL(p)

] [ p − 1
p − p−s + p−

rk(L)
2 χL(p)

]
.
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Theorem 2.18 and equations (2.38) and (2.39) imply that

ζ(p; s) =
∑

0≤l≤ κ2

I−2D̃/p2l
(
rk(L), det(L)

)
(s)p−l(rk(L)+2s)

+ p−s−rk(L)
∑

0≤l≤ κ−2
2

I−2D̃/p2l+1 (0, 1) (s)p−l(rk(L)+2s) + p−κ
(
s+ rk(L)

2

)
−rk(L)

=

[
1 − χL(p)p−

rk(L)
2

] [
1 + χL(p)p−s− rk(L)

2

] p − 1
p − p−s

∑
0≤l≤ κ−2

2

p−l(rk(L)+2s)

+

[(
1 − χL(p)p−

rk(L)
2

) p − 1
p − p−s + χL(p)p−

rk(L)
2

]
p−κ

(
s+ rk(L)

2

)
,

since I−2D̃/p2l+1 (0, 1) (s) vanishes for every l in the second sum. We need to compute
ζ(p; s − rk(L)). We have

[(
1 − χL(p)p−

rk(L)
2

) p − 1
p − p−s+rk(L) + χL(p)p−

rk(L)
2

]
p−κ

(
s− rk(L)

2

)

=
(
1 − p−(s−rk(L)+1)

)−1 (
p2s−rk(L) − 1

)−1 (
p−(κ−2)

(
s− rk(L)

2

)
− p−(κ−2)

(
s− rk(L)

2

)
−1
− p−κ

(
s− rk(L)

2

)
+ p−κ

(
s− rk(L)

2

)
−1 + χL(p)p−(κ−2)

(
s− rk(L)

2

)
−

rk(L)
2 −1
− χL(p)p−(κ−1)

(
s− rk(L)

2

)
−1

− χL(p)p−κ
(
s− rk(L)

2

)
−

rk(L)
2 −1 + χL(p)p−(κ+1)

(
s− rk(L)

2

)
−1

)
and, using (2.40),

[
1 − χL(p)p−

rk(L)
2

] [
1 + χL(p)p−s+ rk(L)

2

] p − 1
p − p−s+rk(L)

∑
0≤l≤ κ−2

2

p−l(2s−rk(L))

=
(
1 − p−(s−rk(L)+1)

)−1 (
p2s−rk(L) − 1

)−1 [
p2s−rk(L) − p−(κ−2)

(
s− rk(L)

2

)
− p2s−rk(L)−1

+ p−(κ−2)
(
s− rk(L)

2

)
−1 + χL(p)ps− rk(L)

2 − χL(p)p−(κ−1)
(
s− rk(L)

2

)
− χL(p)ps− rk(L)

2 −1

+ χL(p)p−(κ−1)
(
s− rk(L)

2

)
−1
− χL(p)p2s− 3rk(L)

2 + χL(p)p−(κ−2)
(
s− rk(L)

2

)
−

rk(L)
2

+ χL(p)p2s− 3rk(L)
2 −1 − χL(p)p−(κ−2)

(
s− rk(L)

2

)
−

rk(L)
2 −1
− ps−rk(L)

+ p−(κ−1)
(
s− rk(L)

2

)
−

rk(L)
2 + ps−rk(L)−1 − p−(κ−1)

(
s− rk(L)

2

)
−

rk(L)
2 −1

]
.

Equation (2.36) and the above calculations imply that

Lp(s) =
(
p2s−rk(L) + χL(p)ps− rk(L)

2 − χL(p)p−(κ−1)
(
s− rk(L)

2

)
− p−κ

(
s− rk(L)

2

)
− χL(p)ps− rk(L)

2 −1 − p−1

+ p−κ
(
s− rk(L)

2

)
−1 + χL(p)p−(κ+1)

(
s− rk(L)

2

)
−1

) (
1 − p−(s−rk(L)+1)

)−1 (
p2s−rk(L) − 1

)−1
.
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It follows from (2.26) and (2.42) that

L̃p(s) =
χL(p)ps− rk(L)

2 − p−κ
(
s− rk(L)

2

)
− p−1 + χL(p)p−(κ+1)

(
s− rk(L)

2

)
−1

χL(p)ps− rk(L)
2 − 1

=

(
χL(p)ps− rk(L)

2 − p−1
) (

1 − χL(p)p−(κ+1)
(
s− rk(L)

2

))
χL(p)ps− rk(L)

2 − 1

= χL(pκ)p−κ
(
s− rk(L)

2

) (
1 − χL(p)p−

(
s− rk(L)

2 +1
)) (

χL(p)ps− rk(L)
2

)(κ+1)
− 1

χL(p)ps− rk(L)
2 − 1

.

We have used the fact that χL(p)κ+2 = χL(p)κ−2 = 1 when κ is even.
We remind the reader that χL(p) = χd(p) for those primes which do not divide ∆(L).

Hence, if we set g :=
∏

p|D̃,p-2 det(L) pvp(D̃), then∏
p|D̃

p-2 det(L)

L̃p(k − 1)

1 − χd(p)p−
(
k− rk(L)

2

) = χd(g)g−
(
k− rk(L)

2 −1
) ∑

d|g

χd(d)dk− rk(L)
2 −1,

as claimed. �

Example 2.20. If L is unimodular, then the only bad primes arising in (2.29) are p =

2 and the primes considered in Proposition 2.19. In this case, we have rk(L) ≡ 0 mod 8
and det(L) = 1. The latter implies that Nx = 1, that d = f = 1, that D̃ = D and that χL(·)
is the trivial character. Combining this with (2.34), we obtain that

Gk,L,0(D, x) = −
(2k − rk(L))σk− rk(L)

2 −1(−D)

Bk− rk(L)
2

×

L̃2(k − 1)2v2(D)
(
k− rk(L)

2 −1
) (

2k− rk(L)
2 −1 − 1

)
(
1 − 2

rk(L)
2 −k

) (
2(v2(D)+1)

(
k− rk(L)

2 −1
)
− 1

) .

2.4. Fourier coefficients of non-trivial Eisenstein series

In this section, we use the notions discussed in Subsection 1.3.2 in order to obtain
non-trivial linear relations between the Fourier coefficients of non-trivial Eisenstein se-
ries and those of the trivial one. As an application of this result, we obtain formulas for
the Fourier coefficients of Eisenstein series associated with isotropic elements which
have small order in the discriminant module of the lattice in the index.

Let ϕ denote the isomorphism between Jacobi forms and vector-valued modular
forms from Theorem 1.39 and let σx denote the Schrödinger representation twisted at x
from Definition 1.40. Define an averaging operator on Jk,L in the following way:

Definition 2.21. For every x in L#/L and every φ in Jk,L, set

Avx φ(τ, z) :=
1

N2
x

∑
(m,n)∈(Z(N2

x ))
2

ϕ−1σ∗x(m, n, 0)ϕ(φ)(τ, z).

Remark 2.22. This operator was defined for vector-valued modular forms in [Wil18,
§11]. The action of the Schrödinger representation (and implicitly Avx) can be defined
directly on theta series. However, we continue to work with vector-valued modular
forms, since it is easier to prove modularity in this context.

The following holds:
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Lemma 2.23. The operator Avx is well-defined (i.e. it does not depend on the choice
of representatives of Z(N2

x )) and it maps Jk,L to Jk,L.

Proof. For all integers u and v, we have

σ∗x(m + uN2
x , n, 0)ey = σ∗x(m, n + vN2

x , 0)ey = σ∗x(m, n, 0)ey

and therefore Avx is well-defined. To show that Avx φ is an element of Jk,L, it suffices
to prove that ϕ (Avx φ) is an element of Mk− rk(L)

2
(ρ∗L). Set F(τ) := ϕ(φ). For every pair

(m, n) in (Z(N2
x ))2 and every Ã in Γ̃, the following holds:

(
σ∗x(m, n, 0)F

)
|k− rk(L)

2
Ã(τ) =w(τ)−2

(
k− rk(L)

2

)
σ∗x(m, n, 0)F(Aτ)

=w(τ)−2
(
k− rk(L)

2

)
ρ∗L(Ã)σ∗x((m, n, 0)A)ρ∗L(Ã)−1F(Aτ)

=ρ∗L(Ã)σ∗x((m, n, 0)A)F(τ),

using (1.27) in the middle line. Thus,

ϕ(Avx φ)|k− rk(L)
2

Ã(τ) =
1

N2
x

∑
(m,n)∈(Z(N2

x ))
2

ρ∗L(Ã)σ∗x((m, n, 0)A)F(τ)

=
1

N2
x

∑
(m′,n′)∈(Z(N2

x ))
2

ρ∗L(Ã)σ∗x(m
′, n′, 0)F(τ)(2.43)

=ρ∗L(Ã)ϕ(Avx(φ))(τ),

with the change of variable (m′, µ′) = ((m, n)A) (which is an isomorphism of (Z/N2
xZ)2,

since A ∈ Γ). Since clearly ϕ(Avx(φ)) is holomorphic, it follows that it is an element of
Mk− rk(L)

2
(ρ∗L) and applying ϕ−1 to it completes the proof. �

Proposition 2.24. For every x in L#/L, we have

(2.44) Avx Ek,L,0(τ, z) =
∑

m∈Z(N2
x )

mβ(x)∈Z

Ek,L,mx(τ, z).

Proof. Note that, if mβ(x) ∈ Z, then β(mx) = m2β(x) ∈ Z and hence mx ∈ Iso(DL).
Thus, the right-hand side of (2.44) is well-defined. A similar argument to the one used
to obtain (2.9) implies that

(2.45) Ek,L,r(τ, z) =
1
2

∑
A∈Γ∞\Γ

1|k− rk(L)
2

Ã(τ)
∑

y∈L#/L

ρL(Ã)r,yϑL,y(τ, z).

The fact that ρL is unitary implies that ρ∗L(Ã)−1 = ρL(Ã)t and therefore

Avx Ek,L,0(τ, z) =
1

N2
x

∑
(m,n)∈(Z(N2

x ))
2

ϕ−1σ∗x(m, n, 0)
1
2

∑
A∈Γ∞\Γ

1|k− rk(L)
2

Ã(τ)ρ∗L(Ã)−1
e0.



2.4. FOURIER COEFFICIENTS OF NON-TRIVIAL EISENSTEIN SERIES 57

Equation (1.27) implies that∑
(m,n)∈(Z(N2

x ))
2

σ∗x(m, n, 0)ρ∗L(Ã)−1
e0 =

∑
(m,n)∈(Z(N2

x ))
2

ρ∗L(Ã)−1σ∗x
(
(m, n, 0)A−1)

e0

=
∑

(m′,n′)∈(Z(N2
x ))

2

ρ∗L(Ã)−1σ∗x
(
m′, n′, 0

)
e0

=
∑

(m,n)∈(Z(N2
x ))

2

e(mnβ(x))ρ∗L(Ã)−1
e−mx

=
∑

m∈Z(N2
x )

ρ∗L(Ã)−1
e−mx

∑
n∈Z(N2

x )

en(mβ(x)).

In the second line, we have substituted (m′, n′) for
(
(m, n)A−1

)
. The inner sum in the last

line is equal to N2
x if mβ(x) ∈ Z and to zero otherwise. Thus,

Avx Ek,L,0(τ, z) =
∑

m∈Z(N2
x )

mβ(x)∈Z

ϕ−1 1
2

∑
A∈Γ∞\Γ

1|k− rk(L)
2

Ã(τ)ρL(Ã)t
e−mx

=
∑

m∈Z(N2
x )

mβ(x)∈Z

Ek,L,−mx(τ, z) =
∑

m∈Z(N2
x )

mβ(x)∈Z

Ek,L,mx(τ, z). �

Note that both N2
x and m are multiples of lev(x). Set Mx := N2

x
lev(x) − 1; then the

conditions in the above summation can be re-written as

(2.46) Avx Ek,L,0(τ, z) =

Mx∑
j=0

Ek,L, j lev(x)x.

When k is odd, equation (1.15) asserts that Ek,L,x = −Ek,L,−x; on the right hand-side of
(2.44), every element m in Z(N2

x ) satisfies mβ(x) ∈ Z if and only if −mβ(x) ∈ Z and hence
the right-hand side of (2.44) vanishes.

We want to determine whether it is possible to obtain all Eisenstein series on the
right-hand side of (2.46) without inputting an isotropic element on the left-hand side.
In other words, for every r in Iso(DL), does there exist an x in (L#/L) \ Iso(DL) such that

Avx Ek,L,0 = Ek,L,r +
∑
s,r

Ek,L,s?

We give an example where the answer is no. We remind the reader that DL is a finite
quadratic module. Suppose that DL ' At

pn for some odd prime p, some even positive
integer n and some integer t which is coprime to p (see Theorem 1.12). Then tr2/pn ∈ Z
if an only if pn | r2 and therefore

Iso(At
pn) =

{
sp

n
2 : s ∈ {0, 1, . . . , p

n
2 − 1}

}
.

Each non-isotropic element of At
pn is equal to sp

n
2−l, for some positive integer s which is

coprime to p and some positive integer l such that l ≤ n
2 . Such an element has level equal

to p2l and hence every j lev(x)x on the right-hand side of (2.46) is a multiple of p
n
2 +l and

hence, for example, the isotropic element p
n
2 is never achieved on the right-hand side.
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For the remainder of this section, suppose that k is even. Let hr,y denote the y-th
component of the theta expansion of Ek,L,r, as given in (2.45):

hr,y(τ) =
1
2

∑
A∈Γ∞\Γ

ρL(Ã)r,y1|k− rk(L)
2

Ã(τ).

Taking x to be an isotropic element in Proposition 2.24 leads to the main result of this
section:

Proposition 2.25. Suppose that k is even and that x ∈ Iso(DL). Then

(2.47)
∑

m∈Z(Nx)

Ek,L,mx(τ, z) =
∑

y∈L#/L
β(x,y)∈Z

( ∑
m∈Z(Nx)

h0,y+mx(τ)
)
ϑL,y(τ, z),

which implies the following identity:

∑
m∈Z(Nx)

Gk,L,mx(D, y) =


∑

m∈Z(Nx)

Gk,L,0(D, y + xm), if β(x, y) ∈ Z and

0, otherwise.

Proof. Insert the definition of Avx on the left-hand side of (2.44) and expand:

Avx Ek,L,0(τ, z) =
1

N2
x
ϕ−1

∑
(m,n)∈(Z(N2

x ))
2

∑
y∈L#/L

e(mnβ(x) − nβ(x, y))h0,y(τ)ey−mx

=
1

N2
x
ϕ−1

∑
y∈L#/L

h0,y(τ)
∑

m∈Z(N2
x )

ey−mx

∑
n∈Z(N2

x )

e(−nβ(x, y))

=ϕ−1
∑

y∈L#/L
β(x,y)∈Z

h0,y(τ)
∑

m∈Z(N2
x )

ey−mx = Nxϕ
−1

∑
y∈L#/L
β(x,y)∈Z

h0,y(τ)
∑

m∈Z(Nx)

ey−mx,

since ey−mx only depends on m mod Nx. Set y′ := y − mx and drop the prime from the
notation. Then the last line can be written as

Avx Ek,L,0(τ, z) =Nxϕ
−1

∑
y∈L#/L
β(x,y)∈Z

( ∑
m∈Z(Nx)

h0,y+mx(τ)
)
ey

=Nx

∑
y∈L#/L
β(x,y)∈Z

( ∑
m∈Z(Nx)

h0,y+mx(τ)
)
ϑL,y(τ, z).

On the other hand, if x ∈ Iso(DL), then mβ(x) ∈ Z for every m in Z(N2
x ) and thus the

right-hand side of (2.44) is equal to∑
m∈Z(N2

x )

Ek,L,mx(τ, z) = Nx

∑
m∈Z(Nx)

Ek,L,mx(τ, z),

since Ek,L,r only depends on r mod L. The identity involving the Fourier coefficients
follows immediately. �

We list some examples in which Proposition 2.25 can be used to compute the Fourier
coefficients of Eisenstein series indexed by elements x in Iso(DL) of small order.

Example 2.26. Suppose that x is an isotropic element of order 2. Then Proposition
2.25 implies that

Ek,L,0(τ, z) + Ek,L,x(τ, z) =
∑

y∈L#/L
β(x,y)∈Z

(
h0,y + h0,y+x

)
(τ)ϑL,y(τ, z),
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in other words

Gk,L,0(D, y) + Gk,L,x(D, y) =

Gk,L,0(D, y) + Gk,L,0(D, y + x), if β(x, y) ∈ Z,
0, otherwise,

for every (D, y) in supp(L). Hence, the Fourier coefficients of Ek,L,x are given by the
formula

Gk,L,x(D, y) =

Gk,L,0(D, y + x), if β(x, y) ∈ Z and
−Gk,L,0(D, y), otherwise.

Example 2.27. Suppose that x is an isotropic element of order 3. Then Proposition
2.25 implies that

Ek,L,0 + Ek,L,x + Ek,L,2x =
∑

y∈L#/L
β(x,y)∈Z

(
h0,y + h0,y+x + h0,y+2x

)
ϑL,y.

The fact that Ek,L,x = Ek,L,−x when k is even implies that the Fourier coefficients of Ek,L,x

are given by the formula

Gk,L,x(D, y) =

 1
2

(
Gk,L,0(D, y + x) + Gk,L,0(D, y + 2x)

)
, if β(x, y) ∈ Z and

−1
2Gk,L,0(D, y), otherwise.

Example 2.28. If x in Iso(DL) has order 4, then

Ek,L,0 + 2Ek,L,x + Ek,L,2x =
∑

y∈L#/L
β(x,y)∈Z

(
h0,y + h0,y+x + h0,y+2x + h0,y+3x

)
ϑL,y.

Since 2x has order 2, Example 2.26 implies that

Gk,L,2x(D, y) =

Gk,L,0(D, y + 2x), if β(2x, y) ∈ Z and
−Gk,L,0(D, y), otherwise.

Note that β(x, y) ∈ Z implies that β(2x, y) ∈ Z and hence Gk,L,x(D, y) is equal to
1
2

(
Gk,L,0(D, y + x) + Gk,L,0(D, y + 3x)

)
, if β(x, y) ∈ Z,

−1
2

(
Gk,L,0(D, y) + Gk,L,0(D, y + 2x)

)
, if β(2x, y) ∈ Z and β(x, y) < Z and

0, if β(2x, y) < Z.

Example 2.29. When x has order 6, Proposition 2.25 gives a formula for

Ek,L,0 + Ek,L,x + Ek,L,2x + Ek,L,3x + Ek,L,4x + Ek,L,5x.

Since 3x has order 2, Example 2.26 implies that

Gk,L,3x(D, y) =

Gk,L,0(D, y + 3x), if β(3x, y) ∈ Z and
−Gk,L,0(D, y), otherwise.

Since 2x has order 3, Example 2.27 implies that

Gk,L,2x(D, y) =

 1
2

(
Gk,L,0(D, y + 2x) + Gk,L,0(D, y + 4x)

)
, β(2x, y) ∈ Z and

−1
2Gk,L,0(D, y), otherwise

and note that Ek,L,4x = Ek,L,2x. If β(x, y) ∈ Z, then β(2x, y) ∈ Z and β(3x, y) ∈ Z. If
β(x, y) < Z but β(2x, y) ∈ Z, then β(x, y) = a/2 for some odd a and therefore β(3x, y) <



60 2. POINCARÉ AND EISENSTEIN SERIES

Z. Similarly, if β(x, y) < Z and β(3x, y) ∈ Z, then β(2x, y) < Z. Since Ek,L,x = Ek,L,5x, it
follows that Gk,L,x(D, y) is equal to

1
2

(
Gk,L,0(D, y + x) + Gk,L,0(D, y + 5x)

)
, if β(x, y) ∈ Z,

−1
2

(
Gk,L,0(D, y + 2x) + Gk,L,0(D, y + 4x)

)
, if β(2x, y) ∈ Z and β(x, y) < Z,

−1
2Gk,L,0(D, y + 3x), if β(3x, y) ∈ Z and β(x, y) < Z,

1
2Gk,L,0(D, y), if β(2x, y) and β(3x, y) < Z.

If x is an isotropic element of order 5, then we obtain a formula for the Fourier
coefficients of Ek,L,x + Ek,L,2x:

(
Gk,L,x + Gk,L,2x

)
(D, y) =


1
2 (Gk,L,0(D,y+x)+Gk,L,0(D,y+2x)

+Gk,L,0(D,y+3x)+Gk,L,0(D,y+4x)), β(x, y) ∈ Z and

−
1
2

Gk,L,0(D, y), otherwise.

In general, if x in Iso(DL) has odd prime order p, then we obtain a formula for

Ek,L,x + Ek,L,2x + Ek,L,3x + · · · + Ek,L, p−1
2 x.

When x has order 8, Proposition 2.25 gives a formula for

Ek,L,0 + Ek,L,x + Ek,L,2x + Ek,L,3x + Ek,L,4x + Ek,L,5x + Ek,L,6x + Ek,L,7x

and we can compute the Fourier coefficients of Ek,L,4x and Ek,L,2x (which is equal to
Ek,L,6x) using Examples 2.26 and 2.28, respectively. However, we then obtain a formula
for the Fourier coefficients of Ek,L,x + Ek,L,3x only. Note that this method resembles a
sieving technique.

Let ξ be a primitive character of conductor F | Nx. We remind the reader of Defini-
tion 1.31 of the twisted Eisenstein series,

Ek,L,x,ξ =
∑

d∈Z×(Nx)

ξ(d)Ek,L,dx.

This resembles the left-hand side of (2.47). Define

Avx,ξ φ(τ, z) :=
1

N2
x

∑
(m,n)∈(Z(N2

x ))
2

ξ(m)
(
ϕ−1σ∗x(m, n, 0)ϕ

)
φ(τ, z).

This expression is independent of the coset representatives of Z(N2
x ), however

ϕ(Avx,ξ φ)|k− rk(L)
2

Ã(τ) =
1

N2
x

∑
(m,n)∈(Z(N2

x ))
2

ξ(m)ρ∗L(Ã)σ∗x((m, n, 0)A)F(τ)

,
1

N2
x

∑
(m′,n′)∈(Z(N2

x ))
2

ξ(m′)ρ∗L(Ã)σ∗x(m
′, n′, 0)F(τ).

In other words, if we were to twist Avx by ξ, then Avx,ξ φ fails to be modular, due to the
fact that the change of variable (m′, n′) = (m, n)A made in (2.43) does not preserve ξ.
We have also made this change of variable in the proof of Proposition 2.24, hence we
cannot simply define Avx,ξ on Eisenstein series directly.



CHAPTER 3

Hecke operators and the action of the orthogonal group

In the future, we would like to establish a precise correspondence between Jacobi
forms of lattice index and elliptic modular forms. One of the key ingredients going into
the proof of Theorem 1.37 is the theory of newforms developed in [EZ85] for Jacobi
forms of scalar index. In this chapter, we study Hecke operators and the operators
arising from the action of the orthogonal group of the discriminant module associated
with the lattice in the index. These families of operators were both defined for the first
time in [Ajo15]. In the final section, we study the correspondence between Jacobi forms
for the root lattices of type Dn (n odd) and elliptic modular forms for small weights.

3.1. Hecke operators and lifting maps

We review the main results in [Ajo15]. The reader can consult the cited text for the
proofs. Let L = (L, β) be a positive-definite, even lattice over Z and let k ≥ rk(L)

2 be an
integer.

3.1.1. Definition and properties of Hecke operators. Set

NL := {n ∈ N : (n, lev(L)) = 1}.

Hecke operators were defined in [Ajo15, §2.5] as double coset operators:

Definition 3.1. For every l in NL, define the following operator on Jk,L:

T0(l)φ := lk−2−rk(L)
∑

g∈JL\JL
(

l−1 0
0 l

)
JL

φ|k,Lg.

The operators T0(·) are well-defined, in other words, they do not depend on the
choice of coset representatives of JL\JL

(
l−1 0
0 l

)
JL. Furthermore, they map Jk,L to itself

and they preserve the subspaces of cusp forms and Eisenstein series. This can be seen
from their action on the Fourier coefficients of Jacobi forms ([Ajo15, Proposition 2.5.6
and Theorem 2.6.8]). They are primitive Hecke operators, in the sense that the Γ-
component of every set of coset representatives of JL\JL

(
l−1 0
0 l

)
JL is given by primitive

matrices, i.e. matrices whose entries are coprime.

Definition 3.2 (Hecke operators). For every l in NL, define the following operator
on Jk,L:

• if rk(L) is odd, then

(3.1) T (l)φ :=
∑

s2 |l,s>0

s2k−rk(L)−3T0

(
l
s2

)
φ;

• if rk(L) is even, then

(3.2) T (l)φ :=
∑
d,s>0

sd2 |l,s square-free

χL(s)(sd2)k− rk(L)
2 −2T0

(
l

sd2

)
φ.

61
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Equation (3.1) matches the relation between Hecke operators for elliptic modular
forms of weight 2k − rk(L) − 1 and the corresponding operators defined with primitive
matrices. For every l in N, set

(3.3) M(l) := {A ∈ M2(Z) : det(A) = l}.

A complete set of coset representatives for Γ\M(l) is given by the set

∆l :=
{
A =

( a b
0 d

)
: a, b, d ∈ Z, a, d ≥ 0, ad = l and 0 ≤ b < d

}
.

For every matrix A =
( a b

c d
)

in M2(Z), set gcd(A) := gcd(a, b, c, d). Define

∆
pr
l := {A ∈ ∆l : gcd(A) = 1}.

The |k,L-action of matrices in GL+
2 (R) on holomorphic, complex-valued functions de-

fined on H × (L ⊗ C) is defined as

(3.4) (φ,M) 7→ φ|k,LM := φ|k,L

(
1

√
det(M)

M
)
.

The following holds:

Lemma ([Ajo15, Lemma 2.6.6]). Let φ be an element of Jk,L. For every l in NL, the
action of T0(l) on φ can be written as

(3.5) T0(l)φ = lk−2−2rk(L)
∑

h∈L2/lL2

∑
A∈ 1

l ∆
pr
l2

φ|k,L(A, h).

Lemma 3.3. Let φ ∈ Jk,L, l ∈ N and s2 | l. Then

(3.6) φ|k,L(A, (λ, µ)) = φ|k,L

(
A,

(
λ +

l
s2 en, µ

))
= φ|k,L

(
A,

(
λ, µ +

l
s2 en

))
for every A in s2

l ∆
pr
l2

s4

and every n in {1, . . . , rk(L)}.

Proof. We have

s2

l
∆

pr
l2

s4

=
s2

l

{(
a b
0 d

)
: a, b, d ∈ Z, a, d ≥ 0, ad =

l2

s4 , 0 ≤ b < d, (a, b, d) = 1
}

and therefore

φ|k,L(A, (λ, µ))(τ, z) =

(
s2d
l

)−k

e (β(λ)τ + β(λ, z)) φ
(
aτ + b

d
,

l(z + λτ + µ)
s2d

)
for some a, b and d as above. On the other hand,

φ|k,L

(
A,

(
λ +

l
s2 en, µ

))
(τ, z) =

(
s2d
l

)−k

e
(
β

(
λ +

l
s2 en

)
τ + β

(
λ +

l
s2 en, z

))

× φ

aτ + b
d

,
l
(
z + (λ + l

s2 en)τ + µ
)

s2d


=

(
s2d
l

)−k

e
(
β

(
λ +

l
s2 en

)
τ + β

(
λ +

l
s2 en, z

))
φ

(
aτ + b

d
,

l(z + λτ + µ)
s2d

+
l2τ

s4d
en

)
=

(
s2d
l

)−k

e
(
β

(
λ +

l
s2 en

)
τ + β

(
λ +

l
s2 en, z

))
φ
(
τ′, z′ + dτ′en − ben

)
,



3.1. HECKE OPERATORS AND LIFTING MAPS 63

where we have made the substitutions τ′ = aτ+b
d and z′ =

l(z+λτ+µ)
s2d and we have used the

fact that ad = l2
s4 . Since φ ∈ Jk,L and den,−ben ∈ L, we have

φ
(
τ′, z′ + dτ′en − ben

)
=φ

(
τ′, z′ + dτ′en − ben

)
|L(−den, ben)

=φ(τ′, z′)e(τ′β(den) − β(den, z′ + dτ′en − den))

=φ

(
aτ + b

d
,

l(z + λτ + µ)
s2d

)
× e

(
−d(aτ + b)β(en) − β

(
en,

l(z + λτ + µ)
s2

))
and we obtain that

φ|k,L

(
A,

(
λ +

l
s2 en, µ

))
(τ, z) = φ|k,L(A, (λ, µ))(τ, z),

as claimed. We include the calculations in the exponential term for the sake of com-
pleteness:

e
(
β

(
λ +

l
s2 en

)
τ + β

(
λ +

l
s2 en, z

)
− d(aτ + b)β(en) − β

(
en,

l(z + λτ + µ)
s2

))
= e

( (
β(λ) + β

(
l
s2 en

)
+ β

(
λ,

l
s2 en

))
τ + β(λ, z) + β

(
l
s2 en, z

)
− β(en)adτ − β(en)db − β

(
en,

lz
s2

)
− β

(
en,

l
s2λ

)
τ − β

(
en,

l
s2µ

) )
= e(β(λ)τ + β(z, λ)).

We also have

φ|k,L

(
A,

(
λ, µ +

l
s2 en

))
(τ, z)

=

(
s2d
l

)−k

e(β(λ)τ + β(λ, z))φ

aτ + b
d

,
l
(
z + λτ + (µ + l

s2 en)
)

s2d


=

(
s2d
l

)−k

e(β(λ)τ + β(λ, z))φ|L

(
0,

l2

s4d
en

) (
aτ + b

d
,

l(z + λτ + µ)
s2d

)
=

(
s2d
l

)−k

e(β(λ)τ + β(λ, z))φ
(
aτ + b

d
,

l(z + λτ + µ)
s2d

)
,

since φ ∈ Jk,L and l2
s4d en ∈ L. �

We use the last two lemmas to obtain a new formula for Hecke operators:

Proposition 3.4. Let φ be an element of Jk,L. For every l in NL, the action of T (l) on
φ can be written as

T (l)φ = lk−2−2rk(L)
∑
s2 |l
s>0

s1−rk(L)
∑

A∈ s2
l ∆

pr
l2
s4

∑
h∈L2/lL2

φ|k,L(A, h)

if rk(L) is odd and as

T (l)φ =lk−2−2rk(L)
∑
d,s>0

sd2 |l,s square-free

χL(s)(sd2)
−rk(L)

2

∑
A∈ sd2

l ∆
pr

l2
s2d4

∑
h∈L2/lL2

φ|k,L(A, h)
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if rk(L) is even.

Proof. Suppose that rk(L) is odd and insert the expression for T0(l) given in (3.5)
into (3.1):

T (l)φ = lk−2−2rk(L)
∑
s2 |l
s>0

s3rk(L)+1
∑

A∈ s2
l ∆

pr
l2
s4

∑
h∈L2/ l

s2 L2

φ|k,L(A, h).

Fix a Z-basis {e1, . . . , erk(L)} of L. Two elements λ and λ′ of L lie in the same congruence
class modulo lL if and only if each of their rk(L) coordinates lie in the same congruence
class modulo l. It follows that |L/lL| = lrk(L) for every l in N. Combining this with (3.6)
implies that ∑

A∈ s2
l ∆

pr
l2
s4

∑
h∈L2/ l

s2 L2

φ|k,L(A, h) = s−4rk(L)
∑

A∈ s2
l ∆

pr
l2
s4

∑
h∈L2/lL2

φ|k,L(A, h)

for every s such that s2 | l. Thus, the proof is complete for odd rank lattices.
When rk(L) is even, equations (3.2) and (3.5) imply that

T (l)φ =lk−2−2rk(L)
∑
d,s>0

sd2 |l,s square-free

χL(s)(sd2)
3rk(L)

2

∑
A∈ sd2

l ∆
pr

l2
s2d4

∑
h∈L2/ l

sd2 L2

φ|k,L(A, h).

The arguments used in the case of odd rank lattices yield the desired result. �

We remind the reader of Definition 1.10 of χL(·, ·). For every D in Q≤0 such that
lev(L)D ∈ Z and every a in N, define the function

µL(D, a) :=

 fχL

(
D
f 2 ,

a
f 2

)
, if (lev(L)D, a) = f 2 for some f in N and

0, otherwise.

The following two theorems describe the action of Hecke operators on the Fourier co-
efficients of Jacobi forms:

Theorem 3.5 ([Ajo15, Thm 2.6.1]). Let L = (L, β) be a positive-definite, even lattice
of odd rank. Let φ be an element of Jk,L with a Fourier expansion of the form (1.13), let
l ∈ NL and let

T (l)φ(τ, z) =
∑

(D,r)∈supp(L)

CT (l)φ(D, r)e ((β(r) − D)τ + β(r, z)) .

Then

(3.7) CT (l)φ(D, r) =
∑
a|l2

a2 |l2 lev(L)D

ak−d rk(L)
2 e−1µL(D, a)Cφ

(
l2

a2 D, la′r
)
,

where, for every a as above, a′ is an integer such that aa′ ≡ 1 mod lev(L).

Theorem 3.6 ([Ajo15, Thm 2.6.3]). Let L = (L, β) be a positive-definite, even lattice
of even rank. Let φ be an element of Jk,L with a Fourier expansion of the form (1.13),
let l ∈ NL and let

T (l)φ(τ, z) =
∑

(D,r)∈supp(L)

CT (l)φ)(D, r)e((β(r) − D)τ + β(r, z)).

Then

CT (l)φ(D, r) =
∑

a|l2,lev(L)D

ak− rk(L)
2 −1 χL(a)Cφ

(
l2

a2 D, la′r
)
,
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where, for every a as above, a′ is an integer such that aa′ ≡ 1 mod lev(L).

Remark 3.7. It is pointed out in [Ajo15], if lev(r)D is square-free, then (3.7) sim-
plifies to

CT (l)φ(D, r) =
∑

a|l

ak−d rk(L)
2 e−1 χL(D, a)Cφ

(
l2

a2 D,
l
a

r
)
.

We include the short proof, which is not given in [Ajo15]. Since a | l2 and (l, lev(L)) =

1, we have
a2 | l2 lev(L)D ⇐⇒ a2 | l2 lev(r)D.

Hence, if lev(r)D is square-free, then the conditions on a simplify to a | l. Since
µL(D, a) = 0 unless (lev(L)D, a) = 1, it follows that µL(D, a) = χL(D, a). For a′ such
that aa′ ≡ 1 mod lev(L), we have la′ ≡ l

a mod lev(L) and hence la′r ≡ l
ar mod L

(since lev(L)L# ⊆ L). Thus, we have Cφ

(
l2
a2 D, la′r

)
= Cφ

(
l2
a2 D, l

ar
)

and the argument is
complete.

The fact that T0(l) maps Jk,L to itself for every l combined with the above two theo-
rems imply that the operators T (·) map Jk,L to itself and that they preserve the subspaces
of cusp forms and Eisenstein series. Furthermore, they are Hermitian under the Peters-
son scalar product. Hecke operators also satisfy the following multiplicative relation,
for every m and n in NL:

T (m)T (n) =


∑
d|m,n

d2k−rk(L)−2T
(mn

d2

)
, if rk(L) is odd and

∑
d|m2,n2

dk− rk(L)
2 −1 χL(d)T

(mn
d

)
, if rk(L) is even.

In particular, they commute with each other.

Definition 3.8 (Hecke eigenform). An element φ of Jk,L is called a Hecke eigenform
if, for every l in NL, there exists a constant λφ(l) in C such that T (l)φ = λφ(l)φ.

The notion of “eigenform” is usually applied to cusp forms. However, the following
holds:

Theorem 3.9 ([Ajo15, Thm 3.3.18]). The series Ek,L,r,χ, where r runs through RIso

and χ runs through all primitive Dirichlet characters modulo F, with F | Nr and (−1)k =

χ(−1), form a basis of Hecke eigenforms of JEis
k,L . More precisely, define

λ(l, k, L, χ) :=

σ
χ,χ

2k−rk(L)−2(l), if rk(L) is odd and

χ(l)σχ,χL

k− rk(L)
2 −1

(l2), if rk(L) is even.

Then
T (l)Ek,L,r,χ = λ(l, k, L, χ)Ek,L,r,χ

for every l in NL.

Note that σχ,χ

2k−rk(L)−2(l) = χ(l)σ2k−rk(L)−2(l), since χ is a Dirichlet character of modu-
lus dividing lev(L) and (l, lev(L)) = 1.

It is possible to attach an L-series to every Hecke eigenform. Using the multiplica-
tive properties of Hecke operators, this L-series can be written as an Euler product. This
fact was used in [Ajo15, §2.7] to indicate a correspondence between Jacobi forms and
elliptic modular forms.
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Definition 3.10 (L-function of a Hecke eigenform). Let φ be a Hecke eigenform in
Jk,L, such that T (l)φ = λφ(l)φ for every l in NL. The L-series of φ in s is defined as

(3.8) L(s, φ) :=
∑
l∈NL

λφ(l)l−s.

Proposition ([Ajo15, Prop 2.7.15]). If rk(L) is odd, then L(s, φ) has the following
product expansion:

L(s, φ) =
∏
p∈NL

(
1 − p−sλφ(p) + p2k−rk(L)−2−2s

)−1
.

Proposition 3.11 ([Ajo15, Prop 2.7.8]). For each prime number p in NL, set

gφ(p) := λφ(p) − pk− rk(L)
2 −1 χL(p).

If rk(L) is even, then L(s, φ) has the following product expansion:

L(s, φ) =
Llev(L)(s − k +

rk(L)
2 + 1, χL)

Llev(L)(2s − 2k + rk(L) + 2, χ2
L)

∏
p∈NL

(
1 − gφ(p)p−s + p2(k− rk(L)

2 −1−s)
)−1

.

The following remarks was made in [Ajo15, §2.7]:

Remark 3.12. If a Jacobi form φ of odd rank lattice index lifts to an elliptic modular
form f of weight 2k − rk(L) − 1 with trivial character and suitable level N, then L(s, φ)
should be equal to the L-series of f (up to a finite number of Euler factors). This is
indeed consistent with (1.8).

Remark 3.13. When rk(L) is even, we expect that there exist lifting maps from
Mk− rk(L)

2
(N, ξχL) to Jk,L (for every Dirichlet character ξ and suitable level N), such that

T (l2) on the elliptic side corresponds to ξ(l)T (l) on the Jacobi side. If f is a Hecke
eigenform in Mk− rk(L)

2
(N, ξχL) with eigenvalues a(l), then

(3.9)
∑
l∈NL

ξ(l)a(l2)l−s = L(s, φ)

if we replace λφ(p) with ξ(p)a(p2).

We check that (3.9) holds in the following paragraphs. Set k2 := k − rk(L)
2 and

insert the Euler products of all of the L-functions in the expression for L(s, φ) given in
Proposition 3.11 in order to obtain that

L(s, φ) =
∏
p∈NL

1 − χL(p)2 p−2(s−k2+1)

(1 − χL(p)p−(s−k2+1))(1 − gφ(p)p−s + p−2(s−k2+1))
.

On the other hand, ∑
l∈NL

ξ(l)a(l2)l−s =
∏
p∈NL

∑
m≥0

a(p2m)ξ(pm)p−ms.

Let T denote a formal variable and set

g(T ) :=
∑
m≥0

a(p2m)T 2m and

h(T ) :=
∑
m≥0

a(p2m+1)T 2m+1.
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Set α := ξ(p)χL(p)pk2−1 for simplicity. Then the power series F(T ) := g(T ) + h(T ) =∑
m≥0 a(pm)T m satisfies

(3.10) F(T ) =
1

1 − a(p)T + αT 2 ,

in view of (1.8) and the fact that f ∈ Mk− rk(L)
2

(N, ξχL). The Hecke eigenvalues a(n)
satisfy the following recurrence relation for every m ≥ 2:

a(pm) = a(p)a(pm−1) − αa(pm−2).

It follows that

g(T ) − 1 =
∑
m≥1

a(p2m)T 2m = a(p)T
∑
m≥1

a(p2m−1)T 2m−1 − αT 2
∑
m≥1

a(p2m−2)T 2m−2

=a(p)Th(T ) − αT 2g(T )

⇐⇒ g(T ) =
1 + a(p)T F(T )

1 + a(p)T + αT 2

after rearranging and using the fact that h(T ) = F(T ) − g(T ). Equation (3.10) implies
that

g(T ) =
1 + αT 2

(1 + αT 2)2 − a(p)2T 2

and, substituting T 2 = ζ(p)p−s in the above, we obtain that∑
m≥0

a(p2m)ξ(pm)p−ms =
1 + χL(p)pk2−1−s

(1 + χL(p)pk2−1−s)2 − a(p2)ξ(p)p−s

=
1 + χL(p)pk2−1−s

1 −
(
a(p)2ξ(p) − 2χL(p)pk2−1

)
p−s + p−2(s−k2+1)

Since a(p2) = a(p)2 − α,

a(p)2ξ(p) − 2χL(p)pk2−1 = λφ(p) − pk2−1χL(p) = gφ(p),

with λφ(p) = ξ(p)a(p2). Hence, equation (3.9) holds.
It is well-known that the Eisenstein subspace Ek(N, ε) of elliptic modular forms of

weight k > 2 with character ε for Γ0(N) is spanned by twisted Eisenstein series (see
[Ste07, Theorem 5.9], for example). Let χ and ψ be primitive Dirichlet characters with
conductors L and R, respectively, such that LR | N and χ(−1)ψ(−1) = (−1)k, and define
the twisted Eisenstein series

Ek,χ,ψ(τ) := c0 +
∑
n≥1

σ
χ,ψ
k−1(n)qn,

where

c0 :=

0, if L > 1 and
−

Bk,ψ

2k , otherwise.

The generalized Bernoulli numbers Bk,ψ are defined by the following identity:
R∑

n=1

ψ(n)xenx

eRx − 1
=

∞∑
k=0

Bk,ψ
xk

k!
.

The series Ek,χ,ψ(tτ) (with LRt | N and χψ = ε) form a basis of Ek(N, ε). It follows that
Theorem 3.9 is consistent with Remarks 3.12 and 3.13.
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3.1.2. Lifting maps. Suppose that L is a positive-definite, even lattice of odd rank.
The following maps were defined in [Ajo15, §4.1] on the space S k,L:

Definition 3.14. For every φ in S k,L with Fourier expansion (1.13), x in L# and D in
Q≤0 such that D ≡ β(x) mod Z, set

SD,x(φ)(τ) :=
∞∑

l=1

{∑
a|l

ak−d rk(L)
2 e−1χL(D, a)Cφ

(
l2

a2 D,
l
a

x
) }

ql

and, for every D0 in Q≤0, set

S ξx
D0,x

(φ)(τ) :=
∑

u mod Nx
D0≡β(ux) mod Z

ξx(u)(SD0,ux(φ) ⊗ ξx)(w),

where ξx(·) =

(
(−1)kN2

x
·

)
and SD,x(φ) ⊗ ξx denotes the function obtained from SD,x(φ) by

multiplying its l-th Fourier coefficient with ξx(l) for every l.

We recover the scalar index lifting maps S∆,s from Theorem 1.38 by substituting
x = s

2m and D = ∆
4m in Definition 3.14. The following holds:

Theorem 3.15 ([Ajo15, Thm 4.1.4]). Assume that 2k − rk(L) ≥ 3 and that N2
x D0

is a square-free, negative integer. Then S ξx
D0,x

maps S k,L to M2k−rk(L)−1

(
lev(L)N2

x
2

)
and, if

2k − rk(L) > 3, then it maps cusp forms to cusp forms. Moreover, we have

T (p)S ξx
D0,x

(φ) = ζ(p)S ξx
D0,x

(T (p)φ),

for all primes p in NL.

The proof of this theorem relies on the connection between Jacobi forms of odd
rank lattice index and modular forms of half-integral weight given by theta expansions
(1.19). The lifting maps are induced by the Shimura correspondence between half-
integral weight and integral weight elliptic modular forms.

Remark 3.16. We remind the reader that the spaceMε
k(m) was defined in Subsection

1.3.1. It was conjectured in [Ajo15, §6.1.1] that, when rk(L) is odd, there exists a
Hecke-equivariant isomorhism Jk,L

∼
−→ Mε

2k−rk(L)−1(lev(L)/4), where ε is − if rk(L) ≡ 1
or 3 modulo 8 and ε is + otherwise. We verify this conjecture on an example in Section
3.3.

We remind the reader of Definition 1.18 of stably isomorphic lattices.

Theorem ([Ajo15, Thm 4.2.4]). If the odd rank lattice L is stably isomorphic to the
lattice (Z, (x, y) 7→ det(L)xy), then there exists a Hecke-equivariant isomorphism

Jk,L
∼
−→ M−2k−rk(L)−1(lev(L)/4).

This result is a consequence of Theorems 1.37 and 1.32 (note that the isomorphism
in Theorem 1.32 commutes with the action of Hecke operators). In general, the follow-
ing holds:

Lemma 3.17. Let L1 and L2 be positive-definite, even lattices of odd rank which
are stably isomorphic. Let j denote the isomorphism between DL1

and DL2
and let I j

denote the isomorphism between Jk+d
rk(L2)

2 e,L2
and Jk+d

rk(L1)
2 e,L1

from Theorem 1.32. Let

φ ∈ Jk+d
rk(L2)

2 e,L2
and let x ∈ L#

2 and D0 ∈ Q≤0 such that N2
x D is a square-free integer.

Then
S ξx

D0, j−1(x)(I j(φ)) = S ξx
D0,x

(φ).
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Proof. First, note that

2
(
k + d

rk(L1)
2
e

)
− rk(L1) − 1 = 2

(
k + d

rk(L2)
2
e

)
− rk(L2) − 1 = 2k

and that j preserves the orders of elements and the levels and determinants of the lat-
tices, since it is an isomorphism. We have

SD, j−1(r)(I j(φ))(τ) =

∞∑
l=1

{
a2kχL1

(D, a)CI j(φ)

(
l2

a2 D,
l
a

j−1(r)
)}

ql

=

∞∑
l=1

{
a2kχL2

(D, a)Cφ

(
l2

a2 D,
l
a

j ◦ j−1(r)
)}

ql = SD,r(φ)

for every r in L#
2 and every D in Q≤0 such that β2(r) ≡ D mod Z. The result follows. �

For the remainder of this subsection, suppose that L is a positive-definite, even
lattice of even rank. Furthermore, assume that det(L) = p for some odd prime p. In this
case, we have (−1)

rk(L)
2 p ≡ 1 mod 4 and the map

a 7→ χ(a) := χL(a) =
(

a
p

)
defines a Dirichlet character modulo p. Furthermore, there exists an isomorphism

j : DL
∼
−→

(
Z(p), x 7→

αx2

p

)
for some integer α which is coprime to p.

Definition 3.18. For every t in {±1} and every positive integer k, define the subspace
Mt

k(p, χ) of elliptic modular forms f of weight k for Γ0(p) with nebentypus χ whose
Fourier expansions is of the form

f (τ) =
∑
n≥0

χ(−n),−t

a f (n)qn.

Theorem ([Ajo15, Thm 5.1.2]). Let k be an even positive integer, set k2 := k − rk(L)
2

and let Wp denote the p-th Fricke involution. Then the maps

φ 7→ (−1)
rk(L)

2 hφ,0|k2Wp

and

f 7→
1
2

∑
A∈Γ0(p)\SL2(Z)

θ f ,L|k,LA,

where
θ f ,L(τ, z) := ( f |k2Wp)(τ)ϑL,0(τ, z),

define maps S : Jk,L → Mχ(α)
k2

(p, χ) and S ∗ : Mχ(α)
k2

(p, χ) → Jk,L which are mutually
inverse isomorphisms.

This theorem agrees with Remark 3.13. The Fourier expansion of S (φ) is given in
[Ajo15, §5.1]:

(3.11) S (φ)(τ) = i
−rk(L)

2 p
k2−1

2

∑
l≥0

{ ∑
x∈L#/L

−l
p ≡β(x) mod Z

Cφ

(
−l
p
, x

) }
ql.

In fact, the following holds:
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Proposition 3.19. The modular form S (φ) has the following Fourier expansion:

S (φ)(τ) = 2i
−rk(L)

2 p
k2−1

2

∑
l≥0

Cφ

(
−l
p
, xl

)
ql,

for some xl in L#/L such that β(xl) ≡ −l
p mod Z and Cφ(·, ·) = 0 when no such xl exists.

Proof. Consider the Fourier expansion (3.11) of S (φ). Fix l and suppose that x and
y are elements of L#/L such that x , y and β(x) ≡ β(y) ≡ −l

p mod Z. We remind the

reader that there exists an isomorphism j : DL
∼
−→

(
Z(p), x 7→ αx2

p

)
. Set X = j(x) and

Y = j(y). We have

αX2

p
≡
αY2

p
mod Z ⇐⇒ α(X2 − Y2) = tp

for some integer t. Since (α, p) = 1, it follows that p | X2 − Y2, implying that p |
(X − Y) or p | (X + Y). Since x , y, it follows that β(x) ≡ β(y) mod Z if and only if
x ≡ (−y) mod L. Thus,

S (φ)(τ) = i
−rk(L)

2 p
k2−1

2

∑
l≥0

{
Cφ

(
−l
p
, xl

)
+ Cφ

(
−l
p
,−xl

)}
ql,

for some xl ∈ L#/L such that β(xl) ≡ −l
p mod Z and where the Fourier coefficients

are equal to zero for l such that no such xl exists (the latter happens if and only if(
−αl

p

)
= −1). Since Cφ(D, r) = (−1)kCφ(D,−r) and k is even, we obtain the desired

result. �

It was shown in [Ajo15, §5.1] that

T (n)S ∗( f ) = S ∗(T (n2) f )

for every n in NL. Since S and S ∗ are mutually inverse isomorphisms, this implies
that

T (n2)S (φ) = S (T (n)φ)

for ever n as above.

3.2. The action of the orthogonal group

We remind the reader that, if L = (L, β) is a positive-definite, even lattice, then
its discriminant module DL = (L#/L, β mod Z) is a finite quadratic module (Definition
1.11). The following operators acting on Jk,L were defined in [Ajo15, §3.1]:

Proposition 3.20. The orthogonal group O(DL) acts on Jk,L from the right in the
following way:

(s, φ) 7→ φW(s),

where, if φ in Jk,L has theta expansion

φ(τ, z) =
∑

x∈L#/L

hφ,x(τ)ϑL,x(τ, z),

then
φW(s)(τ, z) :=

∑
x∈L#/L

hφ,s(x)(τ)ϑL,x(τ, z).
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Proof. Clearly, φW(e) = φ for every φ in Jk,L, where e denotes the identity element
in O(DL). Furthermore, for every s1 and s2 in O(DL) we have

φW(s1 ◦ s2)(τ, z) =
∑

x∈L#/L

hφ,s1◦s2(x)(τ)ϑL,x(τ, z)

=
∑

x∈L#/L

hφW(s1),s2(x)(τ)ϑL,x(τ, z) = φW(s1) ◦W(s2)(τ, z). �

Remark 3.21. In [Ajo15, Proposition 3.1.1], the author claims that O(DL) acts from
the left on Jk,L. This is not the case, as can be seen above.

It follows that φW(s) has the following Fourier expansion:

(3.12) φW(s)(τ, z) =
∑

(D,r)∈supp(L)

Cφ (D, s(r)) e ((β(r) − D)τ + β(z, r)) .

In particular, the operators W(·) preserve cusp forms and Eisenstein series.

Proposition 3.22. The operators W(s) are unitary with respect to the Petersson
scalar product. In other words, if φ and ψ are elements of Jk,L such that at least one of
them is a cusp form, then

(3.13) 〈φW(s), ψ〉 = 〈φ, ψW(s)−1〉.

Proof. Suppose that ψ(τ, z) has a theta expansion of the form

ψ(τ, z) =
∑

x∈L#/L

hψ,x(τ)ϑL,x(τ, z)

and apply Proposition 1.34 to the left-hand side of (3.13):

〈φW(s), ψ〉 =2−
rk(L)

2 det(L)−
1
2

∫
Γ\H

∑
x∈L#/L

hφ,s(x)(τ)hψ,x(τ)vk− rk(L)
2 −2dudv

=2−
rk(L)

2 det(L)−
1
2

∫
Γ\H

∑
x∈L#/L

hφ,x(τ)hψ,s−1(x)(τ)vk− rk(L)
2 −2dudv

=〈φ, ψW(s−1)〉 = 〈φ, ψW(s)−1〉,

since
φW(s) ◦W(s−1)(τ, z) = φW(s ◦ s−1) = φ(τ, z)

for every φ in Jk,L. �

Remark 3.23. In the proof of [Ajo15, Theorem 3.2.13], the author claims that
Proposition 1.34 implies that the operators W(s) are Hermitian. This is not the case
in general, since W(s) = W(s)−1 ⇐⇒ s = s−1 and not all elements of O(DL) need
satisfy this property. When s = s−1, say that s is an involution.

It was proved in [Ajo15, §3.1] that the action of O(DL) commutes with Hecke op-
erators, i.e.

T (l)
(
φW(s)

)
=

(
T (l)φ

)
W(s),

for all φ in Jk,L, l inNL and s in O(DL). It follows that W(s)φ and φ have the same Hecke
eigenvalues if φ is a Hecke eigenform. Furthermore, a well-known result from linear
algebra implies the following:

Theorem ([Ajo15, Thm 3.2.13]). The space S k,L has a basis of simultaneous eigen-
forms for all operators T (l) (l ∈ NL) and W(s) (s ∈ O(DL)).
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Proof. The proof of [Ajo15, Theorem 3.2.13] should be slightly different, in light
of Remark 3.23. In the lemma from linear algebra which the author quotes, it is enough
to consider a sequence of operators which are diagonalizable and commute with each
other in order for the result to hold. By the spectral theorem, the operators W(s) are
diagonalizable for all s, since they are unitary and therefore normal. �

We analyse the action of O(DL) on twisted Eisenstein series:

Proposition 3.24. For every s in O(DL), the following holds:

Ek,L,r,χW(s) = Ek,L,s−1(r),χ.

Proof. We remind the reader that JEis
k,L is invariant under the action of W(s) for all s

in O(DL). On the other hand, Eisenstein series are uniquely determined by their singular
terms. Equation (2.17) implies that

C0(Ek,L,xW(s))(τ, z) =
1
2

( ∑
r∈L#

s(r)≡x mod L

+(−1)k
∑
r∈L#

s(r)≡−x mod L

)
e(β(r)τ + β(r, z))

=
1
2

( ∑
r∈L#

r≡s−1(x) mod L

(−1)k
∑
r∈L#

r≡−s−1(x) mod L

)
e(β(r)τ + β(r, z))

=
1
2

(
ϑL,s−1(x) + (−1)kϑL,−s−1(x)

)
(τ, z)

=C0(Ek,L,s−1(x))(τ, z)

and therefore Ek,L,xW(s) = Ek,L,s−1(x). Since automorphism preserve the orders of ele-
ments, we obtain that

Ek,L,r,χW(s) =
∑

d∈Z×(Nr )

χ(d)Ek,L,s−1(dr) = Ek,L,s−1(r),χ,

as claimed. �

Corollary 3.25. For every involution s in O(DL), the following holds:

Ek,L,r,χW(s) = Ek,L,s(r),χ.

For the remainder of this section, we investigate the action of specific elements of
O(DL) on Jacobi forms.

It is well-known that multiplication by an integer which is coprime to the order of a
finite abelian group A is a group automorphism of A. Since the determinant and the level
of a positive-definite, even lattice share the same set of prime divisors, multiplication
by f is an element of Aut(DL) for every f in Z×(lev(L)).

Lemma 3.26. For every f in Z×(lev(L)), multiplication by f is an element of O(DL) if
and only if f 2 ≡ 1 mod lev(L).

Proof. If β( f x) = β(x) for all x in DL, then ( f 2 − 1) is a multiple of lev(L) by
definition. Conversely, if ( f 2 − 1) is a multiple of lev(L), then β( f x) = β(x). �

Lemma 3.27. If rk(L) is odd, then f in Z×(lev(L)) satisfies f 2 ≡ 1 mod lev(L) if and only
if there exists some n ‖ (lev(L)/4) such that f is uniquely determined modulo lev(L)/2
by the modular equations f ≡ 1 mod 2n and f ≡ −1 mod (lev(L)/2n).
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Proof. We remind the reader that 4 | lev(L) when rk(L) is odd. On the right-hand
side of the “if and only if” statement, solutions are indexed by n ‖ (lev(L)/4) and there-
fore there are 2ω(lev(L)/4) solutions. On the left-hand side, a classical result in modular
arithmetic asserts that the polynomial equation x2 − 1 ≡ 0 mod lev(L) has the following
number of solutions: 2ω(lev(L)), if 4 ‖ lev(L) and

2ω(lev(L))+1, if 8 | lev(L).

If 4 ‖ lev(L), then ω(lev(L)/4) = ω(lev(L)) − 1. If 8 | lev(L), then ω(lev(L)/4) =

ω(lev(L)). Hence, there are twice as many solutions on the left-hand side.
Suppose that f 2 ≡ 1 mod lev(L). Then it is straight-forward to check that f mod

lev(L) is odd, say

(3.14) f ≡ 2d + 1 mod lev(L).

If d = 0, then f ≡ 1 mod lev(L)/2 and f ≡ −1 mod 2. When d > 0,

f 2 ≡ 1 mod lev(L) =⇒ 4d2 + 4d = 4K
lev(L)

4
for some K in Z. It follows that d(d + 1) = K lev(L)/4 and (d, d + 1) = 1. This induces
a decomposition of lev(L)/4 into lev(L)/4 = d

K1
· d+1

K2
, with K1K2 = K and d

K1
, d+1

K2
∈ Z.

Clearly
(

d
k1
, d+1

k2

)
= 1 and we can choose n = d

k1
. Then d ≡ 0 mod n and d + 1 ≡

0 mod lev(L)/4n and (3.14) implies that f ≡ 1 mod 2n and f ≡ −1 mod lev(L)/2n, as
required.

Conversely, let n ‖ (lev(L)/4) and set t := lev(L)/(4n). By the Chinese remainder
theorem, there exists a unique dn modulo lev(L)/4 such thatdn ≡ 0 mod n and

dn ≡ −1 mod t.

Set fn = 2dn + 1. Then (4, fn) = 1 and above modular congruences imply that (n, fn) =

(t, fn) = 1. Hence, ( fn, lev(L)) = 1 and

f 2
n = 4dn(dn + 1) + 1 ≡ 1 mod 4nt,

i.e. fn is a solution of the modular equation f 2 ≡ 1 mod lev(L). Furthermore, fn is
uniquely determined modulo lev(L)/2 and fn ≡ 1 mod 2n and fn ≡ −1 mod 2t.

Note that (
f +

lev(L)
2

)2

= f 2 + f lev(L) +
lev(L)2

4
≡ f 2 mod lev(L)

and therefore each n ‖ lev(L)/4 gives rise to two solutions modulo lev(L). �

For every f in Z×(lev(L)) such that f 2 ≡ 1 mod lev(L) and every x in L#/L, set s f (x) :=
f x. Then (s f )−1(x) = f x = s f (x), in other words s f is an involution in O(DL). Proposi-
tion 3.24 implies that

Ek,L,r,χW(s f ) =
∑

d∈Z×(Nr )

χ(d)Ek,L,d f r =
∑

e∈Z×(Nr )

χ(e f )Ek,L,er = χ( f )Ek,L,r,χ,

where we have made the change of variable d f = e and we have used the fact that
Nr | lev(L). Note that χ( f ) ∈ {±1}.
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Example 3.28. Let m be a positive integer and consider the scalar lattice Lm =

(Z, (x, y) 7→ 2mxy). For every t ‖ lev(Lm)/4 and every φ in Jk,m with Fourier expan-
sion (1.23), set

Wtφ(τ, z) :=
1
t

∑
r∈Z2/tZ2

φ|Lm

(
1
t
r
)

(τ, z).

Then it was proved in [Sko88] that Wtφ ∈ Jk,m and, furthermore, it has the following
Fourier expansion:

Wtφ(τ, z) =
∑

n,r′∈Z
4mn−r′2≥0

bφ(n, λtr′)e(nτ + r′z),

where λt is the modulo 2m uniquely determined integer which satisfies λt ≡ 1 mod
2t and λt ≡ −1 mod 2m/t. The operators Wt are called Atkin–Lehner involutions in
[SZ88], because they play the role of Atkin–Lehner involutions for elliptic modular
forms on the side of Jacobi forms. More precisely, the following holds:

tr(T (l) ◦Wt, Jk,m) = tr(T (l) ◦Wt,M
−
2k−2(m)),

It was shown in [Boy15, §1.2] that the orthogonal groups of cyclic finite quadratic
modules over number fields consist entirely of such operators Wt.

Lemma 3.27 implies that Wt = W(sλt) for every t ‖ m and, conversely, that every
operator W(s f ) ( f 2 ≡ 1 mod 4m) is equal to Wn for some n ‖ m (the reader can consult
the forward direction in the proof of the lemma for the precise recipe for finding n).

3.3. Jacobi forms of index Dn and elliptic modular forms

In this section, we compute Hecke eigenvalues of Jacobi forms of weight k and
index Dn for small values of k and odd n and we compare them with those of elliptic
modular forms. We remind the reader of the definition of Dn:

Dn = {(x1, . . . , xn) ∈ Zn : x1 + · · · + xn ∈ 2Z} .

It is straight-forward to check that

D#
n =

{
x : x ∈ Zn or x ∈

(
1
2 + Z

)n}
and therefore

D#
n/Dn =

{
0, en,

e1 + · · · + en

2
,

e1 + · · · + en−1 − en

2

}
,

where {ei}i denotes the standard basis of Zn. Thus,

D#
n/Dn '

Z/4Z, if n is odd and
Z/2Z × Z/2Z, if n is even.

Suppose that n is odd. Then the discriminant module associated with Dn is isomorphic
to (

Z/4Z, r 7→
nr2

8
mod Z

)
and lev(Dn) = 8. It follows that Dn is stably isomorphic to Dm for every odd m and n
such that n ≡ m mod 8 and, in view of Theorem 1.32, that Jk+d n

2 e,Dn ' Jk+dm
2 e,Dm for such

m and n. Hence, it suffices to consider n = 1, 3, 5 and 7 in this subsection.
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In the following paragraphs, we introduce some building blocks for Jacobi forms.
The Dedekind η-function was defined in (1.6). It is well-known that

(3.15) η3(τ) =
1
2

∑
n∈Z

(
−4
n

)
nq

n2
8 =

1
2

∑
n∈Z

(−1)n(2n + 1)q
(2n+1)2

8 .

The scalar Jacobi theta series ϑ(τ, z) was defined in (1.25) and the Jacobi theta series
ϑZn(τ, z) was defined in (1.28). We remind the reader of the definition of the unimodular
lattice E8 from Example 1.6, (5) and of that of the Jacobi theta series ϑE8(τ, z) from
(1.29). Let Ek (k ≥ 4) denote the Eisenstein series of weight k for Γ,

Ek(τ) := 1 −
2k
Bk

∑
n≥1

σk−1(n)qn,

and let E2 denote the quasi-modular Eisenstein series of weight 2 for Γ,

E2(τ) := 1 − 24
∑
n≥1

σ1(n)qn.

The discriminant modular form, denoted by ∆, is a cusp form of weight 12 for Γ. It has
the following Fourier expansion:

∆(τ) =
∑
n≥1

τ(n)qn,

where τ(n) is the Ramanujan tau function.
The differential operator ∂ : Jk,L → Jk+2,L is defined in [BS19] for every φ with theta

expansion (1.19) as

(3.16) ∂φ(τ, z) :=
∑

x∈L#/L

(
q

d
dq

hφ,x(τ)
)
ϑL,x(τ, z) −

1
12

(
k −

rk(L)
2

)
E2(τ)φ(τ, z).

If f (τ) ∈ Mk1(Γ) and φ(τ, z) ∈ Jk2,L, with Fourier expansions
∑

n≥0 a f (n)qn and (1.13),
respectively, then it is easy to check that f (τ)φ(τ, z) ∈ Jk1+k2,L and that

(3.17) f (τ)φ(τ, z) =
∑

(D,r)∈supp(L)

( b−Dc∑
n=0

Cφ(D + n, r)a f (n)
)
e((β(r) − D)τ + β(r, z)).

For n = 1, 3, 5 and 7, let αn denote the following isometric embedding of Dn into E8:

(x1, . . . , xn) 7→ (0, . . . , 0, x1, . . . , xn).

This map can be extended in a natural way to the underlying complex spaces. Its pull-
back on spaces of Jacobi forms of weight k is the map α∗n : Jk,E8 → Jk,Dn ,

α∗nφ(τ, z) = φ(τ, αn(z)).

3.3.1. Generators and their Fourier expansions. The generators of the spaces
Jk,Dn (n = 1, 3, 5 and 7) over the graded ring of modular forms M∗(1) := ⊕k∈ZMk(1)
were listed in [BS19]. We compute their Fourier expansions in this subsection.

We remind the reader that the Jacobi forms ψ12−n,Dn were defined in Example 1.41.
Set

E4,Dn := α∗nϑE8 ,

E6,Dn := ∂E4,Dn and
E8,Dn := ∂E6,Dn .

Let σ3 denote the following isometric embedding of D3 into Z4:

(x, y, z) 7→ 1
2 (x + y − z, x − y + z,−x + y + z,−x − y − z)
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and denote its pullback on spaces of Jacobi forms of weight k by σ∗3.

Theorem 3.29 ([BS19]). The following holds for n = 1, 3, 5 and 7:

(3.18) J2k+1,Dn = M2k+n−11(1)ψ12−n,Dn .

For n = 1, 5 and 7, we have

(3.19) J2k,Dn = M2k−4(1)E4,Dn ⊕ M2k−6(1)E6,Dn ⊕ M2k−8(1)E8,Dn

and, lastly,

(3.20) J2k,D3 = M2k−4(1)E4,D3 ⊕ M2k−6(1)E6,D3 ⊕ M2k−8(1)η12σ∗3ϑZ4 .

By definition,

ϑZn(τ, z) =
∑
r∈Zn

(
−4

r1...rn

)
e
(

r2
1+···+r2

n

8 τ + r1z1+···+rnzn
2

)
and therefore, using (3.15),

ψ12−n,Dn(τ, z) =
1

28−n

∑
n1,...,n8−n,
m1,...,mn∈Z

(
−4

n1...n8−nm1...mn

)
n1 . . . n8−ne

(
n2

1+···+n2
8−n+m2

1+···+m2
n

8 τ + m1z1+···+mnzn
2

)
=

∑
r∈( 1

2 +Z)n

(−1)r1+···+rn−
n
2

∑
x∈( 1

2 +Z)8−n

(−1)x1+···+x8−n−
8−n

2 x1 . . . x8−n

× e
((

(r,r)
2 +

(x,x)
2

)
τ + (r, z)

)
=

∑
r∈D#

n,D∈Q≤0
(r,r)

2 −D∈Z

Cψ12−n,Dn
(D, r)e

((
(r,r)

2 − D
)
τ + (r, z)

)
,

where

(3.21) Cψ12−n,Dn
(D, r) =


0, if r ∈ Zn and∑
x∈( 1

2 +Z)8−n

−D=
(x,x)

2

(−1)r1+···+rn+x1+···+x8−n x1 . . . x8−n, if r ∈
(

1
2 + Z

)n
.

We have made the substitutions xi = ni
2 and ri = mi

2 . The value of the expression
(−1)x1+···+xn x1 . . . xn does not change under the substitution xi = −xi and therefore

Cψ12−n,Dn
(D, r) =


0, if r ∈ Zn and

28−n
∑

x∈( 1
2 +N)8−n

−D=
(x,x)

2

(−1)r1+···+rn+x1+···+x8−n x1 . . . x8−n, if r ∈
(

1
2 + Z

)n
.

We have

E4,Dn(τ, z) =
∑
r∈E8

e
(

(r,r)
2 τ + r8−n+1z1 + · · · + r8zn

)
=

∑
(r8−n+1,...,r8)∈Zn∪( 1

2 +Z)n

∑
(r1,...,r8−n)∈R8

(r1,...,r8)∈E8

e
((

r2
8−n+1+···+r2

8
2 +

r2
1+···+r2

8−n
2

)
τ
)

× e (r8−n+1z1 + · · · + r8zn)

=ϑDn,0(τ, z) +
∑

r∈D#
n,D∈Q<0

(r,r)
2 −D∈Z

C4,n(D, r)e
((

(r,r)
2 − D

)
τ + (r, z)

)
,
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where

C4,n(D, r) :=

#
{
x ∈ Z8−n : −2D = x2

1 + · · · + x2
8−n

}
, r ∈ Zn and

#
{
x ∈ Z8−n : −2D = x2

1 + x1 + · · · + x2
8−n + x8−n + 8−n

4

}
, r ∈

(
1
2 + Z

)n
.

Equations (3.16) and (3.17) imply that

E6,Dn(τ, z) =
∑

r∈D#
n,D∈Q≤0

(r,r)
2 −D∈Z

(−D)C4,n(D, r)e
((

(r,r)
2 − D

)
τ + (r, z)

)

−
8 − n

24

∑
r∈D#

n,D∈Q≤0
(r,r)

2 −D∈Z

C4,n(D, r)e
((

(r,r)
2 − D

)
τ + (r, z)

)

+ (8 − n)
∑
l≥1

σ1(l)ql
∑

r∈D#
n,D∈Q≤0

(r,r)
2 −D∈Z

C4,n(D, r)e
((

(r,r)
2 − D

)
τ + (r, z)

)

=
n − 8

24
ϑDn,0(τ, z) +

∑
r∈D#

n,D∈Q<0
(r,r)

2 −D∈Z

C6,n(D, r)e
((

(r,r)
2 − D

)
τ + (r, z)

)
,

where

C6,n(D, r) := −
(
D +

8 − n
24

)
C4,n(D, r) + (8 − n)

b−Dc∑
l=1

C4,n(D + l, r)σ1(l).

Equations (3.16) and (3.17) imply that

E8,Dn(τ, z) =
∑

r∈D#
n,D∈Q≤0

(r,r)
2 −D∈Z

(−D)C6,n(D, r)e
((

(r,r)
2 − D

)
τ + (r, z)

)

−
12 − n

24

∑
r∈D#

n,D∈Q≤0
(r,r)

2 −D∈Z

C6,n(D, r)e
((

(r,r)
2 − D

)
τ + (r, z)

)

+ (12 − n)
∑
l≥1

σ1(l)ql
∑

r∈D#
n,D∈Q≤0

(r,r)
2 −D∈Z

C6,n(D, r)e
((

(r,r)
2 − D

)
τ + (r, z)

)

=
(8 − n)(12 − n)

576
ϑDn,0(τ, z) +

∑
r∈D#

n,D∈Q<0
(r,r)

2 −D∈Z

C8,n(D, r)e
((

(r,r)
2 − D

)
τ + (r, z)

)
,

where

C8,n(D, r) := −
(
D +

12 − n
24

)
C6,n(D, r) + (12 − n)

b−Dc∑
l=1

C6,n(D + l, r)σ1(l).
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We have

η12(τ)σ∗3ϑZ4(τ, z) =
1

16

∑
n1,...,n4,

m1,...,m4∈Z

(
−4

n1...n4m1...m4

)
n1 . . . n4e

(
n2

1+···+n2
4+m2

1+···+m2
4

8 τ
)

× e
(

m1+m2−m3−m4
4 z1 + m1−m2+m3−m4

4 z2 + −m1+m2+m3−m4
4 z3

)
=

∑
x1,...,x4,

r1,...,r4∈
1
2 +Z

(−1)x1+···+x4+r1+···+r4 x1 . . . x4e
(

x2
1+···+x2

4+r2
1+···+r2

4
2 τ

)
× e

(
r1+r2−r3−r4

2 z1 + r1−r2+r3−r4
2 z2 + −r1+r2+r3−r4

2 z3

)
=

∑
x1,...,x4,r4∈

1
2 +Z

(m1,m2,m3)∈Z3 or ( 1
2 +Z)3

(−1)x1+···+x4+2(m1+m2+m3)x1 . . . x4

× e
(

(m1+m2+r4)2+(m1+m3+r4)2+(m2+m3+r4)2

2 τ
)

× e
(

x2
1+···+x2

4+r2
4

2 τ + m1z1 + m2z2 + m3z3

)
=

∑
m∈D#

3,D∈Q≤0
(m,m)

2 −D∈Z

Cψ8,D3
(D,m)e

((
(m,m)

2 − D
)
τ + (m, z)

)
,

where

Cψ8,D3
(D,m) = 16

∑
x1,...,x4∈

1
2 +N,r4∈

1
2 +Z

−2D=(m1+m2+m3+2r4)2+x2
1+···+x2

4

(−1)x1+···+x4+2(m1+m2+m3)x1 . . . x4.

We have made the substitutions xi = ni
2 , ri = mi

2 and mi = r1−r4−i+r3−r4
2 .

3.3.2. Computation of Fourier coefficients. Equation (3.18) implies that

J16−n,Dn = CE4ψ12−n,Dn , J18−n,Dn = CE6ψ12−n,Dn ,

J20−n,Dn = CE8ψ12−n,Dn , J22−n,Dn = CE10ψ12−n,Dn

J24−n,Dn = CE12ψ12−n,Dn ⊕ C∆ψ12−n,Dn

and (3.17) implies that

Et(τ)ψ12−n,Dn(τ, z) =
∑

r∈D#
n,D∈Q<0

(r,r)
2 −D∈Z

(
Cψ12−n,Dn(D, r) −

2t
Bt

b−Dc∑
l=1

Cψ12−n,Dn(D + l, r)σt−1(l)
)

× e
((

(r,r)
2 − D

)
τ + (r, z)

)
,

∆(τ)ψ12−n,Dn(τ, z) =
∑

r∈D#
n,D∈Q<0

(r,r)
2 −D∈Z

b−Dc∑
l=1

Cψ12−n,Dn(D + l, r)τ(l)e
((

(r,r)
2 − D

)
τ + (r, z)

)
and

Et(τ)E4,Dn(τ, z) =ϑDn,0(τ, z) +
∑

r∈D#
n,D∈Q<0

(r,r)
2 −D∈Z

(
C4,n(D, r) −

2t
Bt

b−Dc∑
l=1

C4,n(D + l, r)σt−1(l)
)

× e
((

(r,r)
2 − D

)
τ + (r, z)

)
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for every positive integer t ≥ 2. It follows from (3.19) that

E4(τ)E4,Dn(τ, z) − 576
(8−n)(12−n) E8,Dn(τ, z)

=
∑

r∈D#
n,D∈Q<0

(r,r)
2 −D∈Z

(
C4,n(D, r) − 576

(8−n)(12−n)C8,n(D, r) + 240
b−Dc∑
l=1

C4,n(D + l, r)σ3(l)
)

× e
((

(r,r)
2 − D

)
τ + (r, z)

)
(3.22)

is a cusp form in J8,Dn when n = 1, 5 or 7. Equation (3.17) implies that

Et(τ)E6,Dn(τ, z) =
n − 8

24
ϑDn,0(τ, z)+

∑
r∈D#

n,D∈Q<0
(r,r)

2 −D∈Z

(
C6,n(D, r) −

2t
Bt

b−Dc∑
l=1

C6,n(D + l, r)σt−1(l)
)

× e
((

(r,r)
2 − D

)
τ + (r, z)

)
.

It follows that
8 − n

24
E6(τ)E4,Dn(τ, z) + E4(τ)E6,Dn(τ, z)

=
∑

r∈D#
n,D∈Q<0

(r,r)
2 −D∈Z

[8 − n
24

C4,n(D, r) + C6,n(D, r) −
b−Dc∑
l=1

(
(8 − n)21C4,n(D + l, r)σ5(l)

− 240C6,n(D + l, r)σ3(l)
)]

e
((

(r,r)
2 − D

)
τ + (r, z)

)
(3.23)

is a cusp form in J10,Dn . Equation (3.17) implies that

Et(τ)E8,Dn(τ, z) =
(8 − n)(12 − n)

576
ϑDn,0(τ, z) +

∑
r∈D#

n,D∈Q<0
(r,r)

2 −D∈Z

(
C8,n(D, r) −

2t
Bt

×

b−Dc∑
l=1

C8,n(D + l, r)σt−1(l)
)
e
((

(r,r)
2 − D

)
τ + (r, z)

)
.

It follows from (3.19) that
8 − n

24
E8(τ)E4,Dn(τ, z) + E6(τ)E6,Dn(τ, z),

E8(τ)E4,Dn(τ, z) −
576

(8 − n)(12 − n)
E4(τ)E8,Dn(τ, z) and

12 − n
24

E6(τ)E6,Dn(τ, z) + E4(τ)E8,Dn(τ, z)

are cusp forms in J12,Dn when n = 1, 5 or 7. The matrix
8−n
24 1 0
1 0 − 576

(8−n)(12−n)
0 12−n

24 1


has echelon form 

1 0 − 576
(8−n)(12−n)

0 1 24
12−n

0 0 0

 .
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In other words,

E8(τ)E4,Dn(τ, z) −
576

(8 − n)(12 − n)
E4(τ)E8,Dn(τ, z) and

E6(τ)E6,Dn(τ, z) +
24

12 − n
E4(τ)E8,Dn(τ, z)

(3.24)

form a basis of S 12,Dn . It follows from (3.19) that
8 − n

24
E10(τ)E4,Dn(τ, z) + E8(τ)E6,Dn(τ, z),

E10(τ)E4,Dn(τ, z) −
576

(8 − n)(12 − n)
E6(τ)E8,Dn(τ, z) and

12 − n
24

E8(τ)E6,Dn(τ, z) + E6(τ)E8,Dn(τ, z)

are cusp forms in J14,Dn when n = 1, 5 or 7 and, by the same reasoning as above,

E10(τ)E4,Dn(τ, z) −
576

(8 − n)(12 − n)
E6(τ)E8,Dn(τ, z) and

E8(τ)E6,Dn(τ, z) +
24

12 − n
E6(τ)E8,Dn(τ, z)

(3.25)

form a basis of S 14,Dn . Equation (3.17) implies that

∆(τ)Et,Dn(τ, z) =
∑

r∈D#
n,D∈Q<0

(r,r)
2 −D∈Z

b−Dc∑
l=1

Ct,n(D + l, r)τ(l)e
((

(r,r)
2 − D

)
τ + (r, z)

)
.

It follows from (3.19) that

∆(τ)E4,Dn(τ, z),
8 − n

24
E12(τ)E4,Dn(τ, z) + E10(τ)E6,Dn(τ, z),

E12(τ)E4,Dn(τ, z) −
576

(8 − n)(12 − n)
E8(τ)E8,Dn(τ, z) and

12 − n
24

E10(τ)E6,Dn(τ, z) + E8(τ)E8,Dn(τ, z)

are cusp forms in J16,Dn when n = 1, 5 or 7 and, by the same reasoning as above,

E12(τ)E4,Dn(τ, z) −
576

(8 − n)(12 − n)
E8(τ)E8,Dn(τ, z),

E10(τ)E6,Dn(τ, z) +
24

12 − n
E8(τ)E8,Dn(τ, z) and ∆(τ)E4,n(τ, z)

(3.26)

form a basis of S 16,Dn .
We computed the Hecke eigenvalues of Jacobi forms of index Dn using the fact that

T (l)φ = λφ(l)φ

for every Hecke eigenform φ and by implementing the results from this section in Sage-
Math [The]. Values of Fourier coefficients and Atkin–Lehner eigenvalues of elliptic
newforms are available on the LMFDB web page [The13]. Let φ be an element of Jk,Dn

(n = 1, 3, 5 and 7). The eigenvalues of Jacobi forms of weights 4, 6, 8, 10 and 12 and
index Dn were computed for odd positive integers l using the pair (−1, (0, . . . , 0)) in the
support of Dn. The eigenvalues of Jacobi forms of weights 12− n, 16− n, 18− n, 20− n
and 22 − n and index Dn were computed for odd positive integers l using the pair(
−n−1

8 ,
(

1
2 , . . . ,

1
2

))
in the support of Dn, unless (l, n − 1) > 1. In the latter case, we
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replaced −n−1
8 with −m

8 , where m is the smallest positive integer in the congruence class
of n − 1 modulo 8 which is coprime to l. For every odd, positive integer l and every
negative integer D which is coprime to l, equation (3.7) implies that

CT (l)φ (D, (0, . . . , 0)) =
∑
d|l

dk−d n
2 e−1

(
(−1)b

n
2 c8D

d

)
Cφ

(
l2

d2 D, (0, . . . , 0)
)

and for every negative rational number E such that E ≡ n
8 mod Z and (8E, l) = 1,

equation (3.7) implies that

CT (l)φ

(
E,

(
1
2
, . . . ,

1
2

))
=

∑
d|l

dk−d n
2 e−1

(
(−1)b

n
2 c8E

d

)
Cφ

(
l2

d2 E,
l
d

(
1
2
, . . . ,

1
2

))
.

3.3.2.1. The lattice D1. It is straight-forward to check that D1 ' L2. Theorem 1.37
implies that

Jk,D1 ' M
−
2k−2(2).

Since Mε
t (m) (ε ∈ {+,−}) denotes the subspace of Mt(m) which is spanned by modular

forms with eigenvalue εit with respect to Atkin–Lehner involutions, the spaceM−2k−2(2)
is spanned by modular forms with eigenvalue −1 with respect to Atkin–Lehner involu-
tions when k is odd and by modular forms with eigenvalue +1 with respect to Atkin–
Lehner involutions when k is even.

Equation (3.19) implies that J4,D1 = CE4,D1 and this space is mapped to M6(2). In
particular, the Jacobi form E4,D1 is a Hecke eigenform. We have checked that the first
13 Hecke eigenvalues of E4,D1 at odd positive integers match the Fourier coefficients of
−E6/504.

Equation (3.19) implies that J6,D1 = CE6,D1 and this space is mapped to M10(2). In
particular, the Jacobi form E6,D1 is a Hecke eigenform. We have checked that the first
13 Hecke eigenvalues of E6,D1 at odd positive integers match the Fourier coefficients of
−E10/264.

Equation (3.19) implies that

J8,D1 = CE4E4,D1 ⊕ CE8,D1

and this space is mapped to M14(2). Equation (3.22) implies that

ψ8,D1(τ, z) := E4(τ)E4,D1(τ, z) −
576
77

E8,D1(τ, z)

is a Hecke eigenform in S 8,D1 . The first few Fourier coefficients of 11ψ8,D1 are listed in
Table A.1. The space M14(2) contains precisely two newforms:

f14(τ) =q − 64q2 − 1836q3 + 4096q4 + 3990q5 + 117504q6 − 433432q7 − 262144q8

+ 1776573q9 − 255360q10 + 1619772q11 − 7520256q12 + O(q13) and

g14(τ) =q + 64q2 + 1236q3 + 4096q4 − 57450q5 + 79104q6 + 64232q7 + 262144q8

− 66627q9 − 3676800q10 + 2464572q11 + 5062656q12 + O(q13).

The first 13 Hecke eigenvalues of ψ8,D1 at odd positive integers match the Fourier coef-
ficients of f14 and this newform is an element of M−

14(2).
Equation (3.19) implies that

J10,D1 = CE6E4,D1 ⊕ CE4E6,D1

and this space is mapped to M18(2). Equation (3.23) implies that

ψ10,D1(τ, z) :=
7

24
E6(τ)E4,D1(τ, z) + E4(τ)E6,D1(τ, z)
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is a Hecke eigenform in S 10,D1 . The space M18(2) contains precisely one newform:

f18(τ) =q + 256q2 + 6084q3 + 65536q4 + 1255110q5 + 1557504q6 − 22465912q7

+ 16777216q8 − 92125107q9 + 321308160q10 + 172399692q11 + O(q12),

which is an element of M+
18(2). According to the LMFDB, the space S 18(2) contains

precisely two oldforms,

F18(τ) =q − 528q2 − 4284q3 + 147712q4 − 1025850q5 + 2261952q6 + O(q7)

and F18(2τ). We have checked that the first 13 Hecke eigenvalues of ψ10,D1 at odd
positive integers match the Fourier coefficients of F18.

Equation (3.18) implies that J11,D1 = Cψ11,D1 and this space is mapped to M20(2).
In particular, the Jacobi form ψ11 is a Hecke eigenform. The space M20(2) contains
precisely two newforms:

f20(τ) =q + 512q2 − 53028q3 + 262144q4 − 5556930q5 − 27150336q6 − 44496424q7

+ 134217728q8 + 1649707317q9 − 2845148160q10 + O(q11) and

g20(τ) =q − 512q2 − 13092q3 + 262144q4 + 6546750q5 + 6703104q6 + O(q7).

We have checked that the first 13 Hecke eigenvalues of ψ11,D1 at odd positive integers
match the Fourier coefficients of f20 and this newform is an element of M−

20(2).
Equation (3.19) implies that

J12,D1 = CE8E4,D1 ⊕ CE6E6,D1 ⊕ CE4E8,D1

and this space should be mapped to M22(2). Set

β1
12,1 :=E8E4,D1 −

576
77

E4E8,D1 and

β2
12,1 :=E6E6,D1 +

24
11

E4E8,D1 .

Equation (3.24) implies that these functions form a basis of S 12,D1 . The matrix of T (l)
on this space (which we denote by T (l) as well by abuse of notation) satisfies(

T (l)β1
12,1

T (l)β2
12,1

)
= T (l)

(
β1

12,1
β2

12,1

)
.

Set T (l) =

(
al

11 al
12

al
21 al

22

)
. We compute this matrix by solving the following two systems of

linear equations:(
al

11
al

12

)
=

Cβ1
12,1

(−1, 0) Cβ2
12,1

(−1, 0)
Cβ1

12,1
(−2, 0) Cβ2

12,1
(−2, 0)

−1 CT (l)β1
12,1

(−1, 0)
CT (l)β1

12,1
(−2, 0)

 and

(
al

21
al

22

)
=

Cβ1
12,1

(−1, 0) Cβ2
12,1

(−1, 0)
Cβ1

12,1
(−2, 0) Cβ2

12,1
(−2, 0)

−1 CT (l)β2
12,1

(−1, 0)
CT (l)β2

12,1
(−2, 0)

 .
Using Sage, we obtain that

T (3) =

(
−1458756

11
9953280

77
−65520

11
829116

11

)
and this matrix can be diagonalized as

T (3) =

(
1 1

455
288

7
240

) (
71604 0

0 −128844

) (
1 1

455
288

7
240

)−1

.
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It follows that the two Jacobi forms ψ12,D1 and φ12,D1 defined by the system of equations(
ψ12,D1

φ12,D1

)
:=

(
1 1

455
288

7
240

)−1 (
β1

12,1
β2

12,1

)
=

(
− 6

319β
1
12,1 + 1440

2233β
2
12,1

325
319β

1
12,1 −

1440
2233β

2
12,1

)
are Hecke eigenforms of T (3), with eigenvalues λψ12,D1

(3) = 71604 and λφ12,D1
(3) =

−128844 respectively. The space M22(2) contains precisely two newforms:

f22(τ) =q − 1024q2 + 71604q3 + 1048576q4 − 28693770q5 − 73322496q6

− 853202392q7 − 1073741824q8 − 5333220387q9 + O(q10) and

g22(τ) =q + 1024q2 + 59316q3 + 1048576q4 + 4975350q5 + 60739584q6

+ 1427425832q7 + 1073741824q8 − 6941965347q9 + O(q10).

We have checked that the first 13 Hecke eigenvalues of ψ12,D1 at odd positive integers
match the Fourier coefficients of f22 and this newform is an element of M−

22(2). The
space S 22(2) contains precisely two oldforms,

F22(τ) =q − 288q2 − 128844q3 − 2014208q4 + 21640950q5 + 37107072q6 + O(q7)

and F22(2τ). We have checked that the first 13 Hecke eigenvalues of φ12,D1 at odd
positive integers match the Fourier coefficients of F22.

Equation (3.18) implies that J13,D1 = {0} and this space is mapped to M24(2). The
latter space contains precisely one newform:

f24(τ) =q − 2048q2 − 505908q3 + 4194304q4 − 90135570q5 + 1036099584q6

+ 6872255096q7 − 8589934592q8 + 161799725637q9 + O(q10),

which is an element of M+
24(2). This agrees with the fact that J13,D1 ' M

−
24(2).

Equation (3.19) implies that

J14,D1 = CE10E4,D1 ⊕ CE8E6,D1 ⊕ CE6E8,D1

and this space should be mapped to M26(2). Set

β1
14,1 :=E10E4,D1 −

576
77

E6E8,D1 and

β2
14,1 :=E8E6,D1 +

24
11

E6E8,D1 .

Equation (3.25) implies that these functions form a basis of S 14,D1 . Following the same
argument as in the weight 12 case, the two Jacobi forms ψ14,D1 and φ14,D1 defined by the
system of equations (

ψ14,D1

φ14,D1

)
:=

(
1 1

49
162 −181

432

)−1 (
β1

14,1
β2

14,1

)
are Hecke eigenforms of T (3), with eigenvalues λψ14,D1

(3) = 97956 and λφ14,D1
(3) =

−195804 respectively. The space M26(2) contains precisely three newforms

f26(τ) =q − 4096q2 + 97956q3 + 16777216q4 + 341005350q5 − 401227776q6 + O(q7),

g26(τ) =q + 4096q2 + (189924 − β)q3 + 16777216q4 + O(q5) and

g26(τ) =q + 4096q2 + (189924 + β)q3 + 16777216q4 + O(q5),

where β = 4800
√

106705. We have checked that the first 13 eigenvalues of ψ14 at odd
positive integers match the Fourier coefficients of f26 and this newform is an element of
M−

26(2). The space S 26(2) contains precisely two oldforms,

F26(τ) =q − 48q2 − 195804q3 − 33552128q4 − 741989850q5 + 9398592q6 + O(q7)
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and F26(2τ). We have checked that the first 13 Hecke eigenvalues of φ14,D1 at odd
positive integers match the Fourier coefficients of F26.

Equation (3.18) implies that J15,D1 = CE4ψ11,D1 and this space is mapped to M28(2).
Set ψ15,D1 := E4ψ11,D1 . In particular, this Jacobi form is a Hecke eigenform. The space
M28(2) contains precisely two newforms:

f28(τ) =q + 8192q2 − 1016388q3 + 67108864q4 − 3341197410q5 − 8326250496q6

− 51021361384q7 + 549755813888q8 − 6592552918443q9 + O(q10) and

g28(τ) =q − 8192q2 + 3984828q3 + 67108864q4 − 2851889250q5 − 32643710976q6

+ 368721063704q7 − 549755813888q8 + 8253256704597q9 + O(q10).

We have checked that the first 10 Hecke eigenvalues of ψ15,D1 at odd positive integers
match the Fourier coefficients of f28 and this newform is an element of M−

28(2).
Equation (3.19) implies that

J16,D1 = C∆E4,D1 ⊕ CE12E4,D1 ⊕ CE10E6,D1 ⊕ CE8E8,D1

and this space should be mapped to M30(2). Set

β1
16,1 :=E12E4,D1 −

576
77

E8E8,D1 ,

β2
16,1 :=E10E6,D1 +

24
11

E8E8,D1 and

β3
16,1 :=∆E4,D1 .

Equation (3.26) implies that these functions form a basis of S 16,D1 . The matrix of T (l)
on this space satisfies  T (l)β1

16,1

T (l)β2
16,1

T (l)β3
16,1

 = T (l)

 β1
16,1

β2
16,1

β3
16,1

 .
Set

T (l) =

 al
11 al

12 al
13

al
21 al

22 al
23

al
31 al

32 al
33

 .
We compute this matrix by solving the following three systems of linear equations: al

11
al

12
al

13

 =


C
β1

16,1
(−1,0) C

β2
16,1

(−1,0) C
β3

16,1
(−1,0)

C
β1

16,1
(−2,0) C

β2
16,1

(−2,0) C
β3

16,1
(−2,0)

C
β1

16,1
(−4,0) C

β2
16,1

(−4,0) C
β3

16,1
(−4,0)


−1 

CT (l)β1
16,1

(−1,0)

CT (l)β1
16,1

(−2,0)

CT (l)β1
16,1

(−4,0)

 ,
 al

21
al

22
al

23

 =


C
β1

16,1
(−1,0) C

β2
16,1

(−1,0) C
β3

16,1
(−1,0)

C
β1

16,1
(−2,0) C

β2
16,1

(−2,0) C
β3

16,1
(−2,0)

C
β1

16,1
(−4,0) C

β2
16,1

(−4,0) C
β3

16,1
(−4,0)


−1 

CT (l)β2
16,1

(−1,0)

CT (l)β2
16,1

(−2,0)

CT (l)β2
16,1

(−4,0)

 and

 al
31

al
32

al
33

 =


C
β1

16,1
(−1,0) C

β2
16,1

(−1,0) C
β3

16,1
(−1,0)

C
β1

16,1
(−2,0) C

β2
16,1

(−2,0) C
β3

16,1
(−2,0)

C
β1

16,1
(−4,0) C

β2
16,1

(−4,0) C
β3

16,1
(−4,0)


−1 

CT (l)β3
16,1

(−1,0)

CT (l)β3
16,1

(−2,0)

CT (l)β3
16,1

(−4,0)

 .
Using Sage, we obtain that

T (3) =

 27196229844
7601 − 1516424509440

53207
8998059438489600

477481
45758160

11 − 215457444
11

8874947450880
691

2625 − 4848
7

5699964924
691


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and this matrix can be diagonalized as

T (3) =

 1 1 1
−179786453

√
51349+207180739619

292431960720
179786453

√
51349+207180739619

292431960720
24185

349512
−5252291

√
51349

1403673411456 + 328902871
438647941080

5252291
√

51349
1403673411456 + 328902871

438647941080 −
11747

50329728


×

(
−52992

√
51349−2483820 0 0

0 52992
√

51349−2483820 0
0 0 −2792556

)
×

 1 1 1
−179786453

√
51349+207180739619

292431960720
179786453

√
51349+207180739619

292431960720
24185
349512

−5252291
√

51349
1403673411456 + 328902871

438647941080
5252291

√
51349

1403673411456 + 328902871
438647941080 −

11747
50329728

−1

.

It follows that the three Jacobi forms ψ16,D1 , φ16,D1 and δ16,D1 defined by the system of
equations(

ψ16,D1
φ16,D1
δ16,D1

)
:=

 1 1 1
−179786453

√
51349+207180739619

292431960720
179786453

√
51349+207180739619

292431960720
24185
349512

−5252291
√

51349
1403673411456 + 328902871

438647941080
5252291

√
51349

1403673411456 + 328902871
438647941080 −

11747
50329728

−1  β1
16,1

β2
16,1

β3
16,1


are Hecke eigenforms of T (3), with eigenvalues λψ16,D1

(3) = −52992
√

51349−2483820,
λφ16,D1

(3) = 52992
√

51349 − 2483820 and λδ16,D1
(3) = −2792556, respectively. The

space M30(2) contains precisely two newforms:

f30(τ) =q − 16384q2 − 2792556q3 + 268435456q4 + 6651856470q5

+ 45753237504q6 + 1432518476648q7 − 4398046511104q8 + O(q9) and

g30(τ) =q + 16384q2 + 4782996q3 + 268435456q4 + 6065841750q5 + O(q6).

We have checked that the first 13 Hecke eigenvalues of δ16,D1 at odd positive integers
match the Fourier coefficients of f30 and this newform is an element of M−

30(2). The
space S 30(2) contains precisely four oldforms,

F30(τ) =q + (4320 − β)q2 + (−2483820 + 552β)q3 + (−44976128 − 8640β)q4

+ (−8738894250 − 116000β)q5 + (−271954378368 + 4868460β)q6 + O(q7),

F30(τ) =q + (4320 + β)q2 + (−2483820 − 552β)q3 + (−44976128 + 8640β)q4 + O(q5),

F30(2τ) and F30(2τ), where β = 96
√

51349. We have checked that the first 13 Hecke
eigenvalues of φ16,D1 and ψ16,D1 at odd positive integers match the Fourier coefficients
of F30 and F30, respectively.

Equation (3.18) implies that J17,D1 = CE6ψ11,D1 and this space is mapped to M32(2).
Set ψ17,D1 := E6ψ11,D1 . In particular, this Jacobi form is a Hecke eigenform. The space
M32(2) contains precisely three newforms:

f32(τ) =q + 32768q2 − 19984212q3 + 1073741824q4 + 42951708750q5

− 654842658816q6 − 16835358997576q7 + 35184372088832q8 + O(q9),

g32(τ) =q − 32768q2 + (8358252 − β)q3 + 1073741824q4 + O(q5) and

g32(τ) =q − 32768q2 + (8358252 + β)q3 + 1073741824q4 + O(q5),

where β = 960
√

987507049. We have checked that the first 10 Hecke eigenvalues of
ψ17,D1 at odd positive integers match the Fourier coefficients of f32 and this newform is
an element of M−

32(2).
Equation (3.18) implies that J19,D1 = CE8ψ11,D1 and this space is mapped to M36(2).

Set ψ19,D1 := E8ψ11,D1 . In particular, this Jacobi form is a Hecke eigenform. The space
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M36(2) contains precisely two newforms

f36(τ) =q + 131072q2 + 159933852q3 + 17179869184q4 − 2838742578690q5

+ 20962849849344q6 − 782281866962344q7 + O(q8) and

g36(τ) =q − 131072q2 + 36494748q3 + 17179869184q4 + 389070858750q5

− 4783439609856q6 − 129689369490856q7 + O(q8).

We have checked that the first 10 Hecke eigenvalues of ψ19,D1 at odd positive integers
match the Fourier coefficients of f36 and this newform is an element of M−

36(2).
Equation (3.18) implies that J21,D1 = CE10ψ11,D1 and this space is mapped to M40(2).

Set ψ21,D1 := E10ψ11,D1 . In particular, this Jacobi form is a Hecke eigenform. The space
M40(2) contains precisely three newforms:

f40(τ) =q + 524288q2 − 735458292q3 + 274877906944q4 − 16226178983250q5

− 385591956996096q6 + 16050065775887864q7 + O(q8),

g40(τ) =q − 524288q2 + (143709132 − β)q3 + O(q5),

g40(τ) =q − 524288q2 + (143709132 + β)q3 + 274877906944q4 + O(q5),

where β = 960
√

4202094647521. We have checked that the first 10 Hecke eigenvalues
of ψ21,D1 at odd positive integers match the Fourier coefficients of f40 and this newform
is an element of M−

40(2).
Equation (3.18) implies that

J23,D1 = S 23,1 = CE12ψ11,D1 ⊕ C∆ψ11,D1

and this space should be mapped to M44(2). Set

β1
23,1 :=E12ψ11,D1 and

β2
23,1 :=∆ψ11,D1 .

The matrix of T (l) on this basis satisfies(
T (l)β1

23,1
T (l)β2

23,1

)
= T (l)

(
β1

23,1
β2

23,1

)
and it can be computed following the same reasoning as before. Consequently, the two
Jacobi forms ψ23,D1 and φ23,D1 defined by the system of equations(

ψ23,D1

φ23,D1

)
:=

( 1 1
477481

√
1589985537001

2659891394160000 − 192561338303
1329945697080000 −

477481
√

1589985537001
2659891394160000 − 192561338303

1329945697080000

)−1
(
β1

23,1
β2

23,1

)
are Hecke eigenforms. The space M44(2) contains precisely four newforms:

f44(τ) =q + 2097152q2 + (−11170817028 − α)q3 + 4398046511104q4 + O(q5),

f 44(τ) =q + 2097152q2 + (−11170817028 + α)q3 + 4398046511104q4 + O(q5),

g44(τ) =q − 2097152q2 + (−6490815492 − β)q3 + 4398046511104q4 + O(q5) and

g44(τ) =q − 2097152q2 + (−6490815492 + β)q3 + 4398046511104q4 + O(q5),

where α = 17280
√

1589985537001 and β = 21120
√

97578078049. We have checked
that the first 10 Hecke eigenvalues of ψ23,D1 and φ23,D1 at odd positive integers match
the Fourier coefficients of f44 and f 44, respectively, and these newforms are elements of
M−

44(2).
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3.3.2.2. The lattice D3. For the lattice D3, Remarks 3.12 and 3.16 suggest that there
exists a lifting map

Jk,D3 → M−
2k−4(2).

Note that M−
2k−4(2) is spanned by modular forms with eigenvalue −1 with respect to

Atkin–Lehner involutions when k is even and by modular forms with eigenvalue +1
with respect to Atkin–Lehner involutions when k is odd.

Equation (3.20) implies that J4,D3 = CE4,D3 and this space should be mapped to
M4(2). In particular, the Jacobi form E4,D3 is a Hecke eigenform. We have checked
that the first 25 Hecke eigenvalues of E4,D3 at odd positive integers match the Fourier
coefficients of E4/240.

Equation (3.20) implies that J6,D3 = CE6,D3 and this space should be mapped to
M8(2). In particular, the Jacobi form E6,D3 is a Hecke eigenform. We have checked
that the first 25 Hecke eigenvalues of E6,D3 at odd positive integers match the Fourier
coefficients of E8/480.

Equation (3.20) implies that

J8,D3 = CE4E4,D3 ⊕ Cη
12σ∗3ϑZ4

and this space should be mapped to M12(2). Set ψ8,D3 := η12σ∗3ϑZ4 . In particular, this
Jacobi form is a Hecke eigenform in S 8,D3 . The first few Fourier coefficients of ψ8,D3 are
listed in Table A.2. The space M12(2) contains no newforms. The space S 12(2) contains
precisely two oldforms, ∆(τ) and ∆(2τ). The first 25 Hecke eigenvalues of ψ8,D3 at odd
positive integers match the Fourier coefficients of ∆.

Equation (3.18) implies that J9,D3 = Cψ9,D3 and this space should be mapped to
M14(2). In particular, the Jacobi form ψ9,D3 is a Hecke eigenform. The first few Fourier
coefficients of ψ9,D3 are listed in the second column of Table A.3. We have seen that
M14(2) contains precisely two newforms and the first 25 Hecke eigenvalues of ψ9,D3 at
odd positive integers match the Fourier coefficients of f14.

Equation (3.20) implies that

J10,D3 = CE6E4,D3 ⊕ CE4E6,D3

and this space should be mapped to M16(2). Equation (3.23) implies that

ψ10,D3(τ, z) :=
5

24
E6(τ)E4,D3(τ, z) + E4(τ)E6,D3(τ, z)

is a Hecke eigenform in S 10,D3 . The space M16(2) contains precisely one newform:

f16(τ) =q − 128q2 + 6252q3 + 16384q4 + 90510q5 − 800256q6 + 56q7

− 2097152q8 + 24738597q9 − 11585280q10 − 95889948q11 + O(q12),

which is an element of M+
16(2). The space S 16(2) contains precisely two oldforms,

F16(τ) =q + 216q2 − 3348q3 + 13888q4 + 52110q5 − 723168q6 + 2822456q7 + O(q8)

and F16(2τ). We have checked that the first 25 Hecke eigenvalues of ψ10,D3 at odd
positive integers match the Fourier coefficients of F16.

Equation (3.18) implies that J11,D3 = {0} and this space should be mapped to M18(2).
We have seen that the latter space contains precisely one newform, which is an element
of M+

18(2).
Equation (3.20) implies that

J12,D3 = CE8E4,D3 ⊕ CE6E6,D3 ⊕ CE4η
12σ∗3ϑZ4
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and this space should be mapped to M20(2). It follows that

β1
12,3(τ, z) :=

5
24

E8(τ)E4,D3(τ, z) + E6(τ)E6,D3(τ, z)

=
∑

r∈D#
3,D∈Q<0

(r,r)
2 −D∈Z

[
5

24
C4,3(D, r) + C6,3(D, r) +

b−Dc∑
n=1

(
100C4,3(D + n, r)σ7(n)

− 504C6,3(D + n, r)σ5(n)
)]

e
((

(r,r)
2 − D

)
τ + (r, z)

)
is an element of S 12,D3 . On the other hand, set β2

12,3 := E4η
12σ∗3ϑZ4 . Equation (3.17)

implies that

Et(τ)η12σ∗3ϑZ4(τ, z) =
∑

r∈D#
3,D∈Q<0

(r,r)
2 −D∈Z

(
Cψ8,D3

(D, r) −
2t
Bt

b−Dc∑
n=1

Cψ8,D3
(D + n, r)σt−1(n)

)

× e
((

(r,r)
2 − D

)
τ + (r, z)

)
.

The Jacobi forms β1
12,3 and β2

12,3 form a basis of S 12,D3 and the matrix of T (l) on this
space satisfies (

T (l)β1
12,3

T (l)β2
12,3

)
= T (l)

(
β1

12,3
β2

12,3

)
.

Using Sage, we obtain that

T (3) =

(
−29988 403200

4608 27612

)
and this matrix can be diagonalized as

T (3) =

(
1 1
1
5 − 2

35

) (
50652 0

0 −53028

) (
1 1
1
5 − 2

35

)−1

.

It follows that the two Jacobi forms ψ12,D3 and φ12,D3 defined by the system of equations(
ψ12,D3

φ12,D3

)
:=

(
1 1
1
5 − 2

35

)−1 (
β1

12,3
β2

12,3

)
=

(2
9β

1
12,3 + 35

9 β
2
12,3

7
9β

1
12,3 −

35
9 β

2
12,3

)
are Hecke eigenforms of T (3), with eigenvalues λψ12,D3

(3) = 50652 and λφ12,D3
(3) =

−53028, respectively. We have seen that M20(2) contains precisely two newforms and
we have checked that the first few Hecke eigenvalues of φ12,D3 match the Fourier coef-
ficients of f20 at odd integers. The space S 20(2) contains precisely two oldforms,

F20(τ) =q + 456q2 + 50652q3 − 316352q4 − 2377410q5 + 23097312q6 + O(q7)

and F20(2τ). We have checked that the first 19 Hecke eigenvalues of ψ12,D3 at odd
positive integers match the Fourier coefficients of F20.

Equation (3.18) implies that J13,D3 = CE4ψ9,D3 and this space should be mapped to
M22(2). Set ψ13,D3 := E4ψ9,D3 . In particular, this Jacobi form is a Hecke eigenform. We
have seen that M22(2) contains precisely two newforms and we have checked that the
first 19 Hecke eigenvalues of ψ13,D3 at odd positive integers match the Fourier coeffi-
cients of f22.

Equation (3.20) implies that

J14,D3 = CE10E4,D3 ⊕ CE8E6,D3 ⊕ CE6ψ8,D3
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and this space should be mapped to M24(2). Set

β1
14,3(τ, z) :=

5
24

E10(τ)E4,D3(τ, z) + E8(τ)E6,D3(τ, z)

and β2
14,3 := E6ψ8,D3 . Equation (3.17) implies that β1

14,3 and β2
14,3 form a basis of S 14,D3 .

Following the same argument as in the weight 12 case, the two Jacobi forms ψ14,D3 and
φ14,D3 defined by the system of equations(

ψ14,D3

φ14,D3

)
:=

(
1 1

−
√

144169−247
1100

√
144169−247

1100

)−1 (
β1

14,3
β2

14,3

)
are Hecke eigenforms of T (3). We have seen that M24(2) contains precisely one new-
form. The space S 24(2) contains precisely four oldforms,

F24(τ) =q + (540 − β)q2 + (169740 + 48β)q3 + (12663328 − 1080β)q4

+ (36534510 + 15040β)q5 + (−904836528 − 143820β)q6

+ (−679592200 + 985824β)q7 + (24729511680 − 4857920β)q8

+ (−17499697083 + 16295040β)q9 + O(q10),

F24(τ) =q + (540 + β)q2 + (169740 − 48β)q3 + (12663328 + 1080β)q4 + O(q5),

F24(2τ) and F24(2τ), where β = 12
√

144169. We have checked that the first 19 Hecke
eigenvalues of ψ14,D3 and φ14,D3 at odd positive integers match the Fourier coefficients
of F24 and F24, respectively.

Equation (3.18) implies that J15,D3 = CE6ψ9,D3 and this space should be mapped to
M26(2). Set ψ15,D3 := E6ψ9,D3 . In particular, this Jacobi form is a Hecke eigenform. We
have seen that the space M26(2) contains precisely three newforms and we have checked
that the first 19 Hecke eigenvalues of ψ15,D3 at odd positive integers match the Fourier
coefficients of f26.

Equation (3.20) implies that

J16,D3 = C∆E4,D3 ⊕ CE12E4,D3 ⊕ CE10E6,D3 ⊕ CE8ψ8,D3

and this space should be mapped to M28(2). Set

β1
16,3(τ, z) :=

5
24

E12(τ)E4,D3(τ, z) + E10(τ)E6,D3(τ, z),

β2
16,3 := E8ψ8,D3 and β3

16,3 := ∆E4,D3 . Equation (3.17) implies that these functions form
a basis of S 16,D3 . Using Sage, we obtain that

T (3) =

 1127316852
691

2874009600
691 − 36453937766400

477481

642816 −2882628 6270566400
691

− 816
5 3888 − 726564492

691


on this basis and this matrix can be diagonalized as

T (3) =

 1 1 1
−76701

√
18209−8332078

15791545
76701

√
18209−8332078

15791545
691
990

477481
√

18209+71530247
68219474400

−477481
√

18209+71530247
68219474400

691
9504


×

(
−20736

√
18209−643140 0 0

0 20736
√

18209−643140 0
0 0 −1016388

)
×

 1 1 1
−76701

√
18209−8332078

15791545
76701

√
18209−8332078

15791545
691
990

477481
√

18209+71530247
68219474400

−477481
√

18209+71530247
68219474400

691
9504

−1

.
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It follows that the three Jacobi forms ψ16,D3 , φ16,D3 and δ16,D3 defined by the system of
equations (

ψ16,D3
φ16,D3
δ16,D3

)
:=

 1 1 1
−76701

√
18209−8332078

15791545
76701

√
18209−8332078

15791545
691
990

477481
√

18209+71530247
68219474400

−477481
√

18209+71530247
68219474400

691
9504

−1  β1
16,3

β2
16,3

β3
16,3


are Hecke eigenforms of T (3), with eigenvalues λψ16,D3

(3) = −20736
√

18209−643140,
λφ16,D3

(3) = 20736
√

18209 − 643140 and λδ16,D3
(l) = −1016388, respectively. We have

seen that M28(2) contains precisely two newforms and we have checked that the first
19 Hecke eigenvalues of δ16,D3 at odd positive integers match the Fourier coefficients of
f28. The space S 28(2) contains precisely four oldforms,

F28(τ) =q + (−4140 − β)q2 + (−643140 − 192β)q3 + (95311648 + 8280β)q4

+ (2721793950 − 147200β)q5 + (43441436592 + 1438020β)q6 + O(q7),

F28(τ) =q + (−4140 + β)q2 + (−643140 + 192β)q3 + (95311648 − 8280β)q4 + O(q5),

F28(2τ) and F28(2τ), where β = 108
√

18209. We have checked that the first 19 Hecke
eigenvalues of ψ16,D3 and φ16,D3 at odd positive integers match the Fourier coefficients
of F28 and F28, respectively.

Equation (3.18) implies that J17,D3 = CE8ψ9,D3 and this space should be mapped to
M30(2). Set ψ17,D3 := E8ψ9,D3 . In particular, this Jacobi form is a Hecke eigenform. We
have seen that M30(2) contains precisely two newforms and we have checked that the
first 19 Hecke eigenvalues of ψ17,D3 at odd positive integers match the Fourier coeffi-
cients of f30.

Equation (3.18) implies that J19,D3 = CE10ψ9,D3 and this space should be mapped
to M34(2). Set ψ19,D3 := E10ψ9,D3 . In particular, this Jacobi form is a Hecke eigenform.
The space M34(2) contains precisely three newforms:

f34(τ) =q − 65536q2 − 133005564q3 + 4294967296q4 + 538799132550q5

+ 8716652642304q6 − 33347311051768q7 − 281474976710656q8 + O(q9),

g34(τ) =q + 65536q2 + (4178244 − β)q3 + 4294967296q4 + (−2666238330 − 3996β)q5

+ (273825398784 − 65536β)q6 + (66359547937928 + 896238β)q7 + O(q8),

g34(τ) =q + 65536q2 + (4178244 + β)q3 + 4294967296q4 + O(q5),

where β = 10560
√

79829689. We have checked that the first 19 Hecke eigenvalues of
ψ19,D3 at odd positive integers match the Fourier coefficients of f34 and this newform is
an element of M−

34(2).
Equation (3.18) implies that

J21,D3 = S 21,3 = CE12ψ9,D3 ⊕ C∆ψ9,D3

and this space should be mapped to M38(2). Set

β1
21,3 :=E12ψ9,D3 and

β2
21,3 :=∆ψ9,D3 .

The matrix of T (l) on this basis satisfies(
T (l)β1

21,3
T (l)β2

21,3

)
= T (l)

(
β1

21,3
β2

21,3

)



3.3. JACOBI FORMS OF INDEX Dn AND ELLIPTIC MODULAR FORMS 91

and it can be computed using the same reasoning as before. Consequently, the two
Jacobi forms ψ21,D3 and φ21,D3 defined by the system of equations(

ψ21,D3

φ21,D3

)
:=

( 1 1
477481

√
3026574721

188339617065600 −
10009989767

94169808532800 −
477481

√
3026574721

188339617065600 −
10009989767

94169808532800

)−1
(
β1

21,3
β2

21,3

)
are Hecke eigenforms. The space M38(2) contains precisely four newforms:

f38(τ) =q − 262144q2 + (211535604 − α)q3 + 68719476736q4 + O(q5),

f 38(τ) =q − 262144q2 + (211535604 + α)q3 + 68719476736q4 + O(q5),

g38(τ) =q + 262144q2 + (−250843404 − β)q3 + 68719476736q4 + O(q5) and

g38(τ) =q + 262144q2 + (−250843404 − β)q3 + 68719476736q4 + O(q5),

where α = 17280
√

3026574721 and β = 1920
√

223572801841. We have checked that
the first 19 Hecke eigenvalues of ψ21,D3 and φ21,D3 at odd positive integers match the
Fourier coefficients of f38 and f 38, respectively, and these newforms are elements of
M−

38(2).
3.3.2.3. The lattice D5. For the lattice D5, Remarks 3.12 and 3.16 suggest that there

exists a lifting map

Jk,D5 → M+
2k−6(2).

Note that M+
2k−6(2) is spanned by modular forms with eigenvalue −1 with respect to

Atkin–Lehner involutions when k is even and by modular forms with eigenvalue +1
with respect to Atkin–Lehner involutions when k is odd.

Equation (3.19) implies that J4,D5 = CE4,D5 and this space should be mapped to
M2(2). In particular, the Jacobi form E4,D5 is a Hecke eigenform. We have checked
that the first 41 Hecke eigenvalues of E4,D5 at odd positive integers match the Fourier
coefficients of −E2/24. Note that M2(2) = C(E2(τ) − 2E2(2τ)).

Equation (3.19) implies that J6,D5 = CE6,D5 and this space should be mapped to
M6(2). In particular, the Jacobi form E6,D5 is a Hecke eigenform. We have checked
that the first 41 Hecke eigenvalues of E6,D5 at odd positive integers match the Fourier
coefficients of −E6/504.

Equation (3.18) implies that J7,D5 = Cψ7,D5 and this space should be mapped to
M8(2). In particular, the Jacobi form ψ7,D5 is a Hecke eigenform. The first few Fourier
coefficients of ψ7,D5 are listed in the fourth column of Table A.3. The space M8(2)
contains precisely one newform:

f8(τ) =q − 8q2 + 12q3 + 64q4 − 210q5 − 96q6 + 1016q7 − 512q8 − 2043q9

+ 1680q10 + 1092q11 + 768q12 + 1382q13 − 8128q14 − 2520q15 + O(q16).

The first 41 Hecke eigenvalues of ψ7,D5 at odd positive integers match the Fourier coef-
ficients of f8 and this newform is an element of M+

8 (2). In addition, f8(τ) = η(τ)8η(2τ)8

is an eta product.
Equation (3.19) implies that

J8,D5 = CE4E4,D5 ⊕ CE8,D5

and this space should be mapped to M10(2). Equation (3.22) implies that

ψ8,D5(τ, z) := E4(τ)E4,D5(τ, z) −
192

7
E8,D5(τ, z)
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is a Hecke eigenform in S 8,D5 . The first few Fourier coefficients of ψ8,D5 are listed in
Table A.4. The space M10(2) contains precisely one newform:

f10(τ) =q + 16q2 − 156q3 + 256q4 + 870q5 − 2496q6 − 952q7 + 4096q8 + 4653q9

+ 13920q10 − 56148q11 − 39936q12 + 178094q13 − 15232q14 + O(q15).

The first 41 Hecke eigenvalues of ψ8,D5 at odd positive integers match the Fourier coef-
ficients of f10 and this newform is an element of M+

10(2).
Equation (3.18) implies that J9,D5 = {0} and this space should be mapped to M12(2).

We have seen that the latter space contains no newforms.
Equation (3.19) implies that

J10,D5 = CE6E4,D5 ⊕ CE4E6,D5

and this space should be mapped to M14(2). Equation (3.23) implies that

ψ10,D5(τ, z) :=
3

24
E6(τ)E4,D5(τ, z) + E4(τ)E6,D5(τ, z)

is a Hecke eigenform in S 10,D5 . The first few Fourier coefficients of ψ10,D5 are listed in
Table A.5. We have seen that the space M14(2) contains precisely two newforms. The
first 41 Hecke eigenvalues of ψ10,D5 at odd positive integers match the Fourier coeffi-
cients of g14 and this newform is an element of M+

14(2).
Equation (3.18) implies that J11,D5 = CE4ψ7,D5 and this space should be mapped to

M16(2). Set ψ11,D5 := E4ψ7,D5 . In particular, this Jacobi form is a Hecke eigenform. We
have seen that the space M16(2) contains precisely one newform and we have checked
that the first 41 Hecke eigenvalues of ψ11,D5 at odd positive integers match the Fourier
coefficients of f16.

Equation (3.19) implies that

J12,D5 = CE8E4,D5 ⊕ CE6E6,D5 ⊕ CE4E8,D5

and this space should be mapped to M18(2). Set

β1
12,5 :=E8E4,D5 −

192
7

E4E8,D5 and

β2
12,5 :=E6E6,D5 +

24
7

E4E8,D5 .

Equation (3.24) implies that these functions form a basis of S 12,D5 . Using Sage, we
obtain that

T (3) =

(
−15012

7 −30720
7

−28080
7

27612
7

)
on this basis and this matrix can be diagonalized as

T (3) =

(
1 1
−15

8
39
80

) (
6084 0

0 −4284

) (
1 1
−15

8
39
80

)−1

.

It follows that the two Jacobi forms ψ12,D5 and φ12,D5 defined by the system of equations(
ψ12,D5

φ12,D5

)
:=

(
1 1
−15

8
39
80

)−1 (
β1

12,5
β2

12,5

)
=

( 13
63β

1
12,5 −

80
189β

2
12,5

50
63β

1
12,5 + 80

189β
2
12,5

)
are Hecke eigenforms of T (3), with eigenvalues λψ12,D5

(3) = 6084 and λφ12,D5
(3) =

−4284, respectively. We have seen that M18(2) contains precisely one newform and
we have checked that the first 23 Hecke eigenvalues of ψ12,D5 at odd positive integers
match the Fourier coefficients of f18. We have checked that the first 23 Hecke eigen-
values of φ12,D5 at odd positive integers match the Fourier coefficients of the oldform
F18.
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Equation (3.18) implies that J13,D5 = CE6ψ7,D5 and this space should be mapped to
M20(2). Set ψ13,D5 := E6ψ7,D5 . In particular, this Jacobi form is a Hecke eigenform. We
have seen that the space M20(2) contains precisely two newforms. We have checked
that the first 41 Hecke eigenvalues of ψ13,D5 at odd positive integers match the Fourier
coefficients of g20 and this newform is an element of M+

20(2).
Equation (3.19) implies that

J14,D5 = CE10E4,D5 ⊕ CE8E6,D5 ⊕ CE6E8,D5

and this space should be mapped to M22(2). Set

β1
14,5 :=E10E4,D5 −

192
7

E6E8,D5 and

β2
14,5 :=E8E6,D5 +

24
7

E6E8,D5 .

Equation (3.25) implies that these functions form a basis of S 14,D5 . Following the same
argument as in the weight 12 case, the two Jacobi forms ψ14,D5 and φ14,D5 defined by the
system of equations (

ψ14,D5

φ14,D5

)
:=

(
1 0
3
8 1

)−1 (
β1

14,5
β2

14,5

)
are Hecke eigenforms of T (3). We have seen that the space M22(2) contains precisely
two newforms. We have checked that the first 23 Hecke eigenvalues of ψ14,D5 at odd
positive integers match the Fourier coefficients of g22 and this newform is an element
of M+

22(2). The first 23 Hecke eigenvalues of φ14,D1 at odd positive integers match the
Fourier coefficients of the oldform F22.

Equation (3.18) implies that J15,D5 = CE8ψ7,D5 and this space should be mapped to
M24(2). Set ψ15,D5 := E8ψ7,D5 . In particular, this Jacobi form is a Hecke eigenform. We
have seen that the space M24(2) contains precisely one newform and we have checked
that the first 41 Hecke eigenvalues of ψ15,D5 at odd positive integers match the Fourier
coefficients of f24.

Equation (3.19) implies that

J16,D5 = C∆E4,D5 ⊕ CE12E4,D5 ⊕ CE10E6,D5 ⊕ CE8E8,D5

and this space should be mapped to M26(2). Set

β1
16,5 :=E12E4,D5 −

192
7

E8E8,D5 ,

β2
16,5 :=E10E6,D5 +

24
7

E8E8,D5 and

β3
16,5 :=∆E4,D5 .

Equation (3.26) implies that these functions form a basis of S 16,D5 . Using Sage, we
obtain that

T (3) =

 − 1202318412
4837

1669724160
4837

190577840947200
477481

6217200
7 − 9330948

7
821653217280

691
799 −496 1220032044

691


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on this basis and this matrix can be diagonalized as

T (3) =

 1 1 1
−382123

√
106705−25405997

59648240
382123

√
106705−25405997
59648240

32477
67280

−3342367
√

106705+756027937
515360793600

3342367
√

106705+756027937
515360793600 − 691

2422080


×

(
−4800

√
106705+189924 0 0

0 4800
√

106705+189924 0
0 0 −195804

)
×

 1 1 1
−382123

√
106705−25405997

59648240
382123

√
106705−25405997
59648240

32477
67280

−3342367
√

106705+756027937
515360793600

3342367
√

106705+756027937
515360793600 − 691

2422080

−1

.

It follows that the three Jacobi forms ψ16,D5 , φ16,D5 and δ16,D5 defined by the system of
equations (

ψ16,D5
φ16,D5
δ16,D5

)
:=

 1 1 1
−382123

√
106705−25405997

59648240
382123

√
106705−25405997
59648240

32477
67280

−3342367
√

106705+756027937
515360793600

3342367
√

106705+756027937
515360793600 − 691

2422080

−1  β1
16,5

β2
16,5

β3
16,5


are Hecke eigenforms of T (3), with eigenvalues λψ16,D5

(3) = −4800
√

106705 + 189924,
λφ16,D5

(3) = 4800
√

106705 + 189924 and λδ16,D5
(3) = −195804, respectively. We have

seen that the space M26(2) contains precisely three newforms and we have checked
that the first 23 Hecke eigenvalues of ψ16,D5 and φ16,D5 at odd positive integers match
the Fourier coefficients of g26 and g26, respectively. We have checked that the first 23
Hecke eigenvalues of δ16,D5 at odd positive integers match the Fourier coefficients of the
oldform F26.

Equation (3.18) implies that J17,D5 = CE10ψ7,D5 and this space should be mapped
to M28(2). Set ψ17,D5 := E10ψ7,D5 . In particular, this Jacobi form is a Hecke eigenform.
We have seen that the space M28(2) contains precisely two newforms. We have checked
that the first 41 Hecke eigenvalues of ψ17,D5 at odd positive integers match the Fourier
coefficients of g28 and this newform is an element of M+

28(2).
Equation (3.18) implies that

J19,D5 = CE12ψ7,D5 ⊕ C∆ψ7,D5

and this space should be mapped to M32(2). Set

β1
19,5 :=E12ψ7,D5 and

β2
19,5 :=∆ψ7,D5 .

The matrix of T (l) on J19,D5 satisfies(
T (l)β1

19,5
T (l)β2

19,5

)
= T (l)

(
β1

19,5
β2

19,5

)
and it can be computed following the same reasoning as before. Consequently, the two
Jacobi forms ψ19,D5 and φ19,D5 defined by the system of equations(

ψ19,D5

φ19,D5

)
:=

(
1 1

477481
√

987507049−11643202817
363831333465600

−477481
√

987507049−11643202817
363831333465600

)−1 (
β1

19,5
β2

19,5

)
are Hecke eigenforms. We have seen that M32(2) contains precisely three newforms.
We have checked that the first 41 Hecke eigenvalues of ψ19,D5 and φ19,D5 at odd positive
integers match the Fourier coefficients of g32 and g32, respectively, and these newforms
are elements of M+

32(2).
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3.3.2.4. The lattice D7. For the lattice D7, Remarks 3.12 and 3.16 suggest that there
exists a lifting map

Jk,D7 → M+
2k−8(2).

Note that M+
2k−8(2) is spanned by modular forms with eigenvalue −1 with respect to

Atkin–Lehner involutions when k is odd and by modular forms with eigenvalue +1
with respect to Atkin–Lehner involutions when k is even.

Equation (3.18) implies that J5,D7 = Cψ5,D7 . In particular, the Jacobi form ψ5,D7 is a
Hecke eigenform. We have checked that the first 41 Hecke eigenvalues of ψ5,D7 at odd
positive integers match the Fourier coefficients of −E2/24.

Equation (3.19) implies that J6,D7 = CE6,D7 and this space should be mapped to
M4(2). In particular, the Jacobi form E6,D7 is a Hecke eigenform. We have checked
that the first 41 Hecke eigenvalues of E6,D7 at odd positive integers match the Fourier
coefficients of E4/240.

Equation (3.18) implies that J7,D7 = {0} and this space should be mapped to M6(2).
We have seen that the latter space contains no newforms.

Equation (3.19) implies that

J8,D7 = CE4E4,D7 ⊕ CE8,D7

and this space should be mapped to M8(2). Equation (3.22) implies that

ψ8,D7(τ, z) := E4(τ)E4,D7(τ, z) −
576

5
E8,D7(τ, z)

is a Hecke eigenform in S 8,D7 . The first few Fourier coefficients of 5ψ8,D7 are listed in
Table A.6. We have seen that the space M8(2) contains precisely one newform. The first
41 Hecke eigenvalues of ψ8,D7 at odd positive integers match the Fourier coefficients of
f8.

Equation (3.18) implies that J9,D7 = CE4ψ5,D7 and this space should be mapped to
M10(2). Set ψ9,D7 := E4ψ5,D7 . In particular, this Jacobi form is a Hecke eigenform. The
first few Fourier coefficients of ψ9,D7 are listed in the second column of Table A.8. We
have seen that the space M10(2) contains precisely one newform and the first few Hecke
eigenvalues of ψ9,D7 at odd positive integers match the Fourier coefficients of f10.

Equation (3.19) implies that

J10,D7 = CE6E4,D7 ⊕ CE4E6,D7

and this space should be mapped to M12(2). Equation (3.17) implies that

ψ10,D7(τ, z) :=
1

24
E6(τ)E4,D7(τ, z) + E4(τ)E6,D7(τ, z)

is a Hecke eigenform in S 10,D7 . The first few Fourier coefficients of 4ψ10,D7 are listed in
Table A.7. We have seen that the space M12(2) contains no newforms and the first 41
Hecke eigenvalues of ψ10,D7 at odd positive integers match the Fourier coefficients of ∆.

Equation (3.18) implies that J11,D7 = CE6ψ5,D7 and this space should be mapped to
M14(2). Set ψ11,D7 := E6ψ5,D7 . In particular, this Jacobi form is a Hecke eigenform. The
first few Fourier coefficients of ψ11,D7 are listed in the fourth column of Table A.8. We
have seen that the space M14(2) contains precisely two newforms and the first 41 Hecke
eigenvalues of ψ11,D7 at odd positive integers match the Fourier coefficients of g14.

Equation (3.19) implies that

J12,D7 = CE8E4,D7 ⊕ CE6E6,D7 ⊕ CE4E8,D7
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and this space should be mapped to M16(2). Set

β1
12,7 :=E8E4,D7 −

576
5

E4E8,D7 and

β2
12,7 :=E6E6,D7 +

24
5

E4E8,D7 .

Equation (3.24) implies that these functions form a basis of S 12,D7 . Using Sage, we
obtain that

T (3) =

(
25452 −829440
2000/3 −22548

)
on this basis and this matrix can be diagonalized as

T (3) =

(
1 1
5

216
5

144

) (
6252 0

0 −3348

) (
1 1
5

216
5

144

)−1

.

It follows that the two Jacobi forms ψ12,D7 and φ12,D7 defined by the system of equations(
ψ12,D7

φ12,D7

)
:=

(
1 1
5

216
5

144

)−1 (
β1

12,7
β2

12,7

)
=

(
3β1

12,7 −
432
5 β

2
12,7

−2β1
12,7 + 432

5 β
2
12,7

)
are Hecke eigenforms of T (3), with eigenvalues λψ12,D7

(3) = 6252 and λφ12,D7
(3) =

−3348, respectively. We have seen that M16(2) contains precisely one newform and
we have checked that the first 23 Hecke eigenvalues of ψ12,D7 at odd positive integers
match the Fourier coefficients of f16. We have checked that the first 23 Hecke eigen-
values of φ12,D7 at odd positive integers match the Fourier coefficients of the oldform
F16.

Equation (3.18) implies that J13,D7 = CE8ψ5,D7 and this space should be mapped to
M18(2). Set ψ13,D7 := E8ψ5,D7 . In particular, this Jacobi form is a Hecke eigenform. We
have seen that the space M18(2) contains precisely one newform and we have checked
that the first 41 Hecke eigenvalues of ψ13,D7 at odd positive integers match the Fourier
coefficients of f18.

Equation (3.19) implies that

J14,D7 = CE10E4,D7 ⊕ CE8E6,D7 ⊕ CE6E8,D7

and this space should be mapped to M20(2). Set

β1
14,7 :=E10E4,D7 −

576
5

E6E8,D7 and

β2
14,7 :=E8E6,D7 +

24
5

E6E8,D7 .

Equation (3.25) implies that these functions form a basis of S 14,D7 . Following the same
argument as in the weight 12 case, the two Jacobi forms ψ14,D7 and φ14,D7 defined by the
system of equations (

ψ14,D7

φ14,D7

)
:=

(
1 1

89
3024

77
2952

)−1 (
β1

14,7
β2

14,7

)
are Hecke eigenforms of T (3). We have seen that the space M20(2) contains precisely
two newforms and we have checked that the first 23 Hecke eigenvalues of φ14,D7 at odd
positive integers match the Fourier coefficients of g20. The first 23 Hecke eigenvalues
of ψ14,D7 at odd positive integers match the Fourier coefficients of the oldform F20.

Equation (3.18) implies that J15,D7 = CE10ψ5,D7 and this space should be mapped
to M22(2). Set ψ15,D7 := E10ψ5,D7 . In particular, this Jacobi form is a Hecke eigenform.
We have seen that the space M22(2) contains precisely two newforms. We have checked
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that the first 41 Hecke eigenvalues of ψ15,D7 at odd positive integers match the Fourier
coefficients of g22 and this newform is an element of M+

22(2).
Equation (3.19) implies that

J16,D7 = C∆E4,D7 ⊕ CE12E4,D7 ⊕ CE10E6,D7 ⊕ CE8E8,D7

and this space should be mapped to M24(2). Set

β1
16,7 :=E12E4,D7 −

576
5

E8E8,D7 ,

β2
16,7 :=E10E6,D7 +

24
5

E8E8,D7 and

β3
16,7 :=∆E4,D7 .

Equation (3.26) implies that these functions form a basis of S 16,D7 . Using Sage, we
obtain that

T (3) =

 3889276452
691 − 135604316160

691
79595230118215680

477481

158160 −5517108 3162724392960
691

83
3 −976 − 191956572

691


on this basis and this matrix can be diagonalized as

T (3) =

 1 1 1
21421

√
144169

18929980896 + 176954735
6309993632 −

21421
√

144169
18929980896 + 176954735

6309993632
3455

126828
−477481

√
144169+60215813

224888173044480
477481

√
144169+60215813

224888173044480 − 691
146105856


×

(
−576

√
144169+169740 0 0

0 576
√

144169+169740 0
0 0 −505908

)
×

 1 1 1
21421

√
144169

18929980896 + 176954735
6309993632 −

21421
√

144169
18929980896 + 176954735

6309993632
3455

126828
−477481

√
144169+60215813

224888173044480
477481

√
144169+60215813

224888173044480 − 691
146105856

−1

.

It follows that the three Jacobi forms ψ16,D7 , φ16,D7 and δ16,D7 defined by the system of
equations (

ψ16,D7
φ16,D7
δ16,D7

)
:=

 1 1 1
21421

√
144169

18929980896 + 176954735
6309993632 −

21421
√

144169
18929980896 + 176954735

6309993632
3455

126828
−477481

√
144169+60215813

224888173044480
477481

√
144169+60215813

224888173044480 − 691
146105856

−1  β1
16,7

β2
16,7

β3
16,7


are Hecke eigenforms of T (3), with eigenvalues λψ16,D7

(3) = −576
√

144169 + 169740,
λφ16,D7

(3) = 576
√

144169 + 169740 and λδ16,D7
(3) = −505908, respectively. We have

seen that the space M24(2) contains precisely one newform and we have checked that
the first 23 Hecke eigenvalues of δ16,D7 at odd positive integers match the Fourier co-
efficients of f24. We have checked that the first 23 Hecke eigenvalues of ψ16,D7 and
φ16,D7 at odd positive integers match the Fourier coefficients of the oldforms F24 and
F24, respectively.

Equation (3.18) implies that

J17,D7 = CE12ψ5,D7 ⊕ C∆ψ5,D7

and this space should be mapped to M26(2). Set

β1
17,7 := E12ψ5,D7 and β2

17,7 := ∆ψ5,D7 .

The matrix of T (l) on J17,D7 satisfies(
T (l)β1

17,7
T (l)β2

17,7

)
= T (l)

(
β1

17,7
β2

17,7

)
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and it can be computed following the same reasoning as before. Consequently, the two
Jacobi forms ψ17,D7 and φ17,D7 defined by the system of equations(

ψ17,D7

φ17,D7

)
:=

(
1 1

−477481
√

106705+33963341
232962188659200

477481
√

106705+33963341
232962188659200

)−1 (
β1

17,7
β2

17,7

)
are Hecke eigenforms. We have seen that M26(2) contains precisely three newforms.
We have checked that the first 41 Hecke eigenvalues of φ17,D7 and ψ17,D7 at odd positive
integers match the Fourier coefficients of g26 and g26, respectively, and these newforms
are elements of M+

26(2).

3.3.3. Concluding remarks. The results of this section are summarized in Table
3.1. Modular forms whose first few Hecke eigenvalues match are listed on the same row.
Elliptic Eisenstein series together with the corresponding Jacobi forms are marked in
green, elliptic newforms in the + space together with the corresponding Jacobi forms are
marked in blue, elliptic newforms in the − space together with the corresponding Jacobi
forms are marked in orange and elliptic oldforms together with their corresponding
Jacobi forms are marked in red.

Theorem 3.29 contradicts Conjecture 6.1.3 in [Ajo15], which would imply that

Jk+1,D1 ' Jk+2,D3 ' M
−
2k(2) and

Jk+3,D5 ' Jk+4,D7 ' M
+
2k(2),

since, for example, J12,D1 ; J13,D3 . However, the conjectured weight and level seem
to be correct. Furthermore, Jacobi forms of index D1 and D3 which correspond to
newforms indeed map to the − space and Jacobi forms of index D5 and D7 which cor-
respond to newforms map to the + space. Let Jold

k,Dn
and Jnew

k,Dn
denote the subspaces of

Jacobi forms in Jk,Dn whose Hecke eigenvalues match the Hecke eigenvalues of ellip-
tic oldforms and elliptic newfroms, respectively. In particular, the results in Table 3.1
suggest that

Jold
k+1,D1

'Jold
k+3,D5

'

0, if k is even and
M2k(1), if k is odd,

Jold
k+2,D3

'Jold
k+4,D7

'

M2k(1), if k is even and
0, if k is odd,

Jnew
k+1,D1

'Jnew
k+2,D3

' M−,new
2k (2),

Jnew
k+3,D5

'Jnew
k+4,D7

' M+,new
2k (2).

Theorem 1.37 implies that

Jk+1,D1 ' Mnew,−
2k (2) ⊕ M−

2k(1)

as Hecke modules. The remaining above statements can be re-formulated as the follow-
ing:

Conjecture 3.30. For every k ≥ 2, the following holds:

Jk+2,D3 'Mnew,−
2k (2) ⊕ M+

2k(1),

Jk+3,D5 'Mnew,+
2k (2) ⊕ M−

2k(1),

Jk+4,D7 'Mnew,+
2k (2) ⊕ M+

2k(1)

and these isomorphisms are Hecke equivariant.
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Table 3.1. Correspondence between Jacobi forms of index Dn (n =

1, 3, 5 and 7) and elliptic modular forms

k Jk+1,D1 Jk+2,D3 M2k(2) Jk+3,D5 Jk+4,D7

2 E4,D3 E4 E6,D7

3 E4,D1 E6 E6,D5

4 E6,D3 E8

f8 ψ7,D5 ψ8,D7

5 E6,D1 E10

f10 ψ8,D5 ψ9,D7

6 ψ8,D3 ∆ ψ10,D7

7 ψ8,D1 ψ9,D3 f14

g14 ψ10,D5 ψ11,D7

8 f16 ψ11,D5 ψ12,D7

ψ10,D3 F16 φ12,D7

9 f18 ψ12,D5 ψ13,D7

ψ10,D1 F18 φ12,D5

10
ψ11,D1 φ12,D3 f20

g20 ψ13,D5 φ14,D7

ψ12,D3 F20 ψ14,D7

11
ψ12,D1 ψ13,D3 f22

g22 ψ14,D5 ψ15,D7

φ12,D1 F22 φ14,D5

12
f24 ψ15,D5 δ16,D7

ψ14,D3 F24 ψ16,D7

φ14,D3 F24 φ16,D7

13

ψ14,D1 ψ15,D3 f26

g26 ψ16,D5 φ17,D7

g26 φ16,D5 ψ17,D7

φ14,D1 F26 δ16,D5

14

ψ15,D1 δ16,D3 f28

g28 ψ17,D5

ψ16,D3 F28

φ16,D3 F28

15

δ16,D1 ψ17,D3 f30

g30

φ16,D1 F30

ψ16,D1 F30

16
ψ17,D1 f32

g32 ψ19,D5

g32 φ19,D5

17 ψ19,D3 f34

18 ψ19,D1 f36

19 ψ21,D3 f38

φ21,D3 f 38
20 ψ21,D1 f40

22 ψ23,D1 f44

φ23,D1 f 44





CHAPTER 4

Level raising operators

We define a generalization of the operators Ul and Vl from [EZ85, §I.4] for Jacobi
forms of lattice index and study some of their properties. Given the terminology on one
hand and the connection between Jacobi forms and elliptic modular forms conjectured
in [Ajo15, §6.1.1] on the other, the level of a Jacobi form should be the level of the
lattice in its index. This is supported by results from [Sak18], which state that the
space of Jacobi newforms of weight k and scalar index 1 for Γ0(N) which is invariant
with respect to the action of a certain Atkin–Lehner operator is isomorphic to the space
of Jacobi newforms of weight k and scalar index N for Γ as modules over the Hecke
algebra (for every odd, square-free N).

4.1. The U operators

These operators arise from isometries of lattices (see end of Section 1.2). We remind
the reader that an isometry of a lattice into another is an injective linear map on the
underlying quadratic modules, which preserves the bilinear forms.

Definition 4.1. Let L1 and L2 be positive-definite, even lattices over Z such that
there exists and isometry σ of L1 into L2. Define a linear operator

U(σ) : Jk,L2
→ {φ : H × (L1 ⊗Z C)→ C : φ is holomorphic}

as
U(σ)φ(τ, z1) := φ(τ, σ(z1)).

This operator satisfies the following:

Lemma 4.2. Let σ be an isometry of L1 into L2. For every φ in Jk,L2
, the function

U(σ)φ is invariant with respect to the |k,L1
-action of JL1 .

Proof. For every A in Γ, we have

(U(σ)φ)|k,L1
A(τ, z1) =U(σ)φ

(
Aτ,

z1

cτ + d

)
(cτ + d)−ke

(
−cβ1(z1)
cτ + d

)
=φ

(
Aτ,

σ(z1)
cτ + d

)
(cτ + d)−ke

(
−cβ2 (σ(z1))

cτ + d

)
=φ|k,L2

A(τ, σ(z1)) = φ(τ, σ(z1)) = U(σ)φ(τ, z1),

since β2 ◦ σ = β1 and φ is a Jacobi form of weight k and index L2.
On the other hand, for every (λ, µ) in HL1(Z), we have

(U(σ)φ)|L1
(λ, µ)(τ, z1) =U(σ)φ(τ, z1 + λτ + µ)e(τβ1(λ) + β1(λ, z1))

=φ (τ, σ(z1) + τσ(λ) + σ(µ)) e (τβ2(σ(λ)) + β2 (σ(λ), σ(z1)))
=φ|L2

(σ(λ), σ(µ))(τ, σ(z1))
=φ(τ, σ(z1)) = U(σ)φ(τ, z1),

since β2 ◦ σ = β1 and φ is a Jacobi form of index L2. It follows that U(σ)φ is invariant
under the |k,L1

-action of JL1 , as claimed. �

101
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We would like for U(σ)φ to be a Jacobi form of weight k and index L1. If φ in Jk,L2

has a Fourier expansion of the type

φ(τ, z2) =
∑

n∈Z,r2∈L#
2

n≥β2(r2)

cφ(n, r2)e(nτ + β2(r2, z2)),

then

U(σ)φ(τ, z1) = φ(τ, σ(z1)) =
∑

n∈Z,r2∈L#
2

n≥β2(r2)

cφ(n, r2)e (nτ + β2(r2, σ(z1))) .

We need β2(r2, σ(z1)) = β1(r1, z1) for some r1 in L#
1 for every r2 in L#

2 such that cφ(n, r2) is
non-zero in order for U(σ)φ to have the correct Fourier expansion. One case in which
this condition holds is when σ is surjective and we can make the change of variable
r′ = σ−1(r) in the above equation.

Assume that σ is surjective on L#
2. Then σ : σ−1(L#

2) → L#
2 is a Z-module isomor-

phism and, furthermore,

σ−1(L#
2) = {r ∈ L1 ⊗ Q : β2(x, σ(r)) ∈ Z for all x in L2}

=⇒ for every r in σ−1(L#
2), β2(x, σ(r)) ∈ Z for all x in σ(L1)

⇐⇒ for every r in σ−1(L#
2), β1(σ−1(x), r) ∈ Z for all x in σ(L1)

⇐⇒ for every r in σ−1(L#
2), β1(x′, r) ∈ Z for all x′ in L1

=⇒ σ−1(L#
2) ⊆ L#

1.

This implies that σ−1(L#
2) is a Z-submodule of L#

1 and hence that rk(L2) ≤ rk(L1). On
the other hand, since σ is injective by definition, we also have that rk(L1) ≤ rk(L2). It
follows that rk(L1) = rk(L2), which is equivalent to the fact that σ : L1 ⊗Q→ L2 ⊗Q is
an isomorphism of Q-modules. Conversely, suppose that L1 = (L1, β1) and L2 = (L2, β2)
satisfy rk(L1) = rk(L2). Then every isometry σ of L1 into L2 is necessarily surjective as
a map between L1⊗Q and L2⊗Q. It follows that σ : L1⊗Q→ L2⊗Q is an isomorphism
of Q-modules and therefore it is invertible on L#

2. Hence, every isometry σ of L1 into
L2 is invertible on L#

2 if and only if rk(L1) = rk(L2) (if and only if L1 ⊗Q ' L2 ⊗Q). As
a consequence, the following holds:

Theorem 4.3. Let L1 = (L1, β1) and L2 = (L2, β2) be positive-definite, even lattices
over Z, of the same rank and such that there exists an isometry σ of L1 into L2. Then
U(σ) maps Jk,L2

to Jk,L1
. Furthermore, if φ in Jk,L2

has a Fourier expansion of the type

φ(τ, z2) =
∑

n∈Z,r2∈L#
2

n≥β2(r2)

cφ(n, r2)e(nτ + β2(r2, z2)),

then U(σ)φ has the following Fourier expansion:

U(σ)φ(τ, z1) =
∑

n∈Z,r1∈L#
1

n≥β1(r1),σ(r1)∈L#
2

cφ(n, σ(r1))e(nτ + β1(r1, z1)).
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Proof. Lemma 4.2 implies that U(σ)φ transforms like a Jacobi form of weight k
and index L1. In light of the discussion above regarding Fourier expansions, we have

U(σ)φ(τ, z1) =
∑

n∈Z,r2∈L#
2

n≥β2(r2)

cφ(n, r2)e(nτ + β2(r2, σ(z1)))

=
∑

n∈Z,r1∈σ
−1(L#

2)
n≥β1(r1)

cφ(n, σ(r1))e(nτ + β1(r1, z1))

=
∑

n∈Z,r1∈L#
1

n≥β1(r1),σ(r1)∈L#
2

cφ(n, σ(r1))e(nτ + β1(r1, z1)),

as claimed. �

Corollary 4.4. Let L1 = (L1, β1) and L2 = (L2, β2) be positive-definite, even lattices
over Z, of the same rank and such that there exists an isometry σ of L1 into L2. Then
U(σ) maps S k,L2

to S k,L1
.

Proof. If φ in S k,L2
and has a Fourier expansion of the type

φ(τ, z2) =
∑

n∈Z,r2∈L#
2

n>β2(r2)

cφ(n, r2)e(nτ + β2(r2, z2)),

then the above theorem implies that U(σ)φ has the following Fourier expansion:

U(σ)φ(τ, z1) =
∑

n∈Z,r1∈L#
1

σ(r1)∈L#
2,n≥β1(r1)

cφ(n, σ(r1))e(nτ + β1(r1, z1)).

If n = β1(r1) in the above equation, then n = β2(σ(r1)) and hence cφ(n, σ(r1)) = 0, since
φ is a cusp form. It follows that U(σ)φ is also a cusp form. �

We will show that the U(·) operators preserve Eisenstein series in the following
sections.

Remark 4.5. In Section 3.3, we encountered an example of an isometry of Dn (n =

1, 3, 5 and 7) into E8 which is not surjective, but preserves Jacobi forms nonetheless:

αn : Dn → E8 : (x1, . . . , xn) 7→ (0, . . . , 0, x1, . . . , xn).

This is due to the fact that, for every φ in Jk,E8 , we have

U(αn)φ(τ, z) = α∗nφ(τ, z) = φ(τ, αn(z)) =
∑

n∈Z,r∈E8,

n≥ (r,r)
2

cφ(n, r)e (nτ + (r, αn(z)))

and, for every r in E8 and every z in Dn ⊗ C, there exists an r′ in D#
n such that

(r, αn(z)) = (r′, z).

More precisely, we have

(r, αn(z)) = (αn ((r8−n+1, . . . , r8)) , αn(z)) = ((r8−n+1, . . . , r8), z)
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and (r8−n+1, . . . , r8) ∈ D#
n for every r = (r1, . . . , r8) in E8 (see Example 1.6). It follows

that

U(αn)φ(τ, z) =
∑

(r8−n+1,...,r8)∈D#
n

∑
(r1,...,r8−n)

(r1,...,r8)∈E8

∑
n∈Z

n≥
r2
1+···+r2

8
2

cφ(n, r)e (nτ + ((r8−n+1, . . . , r8), z))

=
∑

(r8−n+1,...,r8)∈D#
n,n∈Z

n≥
r2
8−n+1+···+r2

8
2

∑
(r1,...,r8−n)

(r1,...,r8)∈E8,n≥
r2
1+···+r2

8
2

cφ(n, r)e (nτ + ((r8−n+1, . . . , r8), z))

=
∑

n∈Z,s∈D#
n

n≥ (s,s)
2

cU(αn)φ(n, s)e(nτ + (s, z)),

where
cU(αn)φ(n, s) =

∑
(x1,...,x8−n)

(s1,...,sn,x1,...,x8−n)∈E8

n−
s2
1+···+s2

n
2 ≥

x2
1+···+x2

8−n
2

cφ (n, (s1, . . . , sn, x1, . . . , x8−n)) .

The operators U(·) raise the level of the index of the Jacobi form that they are
applied to:

Lemma 4.6. If L1 = (L1, β1) and L2 = (L2, β2) are positive-definite, even lattices over
Z, of the same rank and such that σ is an isometry of L1 into L2, then lev(L2) | lev(L1).

Proof. By definition,

lev(L2) = min{N ∈ N : Nβ2(r) ∈ Z for all r in L#
2}

= min{N ∈ N : Nβ1(σ−1(r)) ∈ Z for all r in L#
2}.

On the other hand, lev(L1)β1(σ−1(r)) ∈ Z for all r in L#
2. Hence, lev(L2) | lev(L1). �

Example 4.7. The operator Ul defined in [EZ85] arises from the following isometry
of the lattice (Z, (x, y) 7→ ml2xy) into the lattice (Z, (x, y) 7→ mxy):

σl : (Q, (x, y) 7→ ml2xy)→ (Q, (x, y) 7→ mxy), σl(x) = lx.

It raises the level by a factor of l2.

Fix any two bases for L1 ⊗ Q and L2 ⊗ Q, let G1 and G2 denote the Gram matrices
of L1 and L2, respectively, and let M denote the matrix of σ with respect to these bases.
Then

β2 ◦ σ = β1 ⇐⇒ MtG2M = G1 =⇒ det(L1) = det(L2) det(M)2.

In other words, we have shown the following:

Lemma 4.8. If L1 = (L1, β1) and L2 = (L2, β2) are positive-definite, even lattices over
Z and σ is an isometry of L1 into L2, then det(L1) = det(σ)2 det(L2).

We remind the reader that lev(L) and det(L) have the same set of prime divisors for
every fixed positive-definite, even lattice L. It follows from this fact and from Lemmas
4.6 and 4.8 that, when L1⊗Q ' L2⊗Q, the set of prime divisors of lev(L1)

lev(L2) consists of the
prime divisors of det(σ) which are not divisors of lev(L2), plus possibly some primes
dividing lev(L2). Write

lev(L1) | δ det(L1) | lev(L1)rk(L1),
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where

δ :=

2, if rk(L1) ≡ 1 mod 2 and
1, otherwise.

Then, writing lev(L1) = lev(L2) lev(L1)
lev(L2) in the above, we obtain that

d
2vp(det(σ))

rk(L2)
e ≤ vp

(
lev(L1)
lev(L2)

)
≤ 2vp(det(σ))

for primes dividing det(σ) which do not divide lev(L2). For primes dividing lev(L2), we
obtain the bounds

d
1 + vp(det(L2)) + 2vp(det(σ))

rk(L2)
e − vp(lev(L2)) ≤ vp

(
lev(L1)
lev(L2)

)
≤ 1 + vp(det(L2)) − vp(lev(L2)) + 2vp(det(σ))

if p = 2 and rk(L2) ≡ 1 mod 2 and

d
vp(det(L2)) + 2vp(det(σ))

rk(L2)
e − vp(lev(L2)) ≤ vp

(
lev(L1)
lev(L2)

)
≤ vp(det(L2)) − vp(lev(L2)) + 2vp(det(σ))

otherwise. When rk(L1) = rk(L2) = 1, the above bounds imply that vp

(
lev(L1)
lev(L2)

)
=

2vp(det(σ)) for all primes p, in other words that lev(L1) = det(σ)2 lev(L2). However,
when rk(L1) = rk(L2) > 1, it is possible that lev(L1) differs from lev(L2) by a factor
which is not a square, as illustrated by the following example:

Example 4.9. Consider the positive-definite, even lattices

L1 =
(
Z2,

(( x
y
)
, ( s

t )
)
7→ 8xs + 16yt

)
and

L2 =
(
Z2,

(( x
y
)
, ( s

t )
)
7→ 8xs + 4yt

)
.

There exists an isometry σ2y of L1 into L2, mapping
( x

y
)

to
( x

2y
)
. It gives rise to the linear

operator U(σ2y) mapping Jk,L2
to Jk,L1

. Using Sage, one can check that lev(L1) = 32 and
lev(L2) = 16, which implies that U(σ2y) raises the level of the index of Jacobi forms in
Jk,L2

by a factor of two.
If, on the other hand, we consider the isometry σ2x of L1 into the lattice

L3 =
(
Z2,

(( x
y
)
, ( s

t )
)
7→ 2xs + 16yt

)
,

mapping
( x

y
)

to
(

2x
y

)
, then the linear operator U(σ2x) maps Jk,L3

to Jk,L1
. Since lev(L1) =

lev(L3) = 32, it follows U(σ2x) leaves level of the index of Jacobi forms in Jk,L3
un-

changed.

Given a positive-definite, even lattice L, we want to classify lattices L′ of the same
rank as L such that there exists an isometry σ of L into L′, since every Jacobi form
in Jk,L′ gives rise to an “oldform” in Jk,L. For example, when rk(L) = rk(L′) = 1, we
have L = Lm and L′ = Ln for some m and n in N. Then the matrix of every isometry
σ of L into L′ is an integer d and, since β′ ◦ σ(x) = β(x) for every x in Z, we obtain
that nd2 = m. Hence, there is a one-to-one correspondence between lattices L such
that there exists some isometry σ of L into L′ and square divisors of m (this has been
established in [EZ85]). Note that σ is unique for each L′, up to multiplication by ±1
(which is equivalent to a change of basis in L or L′).

Suppose that L = (L, β) and L′ = (L′, β′) are positive-definite, even lattices such
that there exists an isometry σ of L into L′. Then (σ(L), β′) is a sublattice of L′ and
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σ : L→ (σ(L), β) is an isomorphism of lattices. Conversely, every sublattice (M, β′) of
L′ gives rise to an isometry of (M, β′) into L′ given by inclusion of (M, β′) in L′. Hence,
the problem of classifying lattices L′ of the same rank as L such that there exists an
isometry σ of L into L′ is equivalent to the problem of classifying overlattices of L.

Proposition 4.10 ([Nik80, Prop 1.4.1]). Let L = (L, β) be a positive-definite, even
lattice over Z. Then there is a one-to-one correspondence between overlattices of L and
isotropic subgroups of DL. For every such overlattice L′ = (L′, β), the correspondence
is given by

L′ 7→ L′/L.

Since we are interested in the reverse correspondence, we include the proof:

Proof. The following inclusions hold:

L ↪→ L′ ↪→ L′# ↪→ L#.

Since L has finite index in L′, the group L′/L is indeed an isotropic subgroup of L#/L.
Conversely, every isotropic subgroup I of L#/L gives rise to a positive-definite lattice
LI = (LI , β) containing L, where LI is the pre-image of I under the quotient map L →
L#/L. Since β(I, L) ∈ Z and

β(x, y) = β(x + y) − β(x) − β(y) ∈ Z

for every x and y in I, it follows that LI is even. �

If ι : L1
∼
−→ L2 is an isomorphism of lattices, then the map

ι∗ : Jk,L2
→ Jk,L1

, φ 7→ ι∗(φ),

defined by

(4.1) ι∗(φ)(τ,w) = φ(τ, ι(w)),

is an isomorphism of spaces of Jacobi forms. If L′ is an overlattie of L and ι : L′
∼
−→ L′′

is an isomorphism of lattices, then it is easy to show that ι ◦ σ : L→ L′′ is an isometry
and that U(σ) ◦ ι∗(φ) = U(ι ◦ σ)φ for every φ in Jk,L′′ . Two overlattices L′ and L′′ of
L are said to be isomorphic if there exists an automorphism of L which extends to an
isomorphism between L′ and L′′. We remind the reader that, given any positive-definite,
even lattice L over Z, every automorphism α of L extends to an automorphism α̃ of DL.

Proposition 4.11 ([Nik80, Prop 1.4.2]). Let L be a positive-definite, even lattice
over Z and let L′ and L′′ be two overlattices of L. Then L′ ' L′′ if and only if there
exists an automorphism α of L such that

α(L′/L) = L′′/L.

We remind the reader that IL denotes the set of isotropic subgroups of DL. The
orthogonal group of L acts on IL from the right via

(α, I) 7→ α̃(I).

Let O(L)\IL denote the quotient of this action, i.e. the set

{[I] : I ∈ IL, [I] = [J] ⇐⇒ ∃ α in O(L) such that J = α̃(I)}.

For every element I in IL, let ιI denote the inclusion map between L and LI and set
U(I) := U(ιI).
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Definition 4.12 (Oldforms with respect to isometries). Let L be a positive-definite,
even lattice over Z. For every non-trivial isotropic subgroup I of DL, every element in
Jk,LI

is called an oldform in Jk,L. Define the space of oldfroms of weight k and index L
with respect to isometries as

Jold, iso
k,L :=

∑
I∈O(L)\IL

I,{0}

U(I)Jk,LI
.

Example 4.13. In the case of the scalar lattice Lm = (Z, (x, y) 7→ 2mxy) (m ∈ N),
the isotropy set of Lm is Iso(DLm

) = 1
bZ/Z, where m = ab2 with a square-free. Since

Iso(DLm
) is cyclic, all its subgroups are cyclic by the Fundamental Theorem of Cyclic

Groups and they are in one to one correspondence with divisors of b. In other words,

ILm
=

{
〈s〉 : s ∈ Iso(DLm

)
}

=

{
〈
1
d
〉 : d | b

}
Note that L

〈s〉 =
(

1
Ns
Z, (x, y) 7→ 2mxy

)
for every s in Iso(DLm

) and the latter is isomorphic

to the lattice L m
N2

s

=
(
Z, (x, y) 7→ 2 m

N2
s
xy

)
. Furthermore, we have O(Lm) = {±Id} and

hence O(L)\ILm
= ILm

. Thus, we recover the usual notion of oldforms with respect to
the operators Ul from [EZ85].

Example 4.14. When n is odd, the root lattice Dn is the maximal even lattice in
the odd unimodular lattice Zn. In other words, it has no even overlattices. Indeed, we
remind the reader that

D#
n/Dn =

{
0, en,

e1 + · · · + en

2
,

e1 + · · · + en−1 − en

2

}
,

where {ei}i denotes the standard basis of Zn, and hence the only isotropic element in
D#

n/Dn is the trivial one. It follows that there are no oldforms with respect to isometries
in the spaces Jk,Dn , for every odd n and k > n

2 .

4.1.1. Connection to vector-valued modular forms. A partial newform theory
for vector-valued modular forms with respect to the dual Weil representaiton was de-
veloped in [Bru14, §3]. In this subsection, we present some of the results from there
and discuss their connection with the oldform theory developed in the previous para-
graphs. Let L = (L, β) be a positive-definite, even lattice over Z and let M = (M, β) be
a sublattice of L of finite index. We have seen that following inclusions hold:

M ↪→ L ↪→ L# ↪→ M#.

Furthermore, the quotient group H := L/M is an isotropic subgroup of DM and its
orthogonal complement with respect to β is H⊥ = L#/M. There is a natural isomorphism
(H⊥/H, β mod Z) ' DL and |M#/M| = |L#/L||H|2.

Theorem 4.15 ([Sch15, Thm 4.1 ]). Let

F(τ) =
∑

x∈L#/L

Fx(τ)ex

be an element of Mk(ρ∗L). Then the function

FM(τ) :=
∑

x∈L#/M

Fx+L/M(τ)ex

is an element of Mk(ρ∗M).
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While the author only treats the case where rk(L) is even in [Sch15], the proof
carries through in general. We include it here:

Proof. It suffices to check that FM is ρ∗M-invariant under the |k-action of T̃ and S̃ .
Since F ∈ Mk(ρ∗L), the following holds for every Ã in Γ̃:

Fx(Aτ) = w(τ)2k
∑

y∈L#/L

ρL(Ã)x,yFy(τ).

Since

ρM(T̃ )ex = ρL(T̃ )ex = e(β(x))ex

for every x in L#/M, we have

FM |kT̃ (τ) =
∑

x∈L#/M

Fx+L/M(Tτ)ex =
∑

x∈L#/M

e(−β(x + L/M))Fx+L/M(τ)ex = ρ∗M(T̃ )FM(τ).

Furthermore, write FM =
∑

y∈M#/M FM,yey, with

FM,y =

Fy+L/M, if y ∈ L#/M and
0, otherwise.

Then

FM |kS̃ (τ) =τ−k
∑

y∈L#/M

Fy+L/M(S τ)ey = τ−k
∑

y∈M#/M

FM,y(S τ)ey.

If y ∈ L#/M, then

τ−kFM,y(S τ) =τ−kFy+L/M(S τ) =
∑

x∈L#/L

i−
rk(L)

2√
|L#/L|

e (−β(x, y + L/M)) Fx(τ)

=
∑

x∈L#/L

i−
rk(L)

2√
|M#/M|

|L/M|e (−β(x, y)) Fx(τ)

=
∑

x∈L#/M

i−
rk(L)

2√
|M#/M|

e (−β(x, y)) Fx(τ)

=
∑

x∈M#/M

i−
rk(L)

2√
|M#/M|

e (−β(x, y)) FM,x(τ)

If y < L#/M, then τ−kFM,y(S τ) = 0 and

∑
x∈M#/M

i−
rk(L)

2√
|M#/M|

e (−β(x, y)) FM,x(τ) =
∑

x∈L#/M

i−
rk(L)

2√
|M#/M|

e (−β(x, y)) FM,x

=
∑

x∈L#/L

∑
µ∈L/M

i−
rk(L)

2√
|M#/M|

e (−β(x + µ, y)) FM,x+µ(τ)

=
∑

x∈L#/L

i−
rk(L)

2√
|M#/M|

e (−β(x, y)) Fx+L/M(τ)
∑
µ∈L/M

e(−β(µ, y)) = 0,
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since the inner sum in the last line is equal to zero. It follows that

FM |kS̃ (τ) =
∑

y∈M#/M

 ∑
x∈M#/M

i−
rk(L)

2√
|M#/M|

e (−β(x, y)) FM,x(τ)

 ey
=

∑
x∈L#/M

Fx+L/M(τ)
∑

y∈M#/M

i−
rk(L)

2√
|M#/M|

e (−β(x, y)) ey = ρ∗M(S̃ )FM(τ)

and the proof is complete. �

Given a positive-definite, even lattice M = (M, β), elements of Mk(ρ∗M) which arise
in this way from overlattices of M are called oldforms. The converse result is the fol-
lowing:

Proposition 4.16 ([Bru14, Prop 3.2]). Let M be a sublattice of L of finite index and
let

F(τ) =
∑

x∈M#/M

Fx(τ)ex

be an element of Mk(ρ∗M). Then the function

FL(τ) :=
∑

x∈L#/M

Fx(τ)ex+L/M

is an element of Mk(ρ∗L).

Since an explicit proof is not given in [Bru14], we include it here:

Proof. The fact that
ρL(T̃ )ex+L/M = e(β(x))ex+L/M

for every x in L#/L implies that

FL|kT̃ (τ) =
∑

x∈L#/M

Fx(Tτ)ex+L/M =
∑

x∈L#/M

e(−β(x))Fx(τ)ex+L/M = ρ∗L(T̃ )FL(τ).

Furthermore,

FL|kS̃ (τ) =τ−k
∑

y∈L#/M

Fy(S τ)ey+L/M =

=
∑

y∈L#/M

∑
x∈M#/M

i−
rk(L)

2√
|M#/M|

e (−β(x, y)) Fx(τ)ey+L/M

=
∑

x∈M#/M

Fx(τ)
i−

rk(L)
2√
|L#/L|

1
|L/M|

∑
y∈L#/L

∑
µ∈L/M

e (−β(x, y + µ)) ey

=
∑

x∈M#/M

Fx(τ)
∑

y∈L#/L

i−
rk(L)

2√
|L#/L|

e(−β(x, y))ey
1
|L/M|

∑
µ∈L/M

e(−β(x, µ))

=
∑

x∈L#/M

Fx(τ)
∑

y∈L#/L

i−
rk(L)

2√
|L#/L|

e (−β(x + L/M, y)) ey = ρ∗L(S̃ )FL(τ). �

Proposition 4.17 ([Bru14, Prop 3.3]). Let

F(τ) =
∑

x∈M#/M

Fx(τ)ex
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be an element of Mk(ρ∗M) such that Fx = 0 for x not in L#/M. Then Fx+y = Fx for all y
in L/M and

F(τ) =
1
|L/M|

(FL)M.

In other words, this is a sufficient criterion for an element of Mk(ρ∗M) to be an oldform.

We remind the reader of the isomorphism ϕ between Jacobi forms of lattice index
and vector-valued modular forms for the dual Weil representation from Theorem 1.39.
The connection between this newform theory for vector-valued modular forms for the
dual of the Weil representation and the newform theory developed in the previous sub-
section for Jacobi forms of lattice index is the the following:

Lemma 4.18. Let L = (L, β) be a positive-definite, even lattice over Z and let L′ =

(L′, β) be an overlattice of L. For every Jacobi form φ in Jk,L′ , the following holds:

ϕ
(
U(L′/L)φ

)
(τ) = ϕ(φ)L(τ).

Proof. Since ϕ : Jk,L′
∼
−→ Mk− rk(L)

2
(ρ∗L′), it suffices to check that

U(L′/L)φ(τ, z) = ϕ−1
(
ϕ(φ)L

)
(τ, z).

The Fourier expansion of the left-hand side is given in Theorem 4.3:

U(L′/L)φ(τ, z) =
∑

r∈L′#,D∈Q≤0
D≡β(r) mod Z

Cφ(D, r)e ((β(r) − D)τ + β(r, z)) .

Suppose that φ has the following theta expansion:

φ(τ, z) =
∑

x∈L′#/L′

hφ,x(τ)ϑL′,x(τ, z).

Then
ϕ(φ)(τ) =

∑
x∈L′#/L′

hφ,x(τ)ex

and
ϕ(φ)L(τ) =

∑
x∈L′#/L

hφ,x+L′/L(τ)ex.

It follows that
ϕ−1

(
ϕ(φ)L

)
(τ, z) =

∑
x∈L′#/L

hφ,x+L′/L(τ)ϑL,x(τ, z),

in other words that

ϕ−1
(
ϕ(φ)L

)
(τ, z) =

∑
x∈L′#,D∈Q≤0

D≡β′(x) mod Z

Cφ(D, x)e (β(x) − D)τ + β(x, z))

and equality holds. �

Proposition 4.17 gives us a criterion for when a Jacobi form in Jk,L is an oldform
with respect to isometries:

Lemma 4.19. Let L be a positive-definite, even lattice over Z. If

φ(τ, z) =
∑

(D,r)∈supp(L)

Cφ(D, r)e((β(r) − D)τ + β(r, z))

is an element of Jk,L such that Cφ(D, r) = 0 for all r not in L′# for some overlattice L′ of
L, then φ is an oldform coming from Jk,L′ .
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Proof. Let

φ(τ, z) =
∑

(D,r′)∈supp(L)
r′∈L′#

Cφ(D, r′)e((β(r′) − D)τ + β(r′, z))

be the Fourier expansion of φ and let

φ(τ, z) =
∑

x∈L#/L

hφ,x(τ)ϑL,x(τ, z)

be its theta expansion. It follows that hφ,x = 0 for x not in L′#/L. First, we show that
Cφ(D, x) = Cφ(D, r + x) for every r in L′. We remind the reader that

hφ,x(Aτ) = w(τ)2k
∑

y∈L#/L

ρL(Ã)x,yhφ,y(τ)

for every Ã in Γ̃ and therefore

hφ,x(S τ) = τk
∑

y∈L#/L

i−
rk(L)

2√
L#/L

e(−β(x, y))hφ,y(τ) = τk
∑

y∈L′#/L

i−
rk(L)

2√
L#/L

e(−β(x, y))hφ,y(τ).

Hence, for every r in L′, we have

hφ,r+x(S τ) =τk
∑

y∈L′#/L

i−
rk(L)

2√
L#/L

e(−β(r + x, y))hφ,y(τ)

=τk
∑

y∈L′#/L

i−
rk(L)

2√
L#/L

e(−β(x, y))hφ,y(τ) = hφ,x(S τ).

It follows that hφ,r+x = hφ,x for every x in L#/L′ and every r in L′, which is equivalent to
the fact that Cφ(D, x) = Cφ(D, r + x) for every r in L′.

Define

φL′(τ, z) :=
∑

(D,x)∈supp(L′)

∑
r∈L′/L

Cφ(D, r + x)e((β′(x) − D)τ + β′(x, z)).

Then

φL′(τ, z) = ϕ−1
(
ϕ(φ)L′

)
(τ, z)

and it follows from Proposition 4.16 that φL′ ∈ Jk,L′ . But

φL′(τ, z) = |L′/L|
∑

(D,x)∈supp(L′)

Cφ(D, x)e((β′(x) − D)τ + β′(x, z)),

since Cφ(D, r + x) = Cφ(D, x) for every r in L′, and therefore

U(L′/L)φL′(τ, z) = |L′/L|
∑

(D,r′)∈supp(L)
r′∈L′#

Cφ(D, r′)e((β(r′) − D)τ + β(r′, z)).

Thus,

U(L′/L)φL′(τ, z) = |L′/L|φ(τ, z)

and in particular φ is an oldform coming from Jk,L′ . �
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4.1.2. Theta series and level raising operators. We study the action of the oper-
ators U(·) on theta series.

Lemma 4.20. Let L = (L, β) be a positive-definite, even lattice over Z and let L′ =

(L′, β) be an overlattice of L. For every r in DL′ , the following holds:

U(L′/L)ϑL′,r =
∑

s∈L′#/L
s≡r mod L′

ϑL,s.

Proof. We have

ϑL′,r(τ, z) =
∑
x∈L′#

x≡r mod L′

e (β(x)τ + β(x, z))

by definition. Every x in L′# which is congruent to r modulo L′ can be written as x = r+t
for some t in L′ and we can write t = λ + µ, with λ in L and µ in L′/L. It follows that
x = (r + µ) + λ and x ∈ L# such that x ≡ r + µ mod L and r + µ ∈ L′#/L such that
r +µ ≡ r mod L′. Conversely, every x in L′# which is equivalent to s modulo L for some
s in L′#/L which is equivalent to r modulo L′ can be written as x = s +λ = r +µ+λ, for
some λ in L and some µ in L′, and therefore x ∈ L′# and x ≡ r mod L′. It follows that

U(L′/L)ϑL′,r(τ, z) =
∑

s∈L′#/L
s≡r mod L′

∑
x∈L#

x≡s mod L

e (β(x)τ + β(x, z)) =
∑

s∈L′#/L
s≡r mod L′

ϑL,s,

as claimed. �

Let I be an isotropic subgroup of DL. Since U(I) is an inclusion map, we have
shown that

ϑLI ,r =
∑

s∈L#
I /L

s≡r mod LI

ϑL,s

for every r in DLI
. We remind the reader of definition (1.17) of the Γ̃-module ΘL. Define

the following averaging operator on ΘL:

Tr LI
L : θ 7→

1
|LI/L|2

∑
(λ,µ)∈(LI/L)2

θ|L(λ, µ).

Lemma 4.20 implies that ΘLI
is a Γ̃-submodule of ΘL. Let Θ⊥LI

denote the orthogonal
complement of ΘLI

inside ΘL with respect to the scalar product (1.22). The following
holds:

Proposition 4.21. For every θ in ΘL, we have

Tr LI
L θ = 0 ⇐⇒ θ ∈ Θ⊥LI

.
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Proof. First, note that Tr LI
L is well-defined. For every r in L#/L and every pair (λ, µ)

in (L#)2, we have

ϑL,r|L(λ, µ)(τ, z) =e (τβ(λ) + β(λ, z))ϑL,r(τ, z + λτ + µ)

=e (τβ(λ) + β(λ, z))
∑
x∈L#

x≡r mod L

e (τβ(x) + β(x, z + λτ + µ))

=
∑
x∈L#

x≡r mod L

e (τ(β(x) + β(λ) + β(x, λ)) + β(x + λ, z) + β(x, µ))

=e(β(r, µ))
∑
y∈L#

y≡r+λ mod L

e (τβ(y) + β(y, z))

=e(β(r, µ))ϑL,r+λ(τ, z).

Write θ =
∑

r∈L#/L crϑL,r, with cr in C for all r in L#/L. It follows that, if (λ′, µ′) =

(λ, µ) + (δ, γ) for some (δ, γ) in L2, then

θ|L(λ′, µ′)(τ, z) =
∑

r∈L#/L

cre(β(r, µ′))ϑL,r+λ′(τ, z) =
∑

r∈L#/L

cre(β(r, µ))ϑL,r+λ(τ, z)

=θ|L(λ, µ)(τ, z)

and therefore Tr LI
L is independent of the choice of coset representatives.

Furthermore, we have

Tr LI
L θ(τ, z) =

1
|LI/L|2

∑
r∈L#/L

∑
(λ,µ)∈(LI/L)2

cre(β(r, µ))ϑL,r+λ(τ, z)

=
1

|LI/L|2
∑

s∈L#/L

∑
(λ,µ)∈(LI/L)2

cs−λe(β(s, µ))ϑL,s(τ, z).

Thus, for every θ1 =
∑

r∈L#/L crϑL,r and θ2 =
∑

r∈L#/L drϑL,r in ΘL,

[Tr LI
L θ1, θ2] =

1
|LI/L|2

∑
s∈L#/L

∑
(λ,µ)∈(LI/L)2

cs−λe(β(s, µ))ds

=
1

|LI/L|2
∑

r∈L#/L

∑
(δ,γ)∈(LI/L)2

cre(β(r, γ))dr−δ

=[θ1,Tr LI
L θ2],

where we have made the substitutions −λ = δ, s = r − δ and µ = −γ. It follows that
Tr LI

L is Hermitian with respect to the scalar product (1.22).
For every t in DLI

, Lemma 4.20 implies that

Tr LI
L ϑLI ,t =

1
|LI/L|2

∑
(λ,µ)∈(LI/L)2

∑
s∈L#

I /L
s≡t mod LI

e(β(s, µ))ϑL,s+λ(τ, z) =
∑
λ∈LI/L

∑
x∈L#

I /L
x≡t mod LI

ϑL,x(τ, z)

=ϑLI ,t,

where we have used the fact that e(β(s, µ)) ∈ Z for every s in L#
I and every µ in LI and

we have made the substitution s + λ = x. In other words, we have ΘLI
⊆ Tr LI

L ΘL. On
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the other hand, for every r in DL we have

Tr LI
L ϑL,r =

1
|LI/L|2

∑
λ∈LI/L

ϑL,r+λ(τ, z)
∑
µ∈LI/L

e(β(r, µ))

and note that the inner sum is equal to zero unless r ∈ L#
I . For every r in L#

I , we obtain
that

Tr LI
L ϑL,r =

1
|LI/L|

∑
s∈L#

I /L
s≡r mod LI

ϑL,s(τ, z) = U(I)ϑLI ,r(τ, z)

and thus Tr LI
L ΘL ⊆ ΘLI

. It follows that ΘLI
= Tr LI

L ΘL.

To prove the Proposition, assume that θ in ΘL satisfies Tr LI
L θ = 0. Then

[θ,ΘLI
] = [θ,Tr LI

L ΘL] = [Tr LI
L θ,ΘL] = 0

and therefore θ ∈ Θ⊥LI
. Conversely, assume that θ ∈ Θ⊥LI

. Then

0 = [θ,ΘLI
] = [θ,Tr LI

L ΘL] = [Tr LI
L θ,ΘL]

and therefore Tr LI
L θ = 0, since [·, ·] is non-degenerate. �

Lemma 4.22. The operator Tr LI
L is a projection map from ΘL to ΘLI

.

Proof. We have seen in the proof of the previous proposition that ΘLI
= Tr LI

L ΘL.

Thus, we only have to check that Tr LI
L ◦ Tr LI

L = Tr LI
L . For every r in DL, we have

Tr LI
L ◦ Tr LI

L ϑL,r(τ, z) =
1

|LI/L|2
∑

(λ,µ)∈(LI/L)2

e(β(r, µ))Tr LI
L ϑL,r+λ(τ, z)

=
1

|LI/L|4
∑

(λ,µ)∈(LI/L)2

∑
(δ,γ)∈(LI/L)2

e(β(r, µ) + β(r + λ, γ))ϑL,r+λ+δ(τ, z)

=
1

|LI/L|4
∑

(x,y)∈(LI/L)2

|LI/L|2e(β(r, y))ϑL,r+x(τ, z)

=Tr LI
L ϑL,r(τ, z),

where we have used the fact that ϑL,r|L(λ, µ) = e(β(r, µ))ϑL,r+λ for every (λ, µ) in (L#)2

and that addition by δ and by γ are automorphisms of LI/L for every fixed δ and γ in
LI/L. �

Set
Θold

L :=
∑
I∈IL
I,{0}

ΘLI

and Θnew
L :=

(
Θold

L

)⊥
, where the orthogonal complement is taken with respect to the

scalar product [·, ·].

Lemma 4.23. The space Θnew
L is a Γ̃-submodule of ΘL and, furthermore,

(4.2) ΘL =
∑
I∈IL

Θnew
LI
.
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Proof. The space Θnew
L is a Γ̃-submodule of ΘL, since ΘLI

is a Γ̃-submodule of ΘL

for every I in IL and the Γ̃-action on ΘL is unitary with respect to [·, ·] (the latter is
essentially a re-statement of the fact that the Weil representation is unitary with respect
to the scalar product on C[L#/L]).

The statement regarding the decomposition of ΘL can be proved by induction on the
number of isotropic subgroups of DL. If DL has no non-trivial isotopic subgroups, then
ΘL = Θnew

L . For the induction step, suppose that

ΘLI
=

∑
J∈ILI

Θnew
LI+J

for every non-trivial I in IL. Then

ΘLI
= Θnew

L ⊕
∑
I∈IL
I,{0}

∑
J∈ILI

Θnew
LI+J

=
∑
I∈IL

Θnew
LI
. �

Proposition 4.24. Suppose that L is a positive-definite, even lattice over Z such that
β(I, J) = 0 for every isotropic subgroups I and J of DL. Then

ΘL =
⊕
I∈IL

Θnew
LI
,

where the direct sum decomposition is taken with respect to the scalar product (1.22).

Proof. Note that one instance in which β(I, J) = 0 for every isotropic subgroups
I and J of DL is when Iso(DL) is a cyclic group (as is the case for the scalar lattices
Lm). In view of the previous lemma, it suffices to prove that the summands in (4.2) are
pairwise orthogonal. Let I and J be two elements of IL such that I , J. For every r in
DLJ

and every pair (λ, µ) in L2
I , we have

ϑLJ ,r|L(λ, µ)(τ, z) =e (τβ(λ) + β(λ, z))
∑
x∈L#

J
x≡r mod LJ

e (τβ(x) + β(x, z + λτ + µ))

=e(β(r, µ))
∑
y∈L#

J
y≡r+λ mod LJ

e (τβ(y) + β(y, z))

=e(β(r, µ))ϑLJ ,r+λ(τ, z),

using the fact that β(I, J) = 0. Hence,

Tr LI
L ϑLJ ,r(τ, z) =

1
|LI/L|2

∑
(λ,µ)∈(LI/L)2

e(β(r, µ))ϑLJ ,r+λ(τ, z)

=
1

|LI/LI∩J |
2 |LI∩J/L|2

∑
(δ,γ)∈(LI/LI∩J)2

∑
(s,t)∈(LI∩J/L)2

e(β(r, γ + t))ϑLJ ,r+δ+s(τ, z)

=
1

|LI/LI∩J |
2

∑
(δ,γ)∈(LI/LI∩J)2

e(β(r, γ))ϑLJ ,r+δ(τ, z).

The quotient I′ := I/I ∩ J is a non-trivial isotropic subgroup of DLJ
and we have

LI/LI∩J = (LI + J/I ∩ J)/(LI∩J + J/I ∩ J) = LJ+I′/LJ . It follows that

Tr LI
L ϑLJ ,r(τ, z) = TrLJ+I′

LJ
ϑLJ ,r(τ, z).

Proposition 4.21 implies that the latter is equal to zero if ϑLJ ,r ∈ Θnew
LJ

and, implicitly,
that Θnew

LJ
⊆ Θ⊥LI

. Since Θ⊥LI
⊆ (Θnew

LI
)⊥, the proof is complete. �
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4.2. The V operators

Let L = (L, β) be a positive-definite, even lattice over Z. For every l in N, consider
the linear operator U(lL/L) : Jk,L → Jk,(lL,β) arising from the following inclusion of
lattices:

(lL, β) ↪→ L.
The map ι : (L, l2β) → (lL, β) defined by x 7→ lx is an isomorphism of lattices. Define
a linear operator U(l) on the space Jk,L as the composition of U(lL/L) with the map ι∗
defined in (4.1), in other words

U(l)φ(τ, z) := ι∗ (U(lL/L)φ) (τ, z) = φ(τ, lz).

Equivalently, the operator U(l) is the operator U(σl) corresponding to the isometry

σl : (L, l2β) 7→ (L, β), , σl(x) = lx.

Hence, it maps Jk,L to Jk,L(l2) and, if φ in Jk,L has a Fourier expansion of the type

φ(τ, z) =
∑

n∈Z,r∈L#

n≥β(r)

cφ(n, r)e(nτ + β(r, z)),

then Theorem 4.3 implies that U(l)φ has the following Fourier expansion:

U(l)φ(τ, z) =
∑

n∈Z,r′∈L(l2)#

n≥l2β(r′)

cφ(n, lr′)e(nτ + l2β(r′, z)),

with the convention that cφ(n, lr′) = 0 unless r′ is an l-th multiple of another element of
L(l2)#. The level of L(l2) is equal to l2 lev(L) and that the determinant of L(l2) is equal
to l2rk(L) det(L).

Extend the definition of U(l) to l in R≥0. We remind the reader of definition (3.3) of
the set Γ\M(l) and that the |k,L-action of a matrices in M+

2 (Z) on holomorphic, complex-
valued functions defined on H × (L ⊗ C) is defined in (3.4).

Definition 4.25. For every l in N, define a linear operator V(l) on the space Jk,L as

V(l)φ(τ, z) := l
k
2−1

∑
M∈Γ\M(l)

U(
√

l)
(
φ|k,LM

)
(τ, z).

This definition was given in [EZ85] for Jacobi forms of scalar index. We remind
the reader that the set

∆l =
{
A =

( a b
0 d

)
: a, b, d ∈ Z, a, d ≥ 0, ad = l and 0 ≤ b < d

}
is as a set of coset representatives of Γ\M(l). If M =

( a b
0 d

)
∈ ∆l, then φ|k,LM(τ, z)

contains a factor of φ
(
Mτ,

√
lz

d

)
and this function transforms like a Jacobi form with

respect to translations in the sublattice
√

l(τL⊕L) in the abelian variable. However, this
sublattice is incommensurable with τL ⊕ L. Applying U(

√
l) restores integrality and

brings us closer to obtaining a function which is invariant with respect to translations in
τL⊕ L in the abelian variable. In other words, the operators V(·) are “precursors” of the
usual Hecke operators. The following holds:

Theorem 4.26. For every l in N, the operator V(l) is independent of the choice of
coset representatives of the action of Γ\M2(Z). It maps Jk,L to Jk,L(l). Furthermore, if φ
in Jk,L has a Fourier expansion of the type

φ(τ, z) =
∑

n∈Z,r∈L#

n≥β(r)

cφ(n, r)e(nτ + β(r, z)),
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then V(l)φ has the following Fourier expansion:

(4.3) V(l)φ(τ, z) =
∑

n∈Z,r′∈L(l)#

n≥lβ(r′)

∑
a|(n,l)

r′
a ∈L(l)#

ak−1cφ

(
nl
a2 ,

lr′

a

)
e(nτ + lβ(r′, z)).

Proof. Fix a coset [M] in Γ\M(l) and assume that [M∗] is a different choice of
representative for the same coset. Then M∗ = γM for some γ in Γ and hence

φ|k,LM∗(τ, z) = φ|k,L(γM)(τ, z) = φ|k,Lγ|k,LM(τ, z) = φ|k,LM(τ, z),

since φ ∈ Jk,L. It follows that V(l) is independent of the choice of coset representatives.
To show that V(l)φ is invariant under the |k,L(l)-action of Γ, let {Mi}i be a set of

coset representatives of Γ\M(l). For every A in Γ, [CS17, Lemma 6.3.1] implies that
MiA = AiMσ(i) for some permutation σ on the set of indices {i} and some Ai in Γ. It
follows that∑

i

φ|k,LMi|k,LA(τ, z) =
∑

i

φ|k,L(MiA)(τ, z) =
∑

i

φ|k,L(AiMσ(i))(τ, z)

=
∑

i

φ|k,LAi|k,LMσ(i)(τ, z) =
∑

j

φ|k,LM j(τ, z),

since φ ∈ Jk,L and where j = σ(i). Set

ψ(τ, z) := l
k
2−1

∑
Γ\M(l)

φ|k,LM(τ, z)

for simplicity. Then

V(l)φ|k,L(l)A(τ, z) =(U(
√

l)ψ)|k,L(l)A(τ, z) = U(
√

l)ψ
(
Aτ,

z
cτ + d

)
(cτ + d)−ke

(
−clβ(z)
cτ + d

)
=ψ

Aτ,

√
lz

cτ + d

 (cτ + d)−ke
−cβ(

√
lz)

cτ + d

 = ψ|k,LA(τ,
√

lz) = ψ(τ,
√

lz)

=U(
√

l)ψ(τ, z) = V(l)φ.

To check for invariance under the action of HL(l)(Z), take {Mi}i = ∆l. For each Mi =( a b
0 d

)
in ∆l, set

δi(τ, z) :=
(

d
√

l

)k

U(
√

l)(φ|k,LMi)(τ, z) = φ

(
aτ + b

d
, az

)
for simplicity. We have

δi|L(l)(λ, µ) =e(τlβ(λ) + lβ(λ, z))φ
(
aτ + b

d
, az + aλτ + aµ

)
.

Substitute τ′ for aτ+b
d and z′ for az, which implies that τ = dτ′−b

a and that z = z′
a :

δi|L(l)(λ, µ)(τ, z) =e
(
d(τ′d − b)β(λ) + β(dλ, z′)

)
φ
(
τ′, z′ + (τ′d − b)λ + aµ

)
=e

(
τ′β(dλ) + β(dλ, z′)

)
φ
(
τ′, z′ + τ′dλ + (aµ − bλ)

)
=φ|L(dλ, aµ − bλ)(τ′, z′) = φ(τ′, z′) = δi(τ, z),

since φ ∈ Jk,L. It follows that V(l)φ|L(l)h = V(l)φ for every h in HL(l)(Z). It remains to
prove that V(l)φ has the correct Fourier expansion.

Take ∆l as the set of coset representatives of Γ\M(l) in the definition of V(l):

(4.4) V(l)φ(τ, z) =
1
l

∑
ad=l

ak
∑

b∈Z(d)

φ

(
aτ + b

d
, az

)
.
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Insert the Fourier expansion of φ in order to obtain that

V(l)φ(τ, z) =
1
l

∑
ad=l

ak
∑

b mod d

∑
n∈Z,r∈L#

n≥β(r)

cφ(n, r)e
(na

d
τ + β(r, az)

)
ed(nb).

Since
1
d

∑
b(d)

ed(nb) =

1, if d | n and
0, otherwise,

substitute m for na
l in the above:

V(l)φ(τ, z) =
∑

a|l

ak−1
∑

m∈Z,r∈L#

m≥ a
l β(r)

cφ

(
ml
a
, r

)
e(maτ + aβ(r, z)).

Substitute n for ma, which implies that the condition on a becomes a | (n, l) and that the
condition on n and r becomes n ≥ a2

l β(r). Furthermore, set ar = s:

V(l)φ(τ, z) =
∑

n∈Z,s∈L#

n≥ 1
l β(s)

∑
a|(n,l)
s
a∈L#

ak−1cφ

(
nl
a2 ,

s
a

)
e(nτ + β(s, z)),

with the usual convention that an empty sum is equal to zero. There is a one-to-one
correspondence between L(l)# and L#, given by x 7→ lx. Set s

l = r′ in order to complete
the proof. �

Corollary 4.27. Let L be a positive-definite, even lattice over Z and let l ∈ N. Then
V(l) maps S k,L to S k,L(l).

Proof. If φ in S k,L and has a Fourier expansion of the type

φ(τ, z) =
∑

n∈Z,r∈L#

n>β(r)

cφ(n, r)e(nτ + β(r, z)),

then the above theorem implies that V(l)φ has the following Fourier expansion:

V(l)φ(τ, z) =
∑

n∈Z,r′∈L(l)#

n≥lβ(r′)

∑
a|(n,l)

r′
a ∈L(l)#

ak−1cφ

(
nl
a2 ,

lr′

a

)
e(nτ + lβ(r′, z)).

If n = lβ(r′) and a satisfies the conditions in the above equation, then nl
a2 = β

(
lr′
a

)
and

therefore cφ
(

nl
a2 ,

lr′
a

)
= 0, since φ is a cusp form. It follows that V(σ)φ is also a cusp

form. �

We will show that the V(·) operators preserve Eisenstein series in the following
sections.

The level of L(l) is equal to l lev(L) and its determinant is equal to lrk(L) det(L). It
follows that V(l) also raises the level of the index of Jacobi forms that it is applied to.

Remark 4.28. Jacobi forms of lattice index can be obtained as the Fourier–Jacobi
coefficients of orthogonal modular forms. Orthogonal modular forms have many ap-
plications in algebraic geometry. For example, they can be the automorphic discrimi-
nants of moduli spaces [GN98], which allows for the construction of modular varieties
[Gri18]. The operators V(·) were constructed in [Gri94] as the images of the elliptic
Hecke operators (1.7) under a certain homomorphism, using the embedding of spaces
of Jacobi forms into spaces of orthogonal modular forms.
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Given a positive-definite, even lattice L = (L, β) and a positive integer l, the lattice
L(1/l) is even if and only if l | gcd(G) and 1

l G has even diagonal entries, where G is
any Gram matrix of β (note that change of basis preserves the greatest common divisor
of the Gram matrix). When that is the case, we say that l divides β and write l | β. For
example, when rk(L) = 1, we have L = Lm for some m in N and L(1/l) is even if and
only if l | m.

Definition 4.29 (Oldforms with respect to V(·) operators). Let L be a positive-
definite, even lattice over Z. For every positive integer l | β which is greater than
one and every φ in Jk,L(1/l), the Jacobi form V(l)φ is an oldform in Jk,L. Define the space
of oldfroms of weight k and index L with respect to the V(·) operators as

Jold, V
k,L :=

∑
l|β
l>1

V(l)Jk,L(1/l).

Example 4.30. We remind the reader of definition (1.24) of the scalar Eisenstein
series. Theorem 4.3 in [EZ85] states that, if m is a square-free, positive integer, then

V(m)Ek,L1,0 = σk−1(m)Ek,Lm,0,

in other words Ek,Lm,0 is an oldform.

Example 4.31. The root lattice D1 has Gram matrix equal to 2 with respect to the
standard basis element of Z. For n > 1, a Z-basis of Dn is given by the set

{e2 − e1, e3 − e2, . . . , en − en−1, e1 + e2}.

The Gram matrix of the Euclidean bilinear form with respect to this basis is equal to( 2 0
0 2

)
when n = 2 and to 

2 −1 0 . . . 0 0
−1 2 −1 . . . 0 −1
...

...
...

. . .
...

...
0 −1 0 . . . 0 2


when n > 2. It follows that there are no oldforms with respect to the V(·) operators
in the spaces Jk,Dn , for every n > 2 and k ≥ n

2 . We have also seen in Example 4.14
that there are no oldforms with respect to isometries in the spaces Jk,Dn when n is odd.
Nonetheless, Table 3.1 illustrates that there are Jacobi forms in the spaces J8,D3 , J10,D7 ,
J10,D3 , J12,D7 , J12,D5 and J12,D3 which might lift to old elliptic modular forms.

4.3. Properties

We establish the commutative properties of U(·) and V(·) and their combined action
on Eisenstein series.

Lemma 4.32. Let L = (L, β) be a positive-definite, even lattice over Z and suppose
that I and J are two isotropic subgroups of DL. Then I + J is an isotropic subgroup of
DL if and only if β(I, J) = 0 and, when this is the case,

U(J) ◦ U(I) = U(I) ◦ U(J) = U(I + J).

Proof. Every element x in I + J can be written as x = r + s with r in I and s in J.
It follows that β(x) = β(r) + β(s) + β(r, s) = β(r, s) and therefore I + J is an isotropic
subgroup of DL if and only if β(r, s) = 0 for every r in I and s in J. Furthermore, the
following inclusions hold when β(I, J) = 0:

L ↪→ LI ↪→ LI+J

L ↪→ LJ ↪→ LJ+I .
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Since the U(·) operators are inclusion maps, the result follows. �

Lemma 4.33. Let L = (L, β) be a positive-definite, even lattice over Z and suppose
that I is an isotropic subgroup of DL. Then I is also an isotropic subgroup of DL(l) for
every l in N and

V(l) ◦ U(I) = U(I) ◦ V(l).

Proof. We have β(I) = 0 =⇒ lβ(I) = 0 and hence I is an isotropic subgroup of
D(L,lβ). Since U(I) acts as an inclusion map, the result follows. �

Lemma 4.34. For every l and l′ in N, the following holds:

(4.5) V(l) ◦ V(l′)φ =
∑

d|(l,l′)

dk−1U(d) ◦ V
(

ll′

d2

)
φ.

Proof. Analyse the Fourier expansions of both sides of the above equation. Equa-
tion (4.3) implies that the Fourier coefficient of e(nτ + β(r, z)) on the left-hand side of
(4.5) is equal to

(4.6)
∑
b|(n,l)
r
b∈L#

bk−1
∑

a|
(

nl
b2 ,l

′

)
r

ab∈L#

ak−1cφ

(
nll′

a2b2 ,
ll′r
ab

)
=

∑
e

N(e)ek−1cφ

(
nll′

e2 ,
ll′r
e

)
,

where N(e) is equal to the number of ways of writing e = ab with the conditions in the
sums. In order to make these conditions precise, write

n =t1b,(4.7)
l =t2b,(4.8)

nl
b2 =t1t2 = t3a and(4.9)

l′ =t4a,(4.10)

with t1, t2, t3 and t4 in N. Equation (4.10) implies that

t4e = l′b ⇐⇒
t4e

(l′, e)
=

l′b
(l′, e)

.

But
(

e
(l′,e) ,

l′
(l′,e)

)
= 1 and therefore l′

(l′,e) | t4. This implies that b = e
(l′,e)δ, with δ =

t4(l′, e)/l′. Since b | e, b | n and b | l, it follows that δ divides e, n and l as well. Since δ
divides t4, it also divides l′. Equation (4.9) implies that

nl
e

=
nl
b2 ×

b
a

=
t3ab

a
= t3b

and hence δ | (nl/e). Combining equations (4.7) and (4.10), we obtain that nl′/e = t1t4

and thus δ | (nl′/e). Combining equations (4.8) and (4.10), we obtain that ll′/e = t2t4

and therefore δ | (ll′/e). Finally, equations (4.9) and (4.10) imply that nll′/e2 = t3t4a
and hence δ | (nll′/e2). We obtain that

(4.11) δ |

(
n, l, l′, e,

nl
e
,

nl′

e
,

ll′

e
,

nll′

e2

)
.

In the converse direction, we want to show that the conditions in the above equation
imply the conditions in the sums in (4.6). Suppose that e | (nl, nl′, ll′), that e2 | nll′ and
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that δ satisfies (4.11). Write

n =s1δ, l =s2δ,

l′ =s3δ, e =s4δ,

nl
e =s5δ = δ

s1s2

s4
,

nl′

e
=s6δ = δ

s1s3

s4
,

ll′
e =δs7 = δ

s2s3

s4
and

nll′

e2 =δs8 = δ
s1s2s3

s2
4

.

Set b := e
(l′,e)δ and a := e

b =
(l′,e)
δ

. It follows that a = (δs3, δs4)/δ = (s3, s4) and,
in particular, that a | l′. To show that b | n, we need to show that e

(l′,e) | s1. But
e/(l′, e) = s4/(s3, s4) and s1s3/s4 = s6 is an integer, which implies that s1 s3/(s3,s4)

s4/(s3,s4) ∈ Z.

Since
(

s3
(s3,s4) ,

s4
(s3,s4)

)
= 1, it follows that s4

(s3,s4) | s1 and implicitly that b | n. To show that
b | l, we need to show that e

(l′,e) | s2 or, equivalently, that s4
(s3,s4) | s2. Since s2s3/s4 = s7

is an integer, it follows that s2 s3/(s3,s4)
s4/(s3,s4) ∈ Z. Hence, s4

(s3,s4) | s2 and implicitly b | l. Finally,
we need to show that a | nl

b2 . We have

nl
b2 =

s1s2

e2/(e, l′)2 =
s1s2(s3, s4)2

s2
4

=
s5(s3, s4)
s4/(s3, s4)

and a = (s3, s4). Thus, we need to show that s4
(s3,s4) | s5. We know that

s8 =
s1s2s3

s2
4

=
s5s3

s4
=

s5s3/(s3, s4)
s4/(s3, s4)

.

Since
(

s3
(s3,s4) ,

s4
(s3,s4)

)
= 1, we have s4

(s3,s4) | s5 and therefore a | nl
b2 . Thus,

N(e) = #
{
δ : δ |

(
n, l, l′, e,

nl
e
,

nl′

e
,

ll′

e
,

nll′

e2

)}
,

with the added condition that r
e ∈ L#.

On the other hand, the coefficient of e(nτ + β(r, z)) on the right-hand side of (4.5) is
equal to ∑

d|(l,l′)

dk−1
∑

a|
(
n, ll′

d2

)
r

ad ∈L#

ak−1cφ

(
ll′n
a2d2 ,

ll′r
ad

)
=

∑
e

N′(e)ek−1cφ

(
ll′n
e2 ,

ll′r
e

)
,

where N′(e) is equal to the number of ways of writing e = ad with the conditions in the
sums. Following the same argument as above, write

l =t5d, l′ =t6d,

n =t7a and
ll′

d2 =t5t6 = t8a.

Write d = e
(n,e)δ with δ = t7(n, e)/e and obtain that δ divides e, l, l′ and n. Furthermore,

we have ll′/e = t8d, ln/e = t5t7, l′n/e = t6t7 and ll′n/e2 = t8t7. It follows that N′(e) =

N(e) and the proof is complete. �

Corollary 4.35. If φ ∈ Jk,L and (l, l′) = 1, then

V(l′) ◦ V(l)φ = V(ll′)φ.
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Theorem 4.36. The operators U(·) and V(·) commute with Hecke operators. In other
words, let L = (L, β) be a positive-definite, even lattice over Z and let I be an isotropic
subgroup of DL. If φ ∈ Jk,LI

and l ∈ NL ∩ NLI
, then

(i) T (l) ◦ U(I)φ = U(I) ◦ T (l)φ.

If φ ∈ Jk,L, l ∈ NL and l′ ∈ N such that (l, l′) = 1, then

(ii) T (l) ◦ V(l′)φ = V(l′) ◦ T (l)φ.

Proof. Since Hecke operators are defined by different formulas for even and odd
rank lattices, respectively, consider the case where rk(L) is odd for their commutativity
with U(·) and the case where rk(L) is even for their commutativity with V(·). The
remaining two cases can be treated analogously.

(i) We remind the reader of the action of Hecke operators on the Fourier coefficients
of a Jacobi form of odd rank lattice index, as stated in Theorem 3.5: if φ has Fourier
expansion

φ(τ, z) =
∑

(D,r)∈supp(LI )

Cφ(D, r)e((β(r) − D)τ + β(r, z)),

then
T (l)φ(τ, z) =

∑
(D,r)∈supp(LI )

CT (l)φ(D, r)e((β(r) − D)τ + β(r, z)),

where

CT (l)φ(D, r) =
∑
a|l2

a2 |l2 lev(LI )D

ak−d rk(L)
2 e−1µLI

(D, a)Cφ

(
l2

a2 D, la′r
)

and a′ is an integer such that aa′ ≡ 1 mod lev(LI). Furthermore, Theorem 4.3 implies
that

U(I)φ(τ, z) =
∑

(D,r′)∈supp(L)
r′∈L#

I

Cφ(D, r′)e((β(r′) − D)τ + β(r′, z)).

The Fourier expansion of T (l) ◦ U(I)φ is

T (l) ◦ U(I)φ(τ, z) =
∑

(D,r′)∈supp(L)

∑
a|l2

a2 |l2 lev(L)D,la′r′∈L#
I

ak−d rk(L)
2 e−1µL(D, a)Cφ

(
l2

a2 D, la′r′
)

× e((β(r′) − D)τ + β(r′, z)),

where a′ is an integer such that aa′ ≡ 1 mod lev(L). On the other hand,

U(I) ◦ T (l)φ(τ, z) =
∑

(D,r′)∈supp(L)
r′∈L#

I

∑
A|l2

A2 |l2 lev(LI )D

Ak−d rk(L)
2 e−1µLI

(D, A)Cφ

(
l2

A2 D, lA′r′
)

× e((β(r′) − D)τ + β(r′, z)),

where A′ is an integer such that AA′ ≡ 1 mod lev(LI).
Compare conditions in the summations first. Since lev(LI) | lev(L) and l ∈ NL∩NLI

,
if a divides l2, then a2 | l2 lev(L)D if and only if a2 | l2 lev(LI)D. Furthermore, clearly
r′ ∈ L#

I =⇒ lA′r′ ∈ L#
I . Conversely, since l ∈ NLI

and AA′ ≡ 1 mod lev(LI), we
have lA′r′ = r∗ for some r∗ in L#

I . This is equivalent to the fact that r′ ≡ l−1ar∗ mod L,
where l−1 denotes the inverse of l modulo lev(LI). Hence, r′ ∈ L#

I ⇐⇒ lA′r′ ∈ L#
I and

therefore the conditions in the summations are equivalent to one another.
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We remind the reader that

µL(D, A) =

χL

(
D
f 2 ,

A
f 2

)
, if (lev(L)D, A) = f 2 for some f in N and

0, otherwise.

and that

χL

(
D
f 2 ,

A
f 2

)
=

(
(D/ f 2)(−1)b

rk(L)
2 c2 det(L)

A/ f 2

)
.

Since A | l2 and l ∈ NL ∩ NLI
, if follows that

(lev(L)D, A) = (lev(LI)D, A).

We have

χLI

(
D
f 2 ,

A
f 2

)
=

(
(D/ f 2)(−1)b

rk(L)
2 c2 det(LI )

A/ f 2

)
= χL

(
D
f 2 ,

A
f 2

)
,

since det(L)
det(LI )

is a square by Lemma 4.8 and it is coprime to A as a result of Remark
1.8. Last, but not least, if a′ is an integer such that aa′ ≡ 1 mod lev(L) and A′ is an
integer such that aA′ ≡ 1 mod (lev(LI)), then it is straight-forward to show that a′ =

A′ + m lev(LI) for some integer m. It follows from Remark 1.8 that la′r′ ≡ lA′r′ mod LI

and hence

Cφ

(
l2

a2 D, la′r′
)

= Cφ

(
l2

a2 D, lA′r′
)
.

(ii) We remind the reader of the action of Hecke operators on the Fourier coefficients
of a Jacobi form of even rank lattice index, as stated in Theorem 3.6: if φ has Fourier
expansion

φ(τ, z) =
∑

(D,r)∈supp(L)

Cφ(D, r)e((β(r) − D)τ + β(r, z)),

then
T (l)φ(τ, z) =

∑
(D,r)∈supp(L)

CT (l)φ(D, r)e((β(r) − D)τ + β(r, z)),

where

CT (l)φ(D, r) =
∑

a|l2,lev(L)D

ak− rk(L)
2 −1 χL(a)Cφ

(
l2

a2 D, la′r
)

and a′ is an integer such that aa′ ≡ 1 mod lev(L). Furthermore, Theorem 4.26 implies
that

V(l′)φ(τ, z) =
∑

(D,r′)∈supp(L(l′))

∑
a|(l′β(r′)−D),l′

r′
a ∈L(l′)#

ak−1cφ

(
(l′β(r′) − D)l′

a2 ,
l′r′

a

)

× e
(
(l′β(r′) − D)τ + l′β(r′, z)

)
=

∑
(D,r′)∈supp(L(l′))

∑
a|(l′β(r′)−D),l′

r′
a ∈L(l′)#

ak−1Cφ

(
Dl′

a2 ,
l′r′

a

)
e
(
(l′β(r′) − D)τ + l′β(r′, z)

)
,

where Cφ(D, r) = cφ(l′β(r) − D, r), as usual. The Fourier expansion of T (l) ◦ V(l′)φ is

T (l) ◦ V(l′)φ(τ, z) =
∑

(D,r′)∈supp(L(l′))

∑
b|l2,l′ lev(L)D

bk− rk(L)
2 −1

∑
a|l2(b′2l′β(r′)− D

b2 ),l′

lb′r′
a ∈L(l′)#

ak−1χL(l′)(b)

×Cφ

(
l2Dl′

b2a2 ,
l′lb′r′

a

)
e((l′β(r′) − D)τ + l′β(r′, z)),
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where b′ is an integer such that bb′ ≡ 1 mod lev(L(l′)). On the other hand,

V(l′) ◦ T (l)φ(τ, z) =
∑

(D,r′)∈supp(L(l′′))

∑
A|(l′β(r′)−D),l′

r′
A ∈L(l′)#

Ak−1
∑

B|l2,lev(L)D

Bk− rk(L)
2 −1 χL(B)

×Cφ

(
l2Dl′

B2A2 ,
lB′l′r′

A

)
e
(
(l′β(r′) − D)τ + l′β(r′, z)

)
,

where B′ is an integer such that BB′ ≡ 1 mod lev(L).
Compare conditions in the summations first. Since b and B divide l2 and (l′, l) = 1,

they parametrize the same sets. Since (l, l′) = 1, if b | l2 and a | l′, then

a | l2
(
b′2l′β(r′) −

D
b2

)
⇐⇒ a |

l2

b

(
bb′2l′β(r′) −

D
b

)
⇐⇒ a |

(
bb′2l′β(r′) −

D
b

)
⇐⇒ a |

(
b2b′2l′β(r′) − D

)
.

A similar argument as in (i) implies that r′ ∈ AL(l′2)# ⇐⇒ lB′r′ ∈ AL(l′)# and
therefore the conditions in the summations are equivalent to one another.

We remind the reader that

χL(B) =

(
(−1)

rk(L)
2 det(L)
B

)
and that

χL(l′) (B) =

(
(−1)

rk(L(l′))
2 l′rk(L) det(L)

B

)
.

Since rk(L) is even, it follows that
(

l′rk(L)

B

)
= 1 and therefore equality holds between the

two above quantities. As before, if b′ is an integer such that bb′ ≡ 1 mod lev(L(l′)) and
B′ is an integer such that bB′ ≡ 1 mod (lev(L)), then

Cφ

(
l2Dl′

b2a2 ,
l′lb′r′

a

)
= Cφ

(
l2Dl′

b2a2 ,
lB′l′r′

a

)
,

completing the proof. �

Theorem 4.37. Let L be a positive-definite, even lattice over Z and let I be an
isotropic subgroup of DL. If φ ∈ Jk,LI

and s is an element of O(DL) ∩ O(DLI
), then

(i) U(I)
(
φW(s)

)
=

(
U(I)φ

)
W(s).

If φ ∈ Jk,L, l ∈ N and s is an element of O(DL(l)) ∩ O(DL), then

(ii) V(l)
(
φW(s)

)
=

(
V(l)φ

)
W(s).

Proof. (i) We remind the reader that L#
I /LI is a subgroup of L#/L. Since U(I) is an

inclusion map of Jk,LI
into Jk,L, the result follows.

(ii) Let s be an element of O(DL(l)) ∩ O(DL). Equations(3.12) and (4.3) imply that

V(l)
(
φW(s)

)
(τ, z) =V(l)

( ∑
n∈Z,r∈L#

n≥β(r)

cφ(n, s(r))e(nτ + β(r, z))
)

=
∑

n∈Z,r′∈L(l)#

n≥lβ(r′)

∑
a|(n,l)

r′
a ∈L(l)#

ak−1cφ

(
nl
a2 , s

(
lr′

a

))
e(nτ + lβ(r′, z))
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and that(
V(l)φ

)
W(s)(τ, z) =

( ∑
n∈Z,r′∈L(l)#

n≥lβ(r′)

( ∑
a|(n,l)

r′
a ∈L(l)#

ak−1cφ

(
nl
a2 ,

lr′

a

) )
e(nτ + lβ(r′, z))

)
W(s)

=
∑

n∈Z,r′∈L(l)#

n≥lβ(r′)

∑
a|(n,l)

r′
a ∈L(l)#

ak−1cφ

(
nl
a2 ,

l
a

s(r′)
)

e(nτ + lβ(r′, z))

and equality holds between these two expressions. �

Finally, we study the action of U(·) and V(·) on Eisenstein series.

Proposition 4.38. Let L = (L, β) be a positive-definite, even lattice over Z and let I
be an isotropic subgroup of DL. For every r in Iso(DLI

), the following holds:

(4.12) U(I)Ek,LI ,r =
∑

s∈L#
I /L

s≡r mod LI

Ek,L,s.

Proof. Since Jacobi Eisenstein series are uniquely determined by their singular term
(2.17) and since the theta series {ϑL,r : r ∈ Iso(DL)} are linearly independent as functions
of z, it suffices to prove that equality holds in (4.12) for the singular terms. For every s
in L#

I /L such that s ≡ r mod LI , we have β(s) = β(r+λ) ∈ Z for some λ in LI . Therefore,
the right-hand side is well-defined and its singular term is equal to∑

s∈L#
I /L

s≡r mod LI

1
2

(
ϑL,s(τ, z) + (−1)kϑL,−s(τ, z)

)
.

The singular term of the left-hand side is equal to
1
2

(
ϑLI ,r(τ, z) + (−1)kϑLI ,−r(τ, z)

)
and Lemma 4.20 implies that equality holds between the two singular terms. �

Hence, the operators U(·) map Eisenstein series to Eisenstein series (in addition to
preserving cusp forms). Conversely, given a positive-definite, even lattice L, we want do
determine which Eisenstein series are oldforms with respect to isometries (i.e. coming
from overlattices of L). We remind the reader of Definition 1.31 of twisted Eisenstein
series. Let x ∈ RIso and ξ be a primitive Dirichlet character modulo F with F | Nx.
Then

Ek,L,x,ξ =
∑

d∈Z×(Nx)

ξ(d)Ek,L,dx.

Write Nx = N′0N0 with N0 =
∏

p|F pvp(Nx). For every divisor f of N′0, set x f := f Fx.
Then 〈x f 〉 is an isotropic subgroup of DL of order Nx f = N0N′0/ f F and L

〈x f 〉
= (L〈x f 〉, β)

is a positive-definite, even overlattice of L.
For every isotropic element r in L#

〈x f 〉
/L〈x f 〉, Proposition 4.38 implies that

U(〈x f 〉)Ek,L
〈x f 〉

,r =
∑

s∈L#
〈x f 〉

/L

s≡r mod L〈x f 〉

Ek,L,s.

Every s in the above summation can be written as s = r + y for some y in L〈x f 〉 and,
since s ∈ L#

〈x f 〉
/L, it follows that y ∈ L〈x f 〉/L. Since λ , µ in L〈x f 〉/L if and only if
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λ−µ ∈ L+dx f for some d in Z(Nx f ), a set of coset representatives for this quotient group
is given by {dx f : d ∈ Z(Nx f )}. It follows that

(4.13) U(〈x f 〉)Ek,L
〈x f 〉

,r =
∑

d∈Z(Nx f )

Ek,L,r+dx f

and note that Nx f = Nx/ f F. The following result was proved in [Sch18] for vector-
valued modular forms:

Theorem 4.39. If ξ is a primitive Dirichlet character modulo F for some F | Nx

such that F , Nx, then Ek,L,x,ξ is an oldfrom. More precisely, we have

Ek,L,x,ξ(τ, z) = ξ(N′0)
∑
f |N′0

µ( f )U(〈x f 〉)Ek,L
〈x f 〉

,N′0 x,ξ(τ, z).

Proof. Since N0 and N′0 are coprime, every element d in Z×(Nx) can be written as
d = mN0 + nN′0, with m running through Z×(N′0) and n running through Z×(N0) as d runs
through Z×(Nx). Since F | N0 and they share the same set of prime divisors, it follows
that n can be written as n = a + bF, with a running through Z×(F) and b running through
Z(N0/F) as n runs through Z×(N0). It follows that

Ek,L,x,ξ =
∑

m∈Z×
(N′0)

∑
a∈Z×(F)

∑
b∈Z(N0/F)

ξ(mN0 + (a + bF)N′0)Ek,L,(mN0+(a+bF)N′0)x,ξ

=ξ(N′0)
∑

a∈Z×(F)

ξ(a)
∑

b∈Z(N0/F)

∑
m∈Z×

(N′0)

Ek,L,(mN0+(a+bF)N′0)x,ξ.

Remove the coprimality conditions between m and N′0 using (1.4). Set f = (m,N′0) in
the above equation and obtain that

Ek,L,x,ξ =ξ(N′0)
∑

a∈Z×(F)

ξ(a)
∑

b∈Z(N0/F)

∑
f |N′0

µ( f )
∑

e∈Z(N′0/ f )

Ek,L,( f eN0+(a+bF)N′0)x,ξ

=ξ(N′0)
∑
f |N′0

µ( f )
∑

a∈Z×(F)

ξ(a)
∑

b∈Z(N0/F)

∑
e∈Z(N′0/ f )

Ek,L,(eN0/F+bN′0/ f )x f +aN′0 x,ξ.

The expression eN0/F + bN′0/ f runs through N0N′0/ f F = Nx f as b runs through Z(N0/F)

and e runs through Z(N′0/ f ). Since x ∈ Iso(DL), we have β(N′0x, L〈x f 〉) ∈ Z and β(N′0x) ∈ Z.
It follows that N′0x is an isotropic element of order F in L#

〈x f 〉
/L〈x f 〉 and (4.13) implies

that

Ek,L,x,ξ =ξ(N′0)
∑
f |N′0

µ( f )
∑

a∈Z×(F)

ξ(a)
∑

d∈Z(Nx f )

Ek,L,dx f +aN′0 x,ξ

=ξ(N′0)
∑
f |N′0

µ( f )
∑

a∈Z×(NN′0 x)

ξ(a)U(〈x f 〉)Ek,L
〈x f 〉

,aN′0 x

=ξ(N′0)
∑
f |N′0

µ( f )U(〈x f 〉)Ek,L
〈x f 〉

,N′0 x,ξ,

as claimed. �
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Proposition 4.40. Let L = (L, β) be a positive-definite, even lattice over Z. For every
r in Iso(DL) and every l in N, the following holds:

(4.14) V(l)Ek,L,r =
∑

s∈Iso(DL(l))

∑
a|(lβ(s),l)

r≡ ls
a mod L

ak−1Ek,L(l),s.

Proof. As was the case in the proof of Proposition 4.38, it suffices to prove that
equality holds for the singular terms. The singular term of the right-hand side of (4.14)
is equal to ∑

s∈Iso(DL(l))

∑
a|(lβ(s),l)

r≡ ls
a mod L

ak−1

2

(
ϑL(l),s + (−1)kϑL(l),−s

)
.

The Fourier expansion of the left-hand side is∑
(D,x)∈supp(L(l))

∑
a|(lβ(x)−D,l)

x
a∈L(l)#

ak−1Gk,L,r

(
Dl
a2 ,

lx
a

)
e ((lβ(x) − D)τ + lβ(x, z))

and therefore its singular terms is equal to∑
x∈L(l)#

lβ(x)∈Z

∑
a|(lβ(x),l)

x
a∈L(l)#

ak−1Gk,L,r

(
0,

lx
a

)
e (lβ(x)τ + lβ(x, z))

=
∑

s∈L(l)#/L
lβ(s)∈Z

∑
a|(lβ(s),l)

s
a∈L(l)#

ak−1Gk,L,r

(
0,

ls
a

) ∑
x∈L(l)#

x≡s mod L

e (lβ(x)τ + lβ(x, z)) .

For every r and s in L#, define

δL(r, s) :=

1, if r ≡ s mod L and
0, otherwise.

We remind the reader that

Gk,L,r

(
0,

ls
a

)
=

1
2

(
δL

(
r,

ls
a

)
+ (−1)kδL

(
−r,

ls
a

))
.

Note that, if ls
a ≡ r mod L or ls

a ≡ −r mod L, then s
a ∈ L(l)#. Thus, the singular term of

the left-hand side of (4.14) is equal to

1
2

∑
s∈L(l)#/L
lβ(s)∈Z

∑
a|(lβ(s),l)

ak−1δL

(
r,

ls
a

)
ϑL(l),s(τ, z) +

(−1)k

2

∑
s∈L(l)#/L
lβ(s)∈Z

∑
a|(lβ(s),l)

ak−1δL

(
−r,

ls
a

)
ϑL(l),s(τ, z)

=
∑

s∈L(l)#/L
lβ(s)∈Z

∑
a|(lβ(s),l)

ak−1δL

(
r,

ls
a

)
1
2

(
ϑL(l),s(τ, z) + (−1)kϑL(l),−s(τ, z)

)
,

after substituting s := −s in the second line. Hence, equality holds between the two
singular terms. �

In particular, Propositions 4.38 and 4.40 imply that

U(I) : JEis
k,LI
→ JEis

k,L and

V(l) : JEis
k,L → JEis

k,L(l).

They can be combined into the following result:
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Proposition 4.41. Let L = (L, β) be a positive-definite, even lattice over Z and let I
be an isotropic subgroup of DL. For every r in Iso(DLI

) and every l in N, the following
holds:

(4.15) V(l) ◦ U(I)Ek,LI ,r =
∑

x∈Iso(DL(l))

∑
a|(lβ(x),l)

r≡ lx
a mod LI

ak−1Ek,L(l),x.

Proof. Equations (4.12) and (4.14) imply that

V(l) ◦ U(I)Ek,LI ,r =
∑

s∈L#
I /L

s≡r mod LI

V(l)Ek,L,s =
∑

s∈L#
I /L

s≡r mod LI

∑
x∈Iso(DL(l))

∑
a|(lβ(x),l)

s≡ lx
a mod L

ak−1Ek,L(l),x

=
∑

x∈Iso(DL(l))

∑
a|(lβ(x),l)

ak−1Ek,L(l),x

∑
s∈L#

I /L
s≡r mod LI

δL

(
s,

lx
a

)
.

The inner sum contains at most one non-trivial term. Suppose that x in Iso(DL(l)) and a |
(lβ(x), l) are fixed. If there exists an s in L#

I /L such that s ≡ r mod LI and lx
a ≡ s mod L,

then
lx
a
≡ s mod L =⇒

lx
a

= s + µ for some µ in L

=⇒
lx
a

= r + λ for some λ in LI =⇒
lx
a
≡ r mod LI .

On the other hand,
lx
a
≡ r mod LI =⇒

lx
a

= r + λ for some λ in LI

=⇒
lx
a

= r + γ + µ for some γ in I and some µ in L

=⇒
lx
a
≡ s mod L

for some s in L#
I /L such that s ≡ r mod L + I. In other words, there exists an s in L#

I /L
such that s ≡ r mod LI and lx

a ≡ s mod L if and only if lx
a ≡ r mod L. It follows that∑

s∈L#
I /L

s≡r mod LI

δL

(
s,

lx
a

)
= δLI

(
r,

lx
a

)

and we obtain the desired result. �

Corollary 4.42. Let L = (L, β) be a positive-definite, even lattice over Z and let I
be an isotropic subgroup of DL. For every l in N, the following holds:

(4.16) V(l) ◦ U(I)Ek,LI ,0 =
∑

x∈( 1
l LI)/L

lβ(x)∈Z

∑
a|(lβ(x),l)

lx
a ∈LI

ak−1Ek,L(l),x.

Proof. When r = 0 in Proposition 4.41, the right-hand side of (4.15) vanishes iden-
tically unless lx ∈ LI . The following equalities hold:

{x ∈ L(l)#/L : lx ∈ LI} ={[x] : x ∈
1
l

LI and [x] = [s] ⇐⇒ x − s ∈ L} =

(
1
l

LI

)
/L.

The result follows immediately from Proposition 4.41. �
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Remark 4.43. Assume that k is odd. Then Ek,LI ,0 = 0 and, for every x in
(

1
l LI

)
/L

such that lβ(x) ∈ Z, −x satisfies the same condition. Since Ek,L(l),x = (−1)kEk,L(l),−x for
every x in L(l)#, it follows that both sides of (4.16) vanish.

The above corollary leads to the following generalization of (13) from [EZ85, §I.4]:

1
lk−1

∏
p|l

1
1 + p−(k−1)

∑
d2 |l

µ(d)V
(

l
d2

)
◦ U(d)Ek,L,0

=
1

lk−1

∏
p|l

1
1 + p−(k−1)

∑
d2 |l

µ(d)
∑

x∈( 1
l L)/L

lβ(x)∈Z

∑
a|
(
lβ(x), l

d2

)
lx
da∈L

ak−1Ek,L(l),x.
(4.17)

The unintuitive normalizing factor on the left-hand side of (4.17) was chosen because,
when k is even, the coefficient corresponding to Ek,L(l),0 on the right-hand side of this
equation is equal to one. We include the proof of this claim. When x ∈ L, lβ(x) is an
integer multiple of l

d2 and lx
da ∈ L for every divisor a of l

d2 and therefore the coefficient
of Ek,L(l),0 is equal to

1
lk−1

∏
p|l

1
1 + p−(k−1)

∑
d2 |l

µ(d)
∑
a| l

d2

ak−1.

Define

F(l) :=
1

lk−1

∏
p|l

1
1 + p−(k−1)

∑
d2 |l

µ(d)σk−1

(
l

d2

)
.

We show, by induction on the number of primes dividing l, that F(l) = 1 for every
positive integer l. This clearly holds when l = 1. Assume that l = pκ for some prime
number p and some κ ≥ 1. If κ = 1, then

F(l) =
1

pk−1 ×
1

1 + p−(k−1)σk−1(p) = 1.

If κ > 1, then every divisor d of pκ is of the form d = pa for some 0 ≤ a ≤ κ and
µ(d) = 0 for a > 1. Therefore,

F(pκ) =
1

pκ(k−1) ×
1

1 + p−(k−1)

(
σk−1(pκ) − σk−1(pκ−2)

)
=

1
pκ(k−1) + p(κ−1)(k−1) ×

p(κ+1)(k−1) − p(κ−1)(k−1)

pk−1 − 1
= 1.

In the induction step, assume that F(l) = 1 whenever l is the product of t distinct
primes, say l =

∏
pi |l pai

i for some fixed number of primes t, and show that this implies
that F(lpκ) = 1, for every p , pi for every i in {1, . . . , t} and every κ > 0. If κ = 1, then
d2 | lpκ ⇐⇒ d2 | l and hence

F(lp) =
1

pk−1 ×
1

1 + p−(k−1) ×
1

lk−1

∏
pi |l

1

1 + p−(k−1)
i

∑
d2 |l

µ(d)σk−1

(
lp
d2

)

=
1

pk−1 + 1
×

1
lk−1

∏
pi |l

1

1 + p−(k−1)
i

∑
d2 |l

µ(d)σk−1

(
l

d2

)
σk−1(p) = 1,

where we have used the fact that the divisor sum is multiplicative and that
(
p, l

d2

)
= 1

for every d2 | l. If κ > 1, then the set of square divisors d′2 of lpκ that satisfy µ(d′) , 0 is
equal to the union of the set of square divisors d2 of l that satisfy µ(d) , 0 with the set
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of square divisors of the form p2d2, with d in the former set. Note that µ(pd) = −µ(d)
for such d. Hence,

F(lpκ) =
1

(lpκ)k−1

∏
p j |(lpκ)

1

1 + p−(k−1)
j

∑
d2 |lpκ

µ(d)σk−1

(
lpκ

d2

)

=
1

pκ(k−1) ×
1

1 + p−(k−1) ×
1

lk−1

∏
pi |l

1

1 + p−(k−1)
i

∑
d2 |l

µ(d)
(
σk−1

(
lpκ

d2

)
− σk−1

(
lpκ

p2d2

))
=

1
pκ(k−1) + p(κ−1)(k−1) ×

1
lk−1

∏
pi |l

1

1 + p−(k−1)
i

×
∑
d2 |l

µ(d)σk−1

(
l

d2

) (
σk−1 (pκ) − σk−1(pκ−2)

)
= F(pκ)F(l) = 1

and the proof is complete. We include the proof of [EZ85, §I.4, (13)], since it is not
given explicitly in the cited text:

Lemma 4.44. For every l in N, the following holds:

1
lk−1

∏
p|l

1
1 + p−(k−1)

∑
d2 |l

µ(d)V
(

l
d2

)
◦ U(d)Ek,L1,0 = Ek,Ll,0.

Proof. Take L = L1 in (4.17). Then the right-hand side of this equation is equal to

1
lk−1

∏
p|l

1
1 + p−(k−1)

∑
d2 |l

µ(d)
∑
x∈Z(l)
x2
l ∈Z

∑
a|
(

x2
l ,

l
d2

)
x

da∈Z

ak−1Ek,Ll,
x
l
.

Write l as l = bc2, with b square-free. The condition that d2 | l is equivalent to d | c,
the condition that l | x2 is equivalent to x = bcs for some s ∈ Z(c) and it follows that the
above expression is equal to

1
lk−1

∏
p|l

1
1 + p−(k−1)

∑
d|c

µ(d)
∑
s∈Z(c)

∑
a|b(s, c

d )2

bcs
da ∈Z

ak−1Ek,Ll,
s
c
.

Note that bcs can be written as

bcs = b
(
s,

c
d

)2
d

sc/d
(s, c/d)2 ,

in other words the condition that bcs
da ∈ Z is superfluous. Thus, the right-hand side of

(4.17) is equal to

1
lk−1

∏
p|l

1
1 + p−(k−1)

∑
d|c

µ(d)
∑
s∈Z(c)

σk−1

(
b
(
s,

c
d

)2
)

Ek,Ll,
s
c
.

The term corresponding to s = 0 in the above equation is equal to

1
lk−1

∏
p|l

1
1 + p−(k−1)

∑
d2 |l

µ(d)σk−1

(
l

d2

)
Ek,Ll,0

and the above discussion implies that this expression is equal to Ek,Ll,0. When c = 1 (i.e.
when l is square-free), this term is the only one which arises. We claim that, for every
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c > 1, every s ∈ Z(c) \ 0 and every square-free b, the following holds:∑
d|c

µ(d)σk−1

(
b
(
s,

c
d

)2
)

= 0.

Let c =
∏t

i=1 pai
i be the prime decomposition of c and let s =

∏t
i=1 pbi

i
∏r

j=t+1 qb j

j be that
of s (with at least one bi > 0 for some i in {1, . . . , r}). Then∑

d|c

µ(d)σk−1

(
b
(
s,

c
d

)2
)

=

1∑
c1,...,ct=0

(−1)#{ci,0}σk−1

b t∏
i=1

pmin{2bi,2ai−2ci}

i

 .
Since s < c, there exists some some j in {1, . . . , t} such that b j < a j. For every such j,
we have min{2b j, 2a j − 2c j} = 2b j and therefore

1∑
c1,...,ct=0

(−1)#{ci,0}σk−1

b t∏
i=1

pmin{2bi,2ai−2ci}

i


=

1∑
c j=0

1∑
c1,...,ct=0

i, j

(−1)#{ci,0:i∈{1,...,t}}σk−1

(
bp2b j

j

t∏
i=1
i, j

pmin{2bi,2ai−2ci}

i

)

=

1∑
c1,...,ct=0

i, j

(−1)#{ci,0:i, j}σk−1

(
bp2b j

j

t∏
i=1
i, j

pmin{2bi,2ai−2ci}

i

)

−

1∑
c1,...,ct=0

i, j

(−1)#{ci,0:i, j}σk−1

(
bp2b j

j

t∏
i=1
i, j

pmin{2bi,2ai−2ci}

j

)
= 0,

as claimed. Thus, we obtain that
1

lk−1

∏
p|l

1
1 + p−(k−1)

∑
d2 |l

µ(d)V
(

l
d2

)
◦ U(d)Ek,L1,0 = Ek,Ll,0

for every l in N. �

When L = Lm for some m in N, the right-hand side of (4.17) is equal to
1

lk−1

∏
p|l

1
1 + p−(k−1)

∑
d2 |l

µ(d)
∑
x∈Z(l)
mx2

l ∈Z

∑
a|
(

mx2
l , l

d2

)
x

da∈Z

ak−1Ek,Lml,
x
l
.

For every l in N which is coprime to m, calculations similar to those carried out in the
proof of Lemma 4.44 imply that

1
lk−1

∏
p|l

1
1 + p−(k−1)

∑
d2 |l

µ(d)V
(

l
d2

)
◦ U(d)Ek,Lm,0 = Ek,Lml,0.

If (l,m) > 1, then the previous simplifications no longer hold.





APPENDIX A

Tables of Fourier coefficients

This chapter contains the tables used in Section 3.3. The code which generates
them is available at https://github.com/andreeamocanu/eigenvalues-Dn. The
difficulty of computing the Fourier coefficients (and implicitly the Hecke eigenvalues)
decreases as the rank of the lattice increases, since the Fourier coefficients of Jacobi
forms of index Dn (n = 1, 3, 5 and 7) are linear functions of representation numbers of
quadratic forms in 8 − n variables. It also increases with the weight for fixed n.

We remind the reader that

D#
n/Dn =

{
0, en,

e1 + · · · + en

2
,

e1 + · · · + en−1 − en

2

}
for every n in N, where {ei}i denotes the standard basis of Zn, and

DDn '

(
Z/4Z, r 7→

nr2

8
mod Z

)
when n is odd. Set rn

1 := 0, rn
2 := en, rn

3 := e1+···+en
2 and rn

4 := e1+···+en−1−en
2 for every n in

{1, 3, 5, 7}. Then −rn
4 = rn

3 in D#
n/Dn and Proposition 1.25 implies that

Cφ(D, rn
4) =

−Cφ(D, rn
3), if φ ∈ J2k+1,Dn and

Cφ(D, rn
3), if φ ∈ J2k,Dn

for every D in Q≤0 such that (D, rn
4) ∈ supp(Dn). This can also be seen by inspecting the

formulas for the Fourier coefficients of E4,Dn and ψ12−n,Dn obtained in Subsection 3.3.1.
Furthermore, equation (3.21) implies that

Cφ(D, rn
1) = Cφ(E, rn

2) = 0

for every φ in J2k+1,Dn and every (D, rn
1) and (E, rn

2) in supp(Dn).
In this chapter, we list the Fourier coefficients Cφ(D, rn

j ) of some of the Jacobi forms
φ in Jk,Dn , for the first 100 values of D such that (D, rn

j ) ∈ supp(Dn) for every j, plus the
Fourier coefficients which needed to compute their Hecke eigenvalues in Section 3.3.

Table A.1: Fourier coefficients of 11ψ8,D1

D C11ψ8,D1
(D, r1

1) D C11ψ8,D1
(D, r1

2) D C11ψ8,D1
(D, r1

3)
-1 864 -1/2 144 -7/8 -1152
-2 -9216 -3/2 0 -15/8 10368
-3 36288 -5/2 -12096 -23/8 -24192
-4 -55296 -7/2 73728 -31/8 -48384
-5 4032 -9/2 -159408 -39/8 279936
-6 0 -11/2 0 -47/8 -145152
-7 114048 -13/2 536256 -55/8 -975744
-8 589824 -15/2 -663552 -63/8 1275264
-9 -2216160 -17/2 -24192 -71/8 1247616

-10 774144 -19/2 0 -79/8 -2158848
-11 3985344 -21/2 279936 -87/8 -653184
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-12 -2322432 -23/2 1548288 -95/8 -1344384
-13 -2987712 -25/2 -1675440 -103/8 2911104
-14 -4718592 -27/2 0 -111/8 5878656
-15 11477376 -29/2 -4584384 -119/8 -3158784
-16 3538944 -31/2 3096576 -127/8 -2165760
-17 -15474816 -33/2 8781696 -135/8 -19035648
-18 10202112 -35/2 0 -143/8 3459456
-19 -2987712 -37/2 -5974848 -151/8 40606848
-20 -258048 -39/2 -17915904 -159/8 -10088064
-21 -9880704 -41/2 9144576 -167/8 -3459456
-22 0 -43/2 0 -175/8 -22596480
-23 25292160 -45/2 31026240 -183/8 -31632768
-24 0 -47/2 9289728 -191/8 31608576
-25 16947360 -49/2 -45472752 -199/8 -5056128
-26 -34320384 -51/2 0 -207/8 62052480
-27 -66624768 -53/2 -34098624 -215/8 -11200896
-28 -7299072 -55/2 62447616 -223/8 -41448960
-29 124655040 -57/2 -12037248 -231/8 81430272
-30 42467328 -59/2 0 -239/8 -113073408
-31 -48432384 -61/2 47863872 -247/8 -94753152
-32 -37748736 -63/2 -81616896 -255/8 31352832
-33 -43110144 -65/2 52026624 -263/8 107063424
-34 1548288 -67/2 0 -271/8 89687808
-35 -105303168 -69/2 -24240384 -279/8 53561088
-36 141834240 -71/2 -79847424 -287/8 46365696
-37 97516224 -73/2 22458240 -295/8 -191509632
-38 0 -75/2 0 -303/8 -167225472
-39 -83161728 -77/2 74739456 -311/8 -121129344
-40 -49545216 -79/2 138166272 -319/8 178003584
-41 54294912 -81/2 63090576 -327/8 -37231488
-42 -17915904 -83/2 0 -335/8 201930624
-43 103322304 -85/2 -501512832 -343/8 499313664
-44 -255062016 -87/2 41803776 -351/8 -513962496
-45 -4463424 -89/2 -5975424 -359/8 -15389568
-46 -99090432 -91/2 0 -367/8 23466240
-47 396184320 -93/2 519841152 -375/8 41368320
-48 148635648 -95/2 86040576 -383/8 -201712896
-49 -272836512 -97/2 -100920960 -391/8 -488017152
-50 107228160 -99/2 0 -399/8 350479872
-51 88739712 -101/2 -287872704 -407/8 -197797248
-52 191213568 -103/2 -186310656 -415/8 616321152
-53 -932001984 -105/2 -312139008 -423/8 372314880
-54 0 -107/2 0 -431/8 20659968
-55 76374144 -109/2 988835904 -439/8 -164336256
-56 301989888 -111/2 -376233984 -447/8 53198208
-57 194856192 -113/2 146375424 -455/8 309768192
-58 293400576 -115/2 0 -463/8 -1680346368
-59 734287680 -117/2 -593635392 -471/8 -497446272
-60 -734552064 -119/2 202162176 -479/8 78769152
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-61 -245802816 -121/2 488351952 -487/8 709031808
-62 -198180864 -123/2 0 -495/8 1080148608
-63 -292533120 -125/2 -48263040 -503/8 502879104
-64 -226492416 -127/2 138608640 -511/8 87717888
-65 308297088 -129/2 -781861248 -519/8 114058368
-66 -562028544 -131/2 0 -527/8 -130540032
-67 215383104 -133/2 -1234737792 -535/8 -1230784128
-68 990388224 -135/2 1218281472 -543/8 38351232
-69 1187488512 -137/2 381867264 -551/8 -789360768
-70 0 -139/2 0 -559/8 256330368
-71 -1358822016 -141/2 1255004928 -567/8 -504724608
-72 -652935168 -143/2 -221405184 -575/8 -474526080
-73 145926144 -145/2 566592768 -583/8 1126705536
-74 382390272 -147/2 0 -591/8 876935808
-75 -422210880 -149/2 -1590591168 -599/8 845500032
-76 191213568 -151/2 -2598838272 -607/8 426085632
-77 -710620416 -153/2 62052480 -615/8 -1461825792
-78 1146617856 -155/2 0 -623/8 -233805312
-79 -1261018368 -157/2 2138052672 -631/8 4746234240
-80 16515072 -159/2 645636096 -639/8 -3200135040
-81 2691374688 -161/2 1945631232 -647/8 -1762701696
-82 -585252864 -163/2 0 -655/8 -2152621440
-83 -1886472000 -165/2 -745189632 -663/8 -1615396608
-84 632365056 -167/2 221405184 -671/8 2307457152
-85 1911192192 -169/2 -2261559600 -679/8 -2459255040
-86 0 -171/2 0 -687/8 2897057664
-87 -1212962688 -173/2 -227199168 -695/8 507178368
-88 0 -175/2 1446174720 -703/8 3809957760
-89 -1369734912 -177/2 -3320341632 -711/8 2389844736
-90 -1985679360 -179/2 0 -719/8 724211712
-91 1515411072 -181/2 1939105728 -727/8 -3018395520
-92 -1618698240 -183/2 2024497152 -735/8 -3274038144
-93 156981888 -185/2 -104702976 -743/8 1180158336
-94 -594542592 -187/2 0 -751/8 -3332448000
-95 7939228032 -189/2 -513962496 -759/8 474211584
-96 0 -191/2 -2022948864 -767/8 -3678210432
-97 -1462962816 -193/2 1335005568 -775/8 562947840
-98 2910256128 -195/2 0 -783/8 1199245824
-99 -4411775808 -197/2 1156344768 -791/8 -204360192

-100 -1084631040 -199/2 323592192 -799/8 2969459712
-121 -131145696
-169 -5228631648
-225 -43469978400
-289 31477013856
-361 -250713464544
-441 699825653280
-529 -395764329888
-625 -987067533600
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Table A.2: Fourier coefficients of ψ8,D3

D Cψ8,D3
(D, r3

1) D Cψ8,D3
(D, r3

2) D Cψ8,D3
(D, r3

3)
-1 2 -1/2 1 -5/8 -2
-2 -24 -3/2 -12 -13/8 22
-3 108 -5/2 56 -21/8 -84
-4 -176 -7/2 -112 -29/8 66
-5 -196 -9/2 9 -37/8 398
-6 1056 -11/2 364 -45/8 -990
-7 -728 -13/2 -616 -53/8 -70
-8 -1472 -15/2 432 -61/8 2354
-9 990 -17/2 -240 -69/8 -1080

-10 2752 -19/2 -484 -77/8 -1848
-11 1276 -21/2 2352 -85/8 -2292
-12 -9504 -23/2 -2608 -93/8 3852
-13 772 -25/2 1705 -101/8 7682
-14 9856 -27/2 -3024 -109/8 -8430
-15 1032 -29/2 -1848 -117/8 198
-16 128 -31/2 11168 -125/8 -9660
-17 -13576 -33/2 -6480 -133/8 -5012
-18 -216 -35/2 5432 -141/8 33048
-19 -2620 -37/2 -11144 -149/8 994
-20 17248 -39/2 -12720 -157/8 -6158
-21 22680 -41/2 16320 -165/8 -36984
-22 -32032 -43/2 5964 -173/8 -9126
-23 -9176 -45/2 27720 -181/8 39558
-24 -768 -47/2 -15904 -189/8 -21168
-25 15910 -49/2 -33551 -197/8 45206
-26 -30272 -51/2 -20520 -205/8 22616
-27 27216 -53/2 1960 -213/8 -36504
-28 64064 -55/2 26608 -221/8 -44224
-29 -51348 -57/2 65520 -229/8 -19626
-30 -38016 -59/2 18244 -237/8 -11004
-31 -31920 -61/2 -65912 -245/8 -126
-32 84480 -63/2 -1008 -253/8 121596
-33 -29568 -65/2 -111360 -261/8 32670
-34 5760 -67/2 33468 -269/8 15202
-35 20440 -69/2 30240 -277/8 -138758
-36 -87120 -71/2 45392 -285/8 38016
-37 71436 -73/2 145200 -293/8 -40018
-38 42592 -75/2 -95460 -301/8 -292376
-39 41256 -77/2 51744 -309/8 258852
-40 -180736 -79/2 -79968 -317/8 112558
-41 51720 -81/2 -174879 -325/8 175010
-42 115584 -83/2 -43404 -333/8 3582
-43 -100852 -85/2 64176 -341/8 -167836
-44 -112288 -87/2 26352 -349/8 -53126
-45 -1764 -89/2 267600 -357/8 -182952
-46 229504 -91/2 122584 -365/8 145772
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-47 48976 -93/2 -107856 -373/8 -75082
-48 6912 -95/2 -41936 -381/8 -183876
-49 -67102 -97/2 -357360 -389/8 -23974
-50 -40920 -99/2 180180 -397/8 531186
-51 -133512 -101/2 -215096 -405/8 104814
-52 -67936 -103/2 -66288 -413/8 -2996
-53 -201612 -105/2 272160 -421/8 95318
-54 266112 -107/2 23300 -429/8 -323136
-55 215864 -109/2 236040 -437/8 -134596
-56 -7168 -111/2 342096 -445/8 -406232
-57 56160 -113/2 -188640 -453/8 -160860
-58 -90816 -115/2 -490760 -461/8 107514
-59 278324 -117/2 -5544 -469/8 536928
-60 -90816 -119/2 -354592 -477/8 -34650
-61 126588 -121/2 373561 -485/8 198236
-62 -982784 -123/2 -75816 -493/8 253876
-63 -360360 -125/2 270480 -501/8 470880
-64 357376 -127/2 29440 -509/8 -160070
-65 596840 -129/2 -422640 -517/8 -866668
-66 155520 -131/2 473196 -525/8 -143220
-67 -205100 -133/2 140336 -533/8 -751788
-68 1194688 -135/2 108864 -541/8 405790
-69 -362544 -137/2 -46080 -549/8 21186
-70 -478016 -139/2 -157980 -557/8 395014
-71 -202776 -141/2 -925344 -565/8 -786124
-72 -13248 -143/2 217360 -573/8 1355184
-73 -727696 -145/2 428160 -581/8 1574580
-74 -547648 -147/2 -756 -589/8 -1554160
-75 184140 -149/2 -27832 -597/8 245700
-76 230560 -151/2 291696 -605/8 -747122
-77 344848 -153/2 -118800 -613/8 573526
-78 1119360 -155/2 110320 -621/8 -272160
-79 592016 -157/2 172424 -629/8 -508820
-80 -12544 -159/2 -565488 -637/8 1386
-81 -104814 -161/2 -134400 -645/8 -1300320
-82 -391680 -163/2 223516 -653/8 -1053366
-83 -290756 -165/2 1035552 -661/8 1394494
-84 -1995840 -167/2 -382928 -669/8 1304484
-85 567496 -169/2 -949031 -677/8 1062802
-86 -524832 -171/2 -4356 -685/8 1917412
-87 685176 -173/2 255528 -693/8 -914760
-88 23296 -175/2 -890960 -701/8 -921658
-89 -301376 -177/2 2093040 -709/8 -682394
-90 1362240 -179/2 -750228 -717/8 -872208
-91 342888 -181/2 -1107624 -725/8 112530
-92 807488 -183/2 678960 -733/8 -131238
-93 309960 -185/2 -775200 -741/8 -2876328
-94 1399552 -187/2 714296 -749/8 1793008
-95 -2209528 -189/2 592704 -757/8 64838
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-96 -2144256 -191/2 1157920 -765/8 -20628
-97 -399848 -193/2 -119280 -773/8 931542
-98 805224 -195/2 -379728 -781/8 618572
-99 11484 -197/2 -1265768 -789/8 2421360

-100 -1400080 -199/2 1603536 -797/8 -1044646
-121 1391326
-169 -412890
-225 7875450
-289 -16651582
-361 26275038
-441 -33215490
-529 24413858
-625 -20810950
-729 -201788658
-841 297835558
-961 -162944638

-1089 688706370
-1225 -533796410
-1369 -225738714
-1521 -204380550
-1681 384528482
-1849 259765470
-2025 -833795370
-2209 4916006978
-2401 -2831097598
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Table A.3: Fourier coefficients of ψ9,D3 and ψ7,D5

D Cψ9,D3
(D, r3

3) D Cψ7,D5
(D, r3

5)
-5/8 1 -3/8 1
-13/8 -15 -11/8 -9
-21/8 90 -19/8 27
-29/8 -245 -27/8 -12
-37/8 105 -35/8 -90
-45/8 1107 -43/8 135
-53/8 -2485 -51/8 54
-61/8 195 -59/8 -99
-69/8 4860 -67/8 -189
-77/8 -2420 -75/8 -85
-85/8 -3990 -83/8 657
-93/8 -8190 -91/8 -162

-101/8 19695 -99/8 -135
-109/8 13755 -107/8 -171
-117/8 -38475 -115/8 -810
-125/8 3990 -123/8 702
-133/8 -9750 -131/8 495
-141/8 34020 -139/8 837
-149/8 43015 -147/8 -673
-157/8 -46605 -155/8 -900
-165/8 -13860 -163/8 243
-173/8 -127385 -171/8 -1053
-181/8 106485 -179/8 -297
-189/8 165240 -187/8 1566
-197/8 -79275 -195/8 2700
-205/8 -16380 -203/8 -1764
-213/8 -92340 -211/8 81
-221/8 -35840 -219/8 -1188
-229/8 -151995 -227/8 -1377
-237/8 188550 -235/8 270
-245/8 315783 -243/8 -2043
-253/8 90090 -251/8 3321
-261/8 -271215 -259/8 -756
-269/8 -307485 -267/8 3726
-277/8 20475 -275/8 3015
-285/8 -505440 -283/8 -4563
-293/8 915385 -291/8 -3348
-301/8 209340 -299/8 504
-309/8 -284130 -307/8 -351
-317/8 337645 -315/8 -1350
-325/8 -294225 -323/8 -468
-333/8 269325 -331/8 -891
-341/8 -1707970 -339/8 7074
-349/8 -70305 -347/8 1611
-357/8 1297620 -355/8 2700
-365/8 574210 -363/8 -2423
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-373/8 492765 -371/8 -1512
-381/8 251370 -379/8 -3267
-389/8 -847245 -387/8 -5265
-397/8 -1102725 -395/8 -1800
-405/8 438129 -403/8 3510
-413/8 -1416190 -411/8 2970
-421/8 641445 -419/8 -6741
-429/8 0 -427/8 8910
-437/8 1537330 -435/8 -1620
-445/8 1239420 -443/8 7227
-453/8 -800370 -451/8 7506
-461/8 1403815 -459/8 -648
-469/8 -472080 -467/8 -13923
-477/8 -2750895 -475/8 -9045
-485/8 -2707950 -483/8 7884
-493/8 -761490 -491/8 -5985
-501/8 952560 -499/8 -2079
-509/8 7162255 -507/8 -815
-517/8 -1869450 -515/8 6930
-525/8 -1047150 -523/8 1107
-533/8 1169350 -531/8 -1485
-541/8 728805 -539/8 12231
-549/8 500175 -547/8 5049
-557/8 -5564055 -555/8 -8100
-565/8 1575990 -563/8 15075
-573/8 -5375160 -571/8 -11205
-581/8 939590 -579/8 -4104
-589/8 1736280 -587/8 -10719
-597/8 4629870 -595/8 -18900
-605/8 151789 -603/8 7371
-613/8 2775045 -611/8 5310
-621/8 8922960 -619/8 7587
-629/8 -9469990 -627/8 -756
-637/8 -4736745 -635/8 6390
-645/8 -408240 -643/8 -11799
-653/8 -2820545 -651/8 16632
-661/8 -7843095 -659/8 4041
-669/8 4410630 -667/8 13500
-677/8 7312455 -675/8 1020
-685/8 4813590 -683/8 -9117
-693/8 -2678940 -691/8 -297
-701/8 -1306095 -699/8 -23274
-709/8 4328205 -707/8 -12078
-717/8 4383720 -715/8 9180
-725/8 2850575 -723/8 -4212
-733/8 650415 -731/8 -16236
-741/8 -16312140 -739/8 5535
-749/8 -13250360 -747/8 9855
-757/8 3613365 -755/8 29700
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-765/8 -10234350 -763/8 -3780
-773/8 25950965 -771/8 -2862
-781/8 -2986830 -779/8 -11034
-789/8 -126360 -787/8 23463
-797/8 14627375 -795/8 13500
-845/8 -6051657 -891/8 21303

-2925/8 -754687125 -867/8 19619
-1445/8 84706867 -1083/8 46799
-1805/8 290177621 -539/8 12231
-2205/8 349571781 -4851/8 183465
-2645/8 458060567 -1587/8 -80879
-8125/8 17136589125 -1875/8 -60275
-3645/8 -960510717 -8019/8 39609
-4205/8 4663815989 -2523/8 -78181
-4805/8 2711816609 -2883/8 -197761
-5445/8 168030423 -1331/8 9828

-15925/8 -92911253175 -11979/8 147420
-6845/8 -440148993 -3675/8 57205
-7605/8 -6699184299 -4107/8 109873
-8405/8 -54454984999 -1859/8 -32211
-9245/8 -65088056133 -16731/8 -483165
-1053/8 -46725255 -5043/8 79763

-26325/8 -916515876825 -5547/8 710255
-11045/8 31316662703 -22275/8 -7136505
-12005/8 39981446849 -6627/8 -576479

-7203/8 -139775
-3179/8 -176571
-28611/8 -2648565
-8427/8 -1345141
-9075/8 205955
-3971/8 -297729
-35739/8 -4465935
-10443/8 -2846039
-11163/8 600721
-43659/8 -28950777
-12675/8 69275
-13467/8 426767
-5819/8 508905
-52371/8 7633575
-15123/8 1056817
-15987/8 591265
-6875/8 69975
-61875/8 1049625
-17787/8 1630679
-18723/8 4059839
-72171/8 -47064969
-2299/8 6453
-20691/8 -251667
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Table A.4: Fourier coefficients of 7ψ8,D5

D C7ψ8,D5
(D, r5

1) D C7ψ8,D5
(D, r5

2) D C7ψ8,D5
(D, r5

3)
-1 96 -1/2 -48 -3/8 24
-2 -768 -3/2 384 -11/8 -312
-3 1728 -5/2 -960 -19/8 1608
-4 1536 -7/2 0 -27/8 -3744
-5 -10560 -9/2 3600 -35/8 1680
-6 6144 -11/2 -4992 -43/8 9672
-7 18816 -13/2 2112 -51/8 -15984
-8 -12288 -15/2 0 -59/8 -936
-9 -22752 -17/2 -11136 -67/8 3912

-10 -15360 -19/2 25728 -75/8 35880
-11 53952 -21/2 -8064 -83/8 -11304
-12 27648 -23/2 0 -91/8 -100464
-13 -40896 -25/2 -11760 -99/8 73944
-14 0 -27/2 -59904 -107/8 40536
-15 -97920 -29/2 80064 -115/8 40080
-16 24576 -31/2 0 -123/8 -57456
-17 126336 -33/2 65664 -131/8 -111000
-18 57600 -35/2 26880 -139/8 56664
-19 -68544 -37/2 -228288 -147/8 -80472
-20 -168960 -39/2 0 -155/8 233760
-21 169344 -41/2 -31488 -163/8 84552
-22 -79872 -43/2 154752 -171/8 -120600
-23 -104064 -45/2 227520 -179/8 -203160
-24 98304 -47/2 0 -187/8 -15216
-25 143520 -49/2 -69552 -195/8 -73440
-26 33792 -51/2 -255744 -203/8 -61152
-27 -269568 -53/2 -224064 -211/8 661464
-28 301056 -55/2 0 -219/8 117792
-29 -222528 -57/2 157824 -227/8 -53400
-30 0 -59/2 -14976 -235/8 -1054320
-31 185088 -61/2 725184 -243/8 111672
-32 -196608 -63/2 0 -251/8 458616
-33 -223488 -65/2 -234240 -259/8 -362208
-34 -178176 -67/2 62592 -267/8 668304
-35 900480 -69/2 -1029888 -275/8 -76440
-36 -364032 -71/2 0 -283/8 305496
-37 -206400 -73/2 -180096 -291/8 48672
-38 411648 -75/2 574080 -299/8 -209856
-39 584064 -77/2 715008 -307/8 -852264
-40 -245760 -79/2 0 -315/8 -398160
-41 -1320576 -81/2 383184 -323/8 -280032
-42 -129024 -83/2 -180864 -331/8 1197144
-43 -436800 -85/2 -769920 -339/8 263088
-44 863232 -87/2 0 -347/8 44520
-45 792000 -89/2 436608 -355/8 1577760
-46 0 -91/2 -1607424 -363/8 -996168
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-47 160512 -93/2 434304 -371/8 -348096
-48 442368 -95/2 0 -379/8 -1567656
-49 139104 -97/2 603264 -387/8 -725400
-50 -188160 -99/2 1183104 -395/8 352320
-51 -1120896 -101/2 232896 -403/8 1090704
-52 -654336 -103/2 0 -411/8 -1292112
-53 -363456 -105/2 -1693440 -419/8 2329992
-54 -958464 -107/2 648576 -427/8 2254224
-55 167040 -109/2 172224 -435/8 -303840
-56 0 -111/2 0 -443/8 -1280280
-57 3739392 -113/2 -1496832 -451/8 -3861072
-58 1281024 -115/2 641280 -459/8 2493504
-59 -391104 -117/2 -158400 -467/8 -1604616
-60 -1566720 -119/2 0 -475/8 393960
-61 945600 -121/2 1992336 -483/8 1336608
-62 0 -123/2 -919296 -491/8 -1972728
-63 -4459392 -125/2 -835200 -499/8 -1481256
-64 393216 -127/2 0 -507/8 3588792
-65 -1633920 -129/2 1081728 -515/8 3115440
-66 1050624 -131/2 -1776000 -523/8 198120
-67 227136 -133/2 2400384 -531/8 221832
-68 2021376 -135/2 0 -539/8 -452088
-69 799488 -137/2 -344832 -547/8 -4342824
-70 430080 -139/2 906624 -555/8 -4220640
-71 3471744 -141/2 -1859328 -563/8 1452168
-72 921600 -143/2 0 -571/8 1108200
-73 -1629696 -145/2 -1770240 -579/8 615744
-74 -3652608 -147/2 -1287552 -587/8 -1979016
-75 423360 -149/2 1154496 -595/8 6185760
-76 -1096704 -151/2 0 -603/8 -293400
-77 -2972928 -153/2 2639232 -611/8 3118800
-78 0 -155/2 3740160 -619/8 13800
-79 1475328 -157/2 -6352704 -627/8 -1255392
-80 -2703360 -159/2 0 -635/8 -1431600
-81 1659744 -161/2 2333184 -643/8 -2338344
-82 -503808 -163/2 1352832 -651/8 -3358656
-83 8149440 -165/2 5679360 -659/8 -4064232
-84 2709504 -167/2 0 -667/8 6075168
-85 -3288960 -169/2 -7177584 -675/8 -5597280
-86 2476032 -171/2 -1929600 -683/8 1922280
-87 -3998592 -173/2 -3057216 -691/8 5664360
-88 -1277952 -175/2 0 -699/8 3963600
-89 -4253952 -177/2 -763776 -707/8 -91728
-90 3640320 -179/2 -3250560 -715/8 -1878240
-91 -2072448 -181/2 6600000 -723/8 -587232
-92 -1665024 -183/2 0 -731/8 5560416
-93 -2477952 -185/2 6213120 -739/8 -4968600
-94 0 -187/2 -243456 -747/8 2679048
-95 4817280 -189/2 1257984 -755/8 -6210720
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-96 1572864 -191/2 0 -763/8 -9845472
-97 3273600 -193/2 2077824 -771/8 8972208
-98 -1112832 -195/2 -1175040 -779/8 -1915440
-99 -4046400 -197/2 -926400 -787/8 -3989400

-100 2296320 -199/2 0 -795/8 -4105440
-121 -6795744
-169 19838880
-225 -34014240
-289 -31793568
-361 17765664
-441 -32967648
-529 46497120
-625 -62637600
-729 188907552
-841 -300784224
-961 -37045152
-1089 1610591328
-1225 207960480
-1369 593398944
-1521 -4701814560
-1681 -126117024
-1849 2904173088
-2025 2481317280
-2209 -547333536
-2401 -4006373280
-2601 7535075616
-2809 2352642720
-3025 -10159637280
-3249 -4210462368
-3481 9611302944
-3721 -1857732192
-3969 2404969056
-4225 29659125600
-4489 -13586243808
-4761 -11019817440
-5041 -34729060512
-5329 21776815968
-5625 14845111200
-5929 -9847033056
-6241 50980984416
-6561 -62138319264
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Table A.5: Fourier coefficients of ψ10,D5

D Cψ10,D5
(D, r5

1) D Cψ10,D5
(D, r5

2) D Cψ10,D5
(D, r5

3)
-1 -78 -1/2 3 -3/8 3
-2 192 -3/2 192 -11/8 33
-3 1332 -5/2 -1020 -19/8 -663
-4 -4992 -7/2 0 -27/8 3708
-5 660 -9/2 5895 -35/8 -9870
-6 12288 -11/2 2112 -43/8 13809
-7 -7224 -13/2 -32604 -51/8 -13374
-8 12288 -15/2 0 -59/8 15651
-9 -39546 -17/2 94728 -67/8 15321

-10 -65280 -19/2 -42432 -75/8 -125475
-11 152724 -21/2 -44856 -83/8 156267
-12 85248 -23/2 0 -91/8 20706
-13 -157284 -25/2 -219225 -99/8 16731
-14 0 -27/2 237312 -107/8 -344637
-15 -50040 -29/2 326124 -115/8 10770
-16 -319488 -31/2 0 -123/8 766818
-17 194856 -33/2 -323928 -131/8 -525795
-18 377280 -35/2 -631680 -139/8 -160749
-19 713628 -37/2 440004 -147/8 -160251
-20 42240 -39/2 0 -155/8 1215780
-21 -1780632 -41/2 122928 -163/8 -1203351
-22 135168 -43/2 883776 -171/8 -1302795
-23 -1043256 -45/2 -517140 -179/8 1867485
-24 786432 -47/2 0 -187/8 1244562
-25 3262350 -49/2 545643 -195/8 955620
-26 -2086656 -51/2 -855936 -203/8 -4422684
-27 1646352 -53/2 -2740212 -211/8 390699
-28 -462336 -55/2 0 -219/8 -574092
-29 -881484 -57/2 3887208 -227/8 2180685
-30 0 -59/2 1001664 -235/8 2864130
-31 -6705264 -61/2 -424404 -243/8 -199881
-32 786432 -63/2 0 -251/8 -2116569
-33 2878128 -65/2 -2522640 -259/8 -3726492
-34 6062592 -67/2 980544 -267/8 3007602
-35 5124840 -69/2 1384272 -275/8 -2411475
-36 -2530944 -71/2 0 -283/8 4629267
-37 -3584220 -73/2 -6748248 -291/8 -4366188
-38 -2715648 -75/2 -8030400 -299/8 7027176
-39 -4924728 -77/2 14972496 -307/8 -8021637
-40 -4177920 -79/2 0 -315/8 -5004090
-41 6841608 -81/2 2503251 -323/8 15365076
-42 -2870784 -83/2 10001088 -331/8 8306019
-43 -76380 -85/2 -7623480 -339/8 -2594538
-44 9774336 -87/2 0 -347/8 -31328475
-45 1296900 -89/2 -14031432 -355/8 -5996220
-46 0 -91/2 1325184 -363/8 12708399



146 A. TABLES OF FOURIER COEFFICIENTS

-47 6256272 -93/2 -8795448 -371/8 22356264
-48 5455872 -95/2 0 -379/8 -4431069
-49 -14186718 -97/2 13131528 -387/8 27134685
-50 -14030400 -99/2 1070784 -395/8 -17963160
-51 439848 -101/2 706524 -403/8 -26598702
-52 -10066176 -103/2 0 -411/8 -7738362
-53 -9775044 -105/2 34287120 -419/8 -7097247
-54 15187968 -107/2 -22056768 -427/8 31815042
-55 39366360 -109/2 3733164 -435/8 -6552540
-56 0 -111/2 0 -443/8 10931925
-57 -16798608 -113/2 -15265776 -451/8 -2653002
-58 20871936 -115/2 689280 -459/8 -16530264
-59 -39697092 -117/2 -64066860 -467/8 65247
-60 -3202560 -119/2 0 -475/8 48448725
-61 33062340 -121/2 12708399 -483/8 -59365404
-62 0 -123/2 49076352 -491/8 20729817
-63 -3662568 -125/2 58599000 -499/8 9517131
-64 -20447232 -127/2 0 -507/8 9617871
-65 -30122040 -129/2 -13164552 -515/8 3819510
-66 -20731392 -131/2 -33650880 -523/8 -72738075
-67 11934636 -133/2 25319112 -531/8 7935057
-68 12470784 -135/2 0 -539/8 6002073
-69 69448464 -137/2 -68494224 -547/8 16284843
-70 -40427520 -139/2 -10287936 -555/8 2458980
-71 61783368 -141/2 18745488 -563/8 79803441
-72 24145920 -143/2 0 -571/8 16519605
-73 -58510464 -145/2 -37464720 -579/8 63567576
-74 28160256 -147/2 -10256064 -587/8 -166216953
-75 -97335900 -149/2 43792476 -595/8 -34758780
-76 45672192 -151/2 0 -603/8 30105765
-77 173712 -153/2 48027096 -611/8 -112658790
-78 0 -155/2 77809920 -619/8 -13830555
-79 -104534256 -157/2 -7972308 -627/8 117374004
-80 2703360 -159/2 0 -635/8 142240650
-81 75478338 -161/2 44085216 -643/8 73145547
-82 7867392 -163/2 -77014464 -651/8 -55777176
-83 61662660 -165/2 -125112240 -659/8 -94080813
-84 -113960448 -167/2 0 -667/8 -88511676
-85 53505720 -169/2 9617871 -675/8 -155087100
-86 56561664 -171/2 -83378880 -683/8 256087605
-87 81274968 -173/2 -16221828 -691/8 -24603555
-88 8650752 -175/2 0 -699/8 41126490
-89 36913584 -177/2 153272808 -707/8 27531126
-90 -33096960 -179/2 119519040 -715/8 -27172860
-91 -86768136 -181/2 -16462380 -723/8 -165738924
-92 -66768384 -183/2 0 -731/8 -33222564
-93 -157222728 -185/2 -81021120 -739/8 71095245
-94 0 -187/2 79651968 -747/8 79227369
-95 -99129720 -189/2 -55442016 -755/8 -35880660
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-96 50331648 -191/2 0 -763/8 -66468444
-97 61951560 -193/2 -25078008 -771/8 140530518
-98 34921152 -195/2 61159680 -779/8 71155050
-99 300102660 -197/2 -43153260 -787/8 223092285
-100 208790400 -199/2 0 -795/8 -142360380
-121 -54054858
-169 -1003046850
-225 1654011450
-289 -3664036974
-361 -6964711962
-441 -7192666026
-529 81005125890
-625 -92207163750
-729 156340323126
-841 23069261982
-961 -427678395534

-1089 -27405813006
-1225 593359480350
-1369 1327507544142
-1521 -508544752950
-1681 582993418722
-1849 -3544394729226
-2025 -3156881486850
-2209 3337902191442
-2401 6646101541170
-2601 -1857666745818
-2809 -8174228488530
-3025 2260844435850
-3249 -3531108964734
-3481 34042857156438
-3721 -56361407427234
-3969 13728075593778
-4225 41952434501250
-4489 -23220449276154
-4761 41069598826230
-5041 20332412880546
-5329 -108391819515486
-5625 -46749032021250
-5929 -9831551627898
-6241 238946924093202
-6561 72899789108562
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Table A.6: Fourier coefficients of 5ψ8,D7

D C5ψ8,D7
(D, r7

1) D C5ψ8,D7
(D, r7

2) D C5ψ8,D7
(D, r7

3)
-1 864 -1/2 -144 -1/8 18
-2 1152 -3/2 -1728 -9/8 -270
-3 -1728 -5/2 0 -17/8 1728
-4 -6912 -7/2 6912 -25/8 -6030
-5 -8640 -9/2 2160 -33/8 12096
-6 13824 -11/2 1728 -41/8 -13824
-7 17280 -13/2 0 -49/8 12114
-8 -9216 -15/2 -34560 -57/8 -22464
-9 33696 -17/2 -13824 -65/8 34560

-10 0 -19/2 22464 -73/8 -1728
-11 -63936 -21/2 0 -81/8 -42606
-12 13824 -23/2 34560 -89/8 1728
-13 -60480 -25/2 48240 -97/8 29376
-14 -55296 -27/2 -20736 -105/8 86400
-15 86400 -29/2 0 -113/8 -134784
-16 55296 -31/2 69120 -121/8 -4302
-17 38016 -33/2 -96768 -129/8 8640
-18 -17280 -35/2 -120960 -137/8 145152
-19 50112 -37/2 0 -145/8 -172800
-20 69120 -39/2 -131328 -153/8 67392
-21 24192 -41/2 110592 -161/8 96768
-22 -13824 -43/2 98496 -169/8 -14670
-23 -203904 -45/2 0 -177/8 -243648
-24 -110592 -47/2 96768 -185/8 -120960
-25 -73440 -49/2 -96912 -193/8 416448
-26 0 -51/2 335232 -201/8 133056
-27 -20736 -53/2 0 -209/8 -105408
-28 -138240 -55/2 -172800 -217/8 -314496
-29 191808 -57/2 179712 -225/8 90450
-30 276480 -59/2 -216000 -233/8 -177984
-31 145152 -61/2 0 -241/8 247104
-32 73728 -63/2 -103680 -249/8 -150336
-33 -317952 -65/2 -276480 -257/8 518400
-34 110592 -67/2 -461376 -265/8 -172800
-35 604800 -69/2 0 -273/8 -231552
-36 -269568 -71/2 532224 -281/8 -181440
-37 191808 -73/2 13824 -289/8 176274
-38 -179712 -75/2 146880 -297/8 145152
-39 -756864 -77/2 0 -305/8 -86400
-40 0 -79/2 -41472 -313/8 -345600
-41 -134784 -81/2 340848 -321/8 -57024
-42 0 -83/2 191808 -329/8 411264
-43 -665280 -85/2 0 -337/8 196992
-44 511488 -87/2 269568 -345/8 950400
-45 129600 -89/2 -13824 -353/8 -787968
-46 -276480 -91/2 169344 -361/8 -842382
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-47 698112 -93/2 0 -369/8 -539136
-48 -110592 -95/2 -864000 -377/8 286848
-49 581472 -97/2 -235008 -385/8 120960
-50 -385920 -99/2 67392 -393/8 1211328
-51 701568 -101/2 0 -401/8 98496
-52 483840 -103/2 -601344 -409/8 667008
-53 -772416 -105/2 -691200 -417/8 -1933632
-54 165888 -107/2 -22464 -425/8 -146880
-55 190080 -109/2 0 -433/8 945216
-56 442368 -111/2 366336 -441/8 -181710
-57 82944 -113/2 1078272 -449/8 -274752
-58 0 -115/2 293760 -457/8 -207360
-59 -1325376 -117/2 0 -465/8 -138240
-60 -691200 -119/2 96768 -473/8 616896
-61 -741312 -121/2 34416 -481/8 -127872
-62 -552960 -123/2 -604800 -489/8 -209088
-63 673920 -125/2 0 -497/8 1316736
-64 -442368 -127/2 2211840 -505/8 -518400
-65 432000 -129/2 -69120 -513/8 -269568
-66 774144 -131/2 98496 -521/8 -694656
-67 -661824 -133/2 0 -529/8 1017810
-68 -304128 -135/2 -414720 -537/8 589248
-69 919296 -137/2 -1161216 -545/8 -1641600
-70 967680 -139/2 -368064 -553/8 -2865024
-71 -176256 -141/2 0 -561/8 2536704
-72 138240 -143/2 -988416 -569/8 -473472
-73 1029888 -145/2 1382400 -577/8 1676160
-74 0 -147/2 -2348352 -585/8 1347840
-75 578880 -149/2 0 -593/8 1268352
-76 -400896 -151/2 -1223424 -601/8 -485568
-77 -546048 -153/2 -539136 -609/8 -2128896
-78 1050624 -155/2 2246400 -617/8 -2196288
-79 1112832 -157/2 0 -625/8 -139950
-80 -552960 -159/2 -103680 -633/8 -907200
-81 -1485216 -161/2 -774144 -641/8 2279232
-82 -884736 -163/2 2787264 -649/8 696384
-83 309312 -165/2 0 -657/8 25920
-84 -193536 -167/2 628992 -665/8 1779840
-85 -1641600 -169/2 117360 -673/8 -1266624
-86 -787968 -171/2 -336960 -681/8 -872640
-87 -1717632 -173/2 0 -689/8 -241920
-88 110592 -175/2 -587520 -697/8 383616
-89 -400896 -177/2 1949184 -705/8 -604800
-90 0 -179/2 98496 -713/8 1842048
-91 943488 -181/2 0 -721/8 774144
-92 1631232 -183/2 1845504 -729/8 79218
-93 3003264 -185/2 967680 -737/8 -3112128
-94 -774144 -187/2 -2056320 -745/8 259200
-95 -2678400 -189/2 0 -753/8 -1097280
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-96 884736 -191/2 -2419200 -761/8 -1534464
-97 162432 -193/2 -3331584 -769/8 1162944
-98 775296 -195/2 172800 -777/8 3580416
-99 959040 -197/2 0 -785/8 -3162240
-100 587520 -199/2 1140480 -793/8 4223232
-121 2093472
-169 3092256
-225 -2864160
-289 8461152
-361 -28581984
-441 22677408
-529 48854880
-625 -52077600
-729 -91515744
-841 -67548384
-961 170865504

-1089 81645408
-1225 -49425120
-1369 182458656
-1521 120597984
-1681 -50180256
-1849 -476272224
-2025 126243360
-2209 318671712
-2401 -120765600
-2601 329984928
-2809 -1162201824
-3025 -177945120
-3249 -1114697376
-3481 2458977696
-3721 911246112
-3969 -999550368
-4225 -262841760
-4489 150991776
-4761 1905340320
-5041 -1531560096
-5329 510852960
-5625 -2031026400
-5929 1408906656
-6241 -3507700896
-6561 2149978464
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Table A.7: Fourier coefficients of 4ψ10,D7

D C4ψ10,D7
(D, r7

1) D C4ψ10,D7
(D, r7

2) D C4ψ10,D7
(D, r7

3)
-1 -120 -1/2 4 -1/8 1
-2 -2144 -3/2 720 -9/8 9
-3 -6480 -5/2 4320 -17/8 -240
-4 -4800 -7/2 6720 -25/8 1705
-5 11760 -9/2 36 -33/8 -6480
-6 28800 -11/2 -21840 -41/8 16320
-7 43680 -13/2 -47520 -49/8 -33551
-8 43264 -15/2 -25920 -57/8 65520
-9 -59400 -17/2 -960 -65/8 -111360

-10 -103680 -19/2 29040 -73/8 145200
-11 -76560 -21/2 181440 -81/8 -174879
-12 -259200 -23/2 156480 -89/8 267600
-13 -46320 -25/2 6820 -97/8 -357360
-14 268800 -27/2 181440 -105/8 272160
-15 -61920 -29/2 -142560 -113/8 -188640
-16 360960 -31/2 -670080 -121/8 373561
-17 814560 -33/2 -25920 -129/8 -422640
-18 -19296 -35/2 -325920 -137/8 -46080
-19 157200 -37/2 -859680 -145/8 428160
-20 470400 -39/2 763200 -153/8 -118800
-21 -1360800 -41/2 65280 -161/8 -134400
-22 -873600 -43/2 -357840 -169/8 -949031
-23 550560 -45/2 2138400 -177/8 2093040
-24 -2165760 -47/2 954240 -185/8 -775200
-25 -954600 -49/2 -134204 -193/8 -119280
-26 1140480 -51/2 1231200 -201/8 -2686320
-27 -1632960 -53/2 151200 -209/8 3830640
-28 1747200 -55/2 -1596480 -217/8 -789600
-29 3080880 -57/2 262080 -225/8 15345
-30 -1036800 -59/2 -1094640 -233/8 -2990640
-31 1915200 -61/2 -5084640 -241/8 4364400
-32 3352576 -63/2 60480 -249/8 -460080
-33 1774080 -65/2 -445440 -257/8 -3355200
-34 514560 -67/2 -2008080 -265/8 -1864320
-35 -1226400 -69/2 2332800 -273/8 6118560
-36 -2376000 -71/2 -2723520 -281/8 2936880
-37 -4286160 -73/2 580800 -289/8 -8325791
-38 1161600 -75/2 5727600 -297/8 -1632960
-39 -2475360 -77/2 3991680 -305/8 4133280
-40 -6359040 -79/2 4798080 -313/8 9286080
-41 -3103200 -81/2 -699516 -321/8 -11722320
-42 -4354560 -83/2 2604240 -329/8 829920
-43 6051120 -85/2 4950720 -337/8 848160
-44 -3062400 -87/2 -1581120 -345/8 6697440
-45 105840 -89/2 1070400 -353/8 -15909120
-46 6259200 -91/2 -7355040 -361/8 8185321
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-47 -2938560 -93/2 -8320320 -369/8 8078400
-48 19491840 -95/2 2516160 -377/8 12790560
-49 4026120 -97/2 -1429440 -385/8 -25243680
-50 -3655520 -99/2 -10810800 -393/8 -6499440
-51 8010720 -101/2 -16593120 -401/8 7261200
-52 -1852800 -103/2 3977280 -409/8 13657440
-53 12096720 -105/2 1088640 -417/8 -6283440
-54 7257600 -107/2 -1398000 -425/8 -1909200
-55 -12951840 -109/2 18208800 -433/8 4599600
-56 -20213760 -111/2 -20525760 -441/8 -301959
-57 -3369600 -113/2 -754560 -449/8 -13457520
-58 3421440 -115/2 29445600 -457/8 -4219200
-59 -16699440 -117/2 -427680 -465/8 32296320
-60 -2476800 -119/2 21275520 -473/8 -6850800
-61 -7595280 -121/2 1494244 -481/8 -10126560
-62 -26803200 -123/2 4548960 -489/8 -26658000
-63 21621600 -125/2 20865600 -497/8 23335200
-64 1167360 -127/2 -1766400 -505/8 4792320
-65 -35810400 -129/2 -1690560 -513/8 16511040
-66 13893120 -131/2 -28391760 -521/8 -25002720
-67 12306000 -133/2 10825920 -529/8 12206929
-68 32582400 -135/2 -6531840 -537/8 -39625200
-69 21752640 -137/2 -184320 -545/8 27769440
-70 -13036800 -139/2 9478800 -553/8 11689440
-71 12166560 -141/2 -71383680 -561/8 32345280
-72 389376 -143/2 -13041600 -569/8 -12983520
-73 43661760 -145/2 1712640 -577/8 -20004960
-74 20632320 -147/2 45360 -585/8 -55123200
-75 -11048400 -149/2 -2147040 -593/8 8774880
-76 6288000 -151/2 -17501760 -601/8 10290480
-77 -20690880 -153/2 -475200 -609/8 65681280
-78 30528000 -155/2 -6619200 -617/8 17979600
-79 -35520960 -157/2 13301280 -625/8 -40592975
-80 -35374080 -159/2 33929280 -633/8 -22600080
-81 6288840 -161/2 -537600 -641/8 -18126480
-82 -34990080 -163/2 -13410960 -649/8 34416240
-83 17445360 -165/2 79885440 -657/8 1306800
-84 -54432000 -167/2 22975680 -665/8 -14209440
-85 -34049760 -169/2 -3796124 -673/8 -7112400
-86 -14313600 -171/2 261360 -681/8 27624240
-87 -41110560 -173/2 19712160 -689/8 -65909760
-88 65694720 -175/2 53457600 -697/8 71929440
-89 18082560 -177/2 8372160 -705/8 31416480
-90 -51321600 -179/2 45013680 -713/8 27870240
-91 -20573280 -181/2 -85445280 -721/8 -144762240
-92 22022400 -183/2 -40737600 -729/8 -45663831
-93 -18597600 -185/2 -3100800 -737/8 52764720
-94 38169600 -187/2 -42857760 -745/8 146311200
-95 132571680 -189/2 45722880 -753/8 -56732400
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-96 -7004160 -191/2 -69475200 -761/8 63691200
-97 23990880 -193/2 -477120 -769/8 -78000240
-98 71933344 -195/2 22783680 -777/8 -38626560
-99 -689040 -197/2 -97644960 -785/8 -81925920
-100 -38184000 -199/2 -96212160 -793/8 21048960
-121 -83479560
-169 24773400
-225 -472527000
-289 999094920
-361 -1576502280
-441 1992929400
-529 -1464831480
-625 1248657000
-729 12107319480
-841 -17870133480
-961 9776678280

-1089 -41322382200
-1225 32027784600
-1369 13544322840
-1521 12262833000
-1681 -23071708920
-1849 -15585928200
-2025 50027722200
-2209 -294960418680
-2401 169865855880
-2601 494551985400
-2809 141343224600
-3025 -664079899800
-3249 -780368628600
-3481 536913532920
-3721 -936128995560
-3969 -210996870840
-4225 197072397000
-4489 1695804213240
-4761 -725091582600
-5041 -958470710520
-5329 73113632520
-5625 618085215000
-5929 2800822717560
-6241 -4204774713720
-6561 1936995369480
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Table A.8: Fourier coefficients of ψ9,D7 and ψ11,D7

D Cψ9,D7
(D, r7

3) Cψ11,D7
(D, r7

3)
-1/8 1 1
-9/8 237 -507

-17/8 1440 -15120
-25/8 245 -73075
-33/8 -1440 -166320
-41/8 -11520 -60480
-49/8 3353 53417
-57/8 -12960 1043280
-65/8 28800 604800
-73/8 15840 1829520
-81/8 17289 -967671
-89/8 -4320 589680
-97/8 36000 -7635600

-105/8 -100800 1058400
-113/8 -66240 -9465120
-121/8 70789 -693011
-129/8 -142560 -498960
-137/8 5760 15361920
-145/8 86400 -3628800
-153/8 108000 29710800
-161/8 80640 6773760
-169/8 149533 3205957
-177/8 -180000 24570000
-185/8 302400 -22226400
-193/8 59040 -48520080
-201/8 -298080 3311280
-209/8 -456480 -4823280
-217/8 141120 -128489760
-225/8 58065 37049025
-233/8 -465120 -22876560
-241/8 -47520 -11476080
-249/8 -154080 46433520
-257/8 385920 86667840
-265/8 -28800 -45964800
-273/8 544320 253380960
-281/8 684000 -57078000
-289/8 -331183 46974833
-297/8 -224640 205571520
-305/8 849600 31903200
-313/8 -11520 -296170560
-321/8 1208160 -50243760
-329/8 -1834560 136110240
-337/8 -941760 -207839520
-345/8 388800 -227253600
-353/8 -288000 -299980800
-361/8 -185059 -89291179
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-369/8 -864000 118843200
-377/8 -72000 -143488800
-385/8 -705600 -360914400
-393/8 277920 605450160
-401/8 82080 19822320
-409/8 -515520 397867680
-417/8 2086560 -255059280
-425/8 2152800 632394000
-433/8 -1078560 449683920
-441/8 794661 -27082419
-449/8 -1162080 291982320
-457/8 840960 959152320
-465/8 2188800 -743299200
-473/8 2052000 -601246800
-481/8 -1650240 -270617760
-489/8 -1516320 729524880
-497/8 -2358720 -89540640
-505/8 1065600 -1294876800
-513/8 -2021760 -1289494080
-521/8 54720 -394117920
-529/8 75337 1334599033
-537/8 -2717280 -1683354960
-545/8 -561600 -922168800
-553/8 504000 794858400
-561/8 1192320 -884157120
-569/8 -5175360 932329440
-577/8 452160 1849569120
-585/8 2160000 -1188432000
-593/8 3360960 1438728480
-601/8 3610080 -801949680
-609/8 -1128960 2097325440
-617/8 3566880 495074160
-625/8 -1739975 2977455625
-633/8 -5404320 -547994160
-641/8 6564960 -785982960
-649/8 3615840 2549186640
-657/8 3754080 -927566640
-665/8 -3528000 -2249100000
-673/8 2988000 825022800
-681/8 -6078240 -964398960
-689/8 -1169280 2388597120
-697/8 8640 -2738020320
-705/8 -2462400 -4374064800
-713/8 -2508480 -1138868640
-721/8 0 -1257379200
-729/8 -1967787 2004363117
-737/8 -6798240 -94636080
-745/8 6379200 -4928666400
-753/8 1412640 -3712398480
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-761/8 -6439680 396204480
-769/8 -3051360 4309305840
-777/8 -5080320 4714536960
-785/8 3585600 -4128213600
-793/8 2206080 1852381440
-841/8 -4547731 -1485406411
-961/8 2232929 -3708048991
-1089/8 16776993 351356577
-1225/8 821485 -3903447275
-1369/8 2432917 -22150780307
-1521/8 35439321 -1625420199
-1681/8 -1313719 -7474274599
-1849/8 -30251803 -45440958067
-2025/8 4235805 70712558325
-2209/8 15460753 64352048497
-2401/8 -37161551 -100320091151
-2601/8 -78490371 -23816240331
-2809/8 8725733 60469078877
-3025/8 17343305 50641778825
-3249/8 -43858983 45270627753
-3481/8 -100117739 436446886621
-3721/8 -47043059 619541397781
-3969/8 57970017 -51690081807
-4225/8 36635585 -234275307775
-4489/8 141523373 -297698067643
-4761/8 17854869 -676641709731
-5041/8 412584409 516872527849
-5329/8 226841833 1389638711737
-5625/8 -412374075 -1509570001875
-5929/8 237355517 -37018568587
-6241/8 -453151759 3549597014801
-6561/8 -647274159 -934612680879
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