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Notation

the weight of a Jacobi form will be k in N and the index
L = (L, β):

L is a free, finite rank Z-module
β : L× L→ Z is a Z-bilinear form which is symmetric,
positive-definite, even

the rank of L is rk(L), where L ' Zrk(L)

set β(λ) := 1
2β(λ, λ)

the dual lattice of L:
L# := {t ∈ L⊗Z Q : β(λ, t) ∈ Z for all λ in L}
the determinant of L is det(L) := |L#/L|
the level of L:
lev(L) := min{N ∈ N : Nβ(t) ∈ Z for all t in L#}
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Jacobi forms of lattice index

Definition

A function φ in Hol(H× (L⊗ C)→ C) is called a Jacobi form of weight k and
index L if:

1 for every (A, h) in JL := SL2(Z)n L2, we have φ|k,L(A, h) = φ, where

φ|k,L (A, (λ, y)) (τ, z) := φ

(
Aτ,

z + λτ + µ

cτ + d

)
(cτ + d)−k

× e
(
−cβ(z + λτ + µ)

cτ + d
+ τβ(λ) + β(λ, z)

)
2 φ has a Fourier expansion of the form

φ(τ, z) =
∑

D∈Q≤0,t∈L#

β(t)−D∈Z

C(D, t)e ((β(t)−D)τ + β(t, z)) .

for fixed k and L, denote the C-vector space of all such functions by Jk,L
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Jacobi cusp forms have the following type of Fourier expansion:

φ(τ, z) =
∑

D∈Q<0,t∈L#

β(t)−D∈Z

C(D, t)e ((β(t)−D)τ + β(t, z))

denote the subspace of cusp forms of weight k and index L by
Sk,L

the isotropy set of L is Iso(DL) := {r ∈ L#/L : β(r) = 0}
define JL∞ := {(( 1 n0 1 ) , (0, µ)) : n ∈ Z, µ ∈ L}
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Jacobi–Eisenstein series

Definition
For every r in Iso(DL), let gL,r(τ, z) := e(β(r)τ + β(r, z)) and
define the Eisenstein series of weight k and index L associated to r
as

Ek,L,r(τ, z) :=
1

2

∑
γ∈JL∞\JL

gL,r|k,Lγ(τ, z).

defined by Ajouz; it is absolutely and uniformly convergent on
compact subsets of H× (L⊗ C) for k > rk(L)

2 + 2

it is an element of Jk,L and it is orthogonal to cusp forms
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Definition (Twisted Eisenstein series)

Let Nr denote the order of r in L#/L. For every primitive Dirichlet
character modulo F (F | Nr), define the twisted Eisenstein series

Ek,L,r,χ(τ, z) :=
∑
d∈Z×Nr

χ(d)Ek,L,dr(τ, z)

set JEisk,L := Span{Ek,L,r : r ∈ Iso(DL)}
Ajouz showed that the Ek,L,r,χ form a basis of eigenforms of
JEisk,L with eigenvalues given by twisted divisor sums
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Level raising operators

Eichler & Zagier use level raising operators as a main tool to
develop a theory of newforms
for lattice index, Ajouz showed that e.g. if

L ' (Z, (x, y) 7→ det(L)xy)

then
Jk,L 'M−2k−1−rk(L)(lev(L)/4)

the notion of newforms is usually applied to cusp forms, but
Eichler & Zagier study the action of level raising operators on
Eisenstein series
Skoruppa & Zagier (1988) use this to compute a trace formula
for Jk,m

Jk,L = Sk,L ⊕ JEisk,L
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Isometries

Definition (Isometry)

Let L1 = (L1, β1) and L2 = (L2, β2) be two lattices. An injective
linear map σ : L1 ⊗Q→ L2 ⊗Q such that β2 ◦ σ = β1 and
σL1 ⊆ L2 is called an isometry of L1 into L2.

Definition (Level raising operator)

Let L1 and L2 be two positive-definite, even lattices. For every
isometry σ of L1 into L2, define a linear operator
U(σ) : Jk,L2

→ Hol(H× (L1 ⊗ C)→ C),

φ|U(σ)(τ, z) := φ(τ, σ(z)).

take Lm = (Z, (x, y) 7→ 2mxy); then Jk,Lm = Jk,m

σl : Q→ Q, σl(x) = lx is an isometry of Lml2 into Lm
U(σl) = Ul, with Ul : Jk,m → Jk,ml2 , φ|Ul(τ, z) = φ(τ, lz)
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Theorem
When L1 ⊗Q ' L2 ⊗Q as modules over Q, the operator U(σ)
maps Jk,L2

to Jk,L1
. If φ in Jk,L2

has a Fourier expansion of the
type

φ(τ, z2) =
∑

D∈Q≤0,r∈L#
2

D−β2(r)∈Z

C(D, r)e ((β2(r)−D)τ + β2(r, z2)) ,

then φ|U(σ) has the following Fourier expansion:

φ|U(σ)(τ, z1) =
∑

D∈Q≤0,x∈L#
1

D−β1(x)∈Z

C(D,σ(x))e ((β1(x)−D)τ + β1(x, z1)) ,

with the convention that C(D,σ(x)) = 0 unless σ(x) ∈ L#
2 .

we need L1 ⊗Q ' L2 ⊗Q to compute the Fourier expansion
of φ|U(σ); change of variable: x = σ−1(r)
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the definition of the dual lattice implies that σ−1(L#
2 ) ≤ L

#
1

and hence lev(L2) | lev(L1)

it follows that U(σ) raises the level
let M be a matrix of σ and set det(σ) := | det(M)|; it is easy
to prove that det(L1) = det(σ)2 det(L2)

det(L) and lev(L) share the same set of prime divisors; we can
pinpoint the set of prime divisors of lev(L1)

lev(L2)
to p | det(σ) such

that p - lev(L2), plus possibly some p | lev(L2)

in the scalar case, the level is raised by det(σ)2; in order to
modify the level by an arbitrary positive integer, the
Hecke-type operators Vl are introduced by Eichler and Zagier
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Example (Counter-example)

Consider the positive-definite, even lattices

L1 =
(
Z2, (( xy ) , (

s
t )) 7→ 24xs+ 3ys+ 3xt+ 18y2

)
,

L2 =
(
Z2, (( xy ) , (

s
t )) 7→ 24xs+ ys+ xt+ 2yt

)
.

There exists an isometry σ3y of L1 into L2, mapping ( xy ) to ( x3y ).
It gives rise to a linear operator U(σ3y) mapping Jk,L2

to Jk,L1
.

Using Sage, one can check that lev(L1) = 141 and lev(L2) = 47.
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(σ(L1), β2) is a sublattice of L2 and L1 ' (σ(L1), β2)

conversely, any sublattice (M,β2) of L2 gives rise to an
isometry of (M,β2) into L2

given L, we want the classification of overlattices of L

Proposition (Nikulin, 1980)

Let L = (L, β) be a positive-definite, even lattice. Then there is a
one-to-one correspondence between overlattices of L and isotropic
subgroups of DL. For every such overlattice L′ = (L′, β), the
correspondence is given by

L′ 7→ L′/L.

L ↪→ L′ ↪→ L′# ↪→ L#
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Newforms

let IL denote the set of isotropic subgroups of L#/L

the orthogonal group of L acts on IL from the right via

(α, I) 7→ α̃(I).

two overlattices L′ and L′′ of L are isomorphic if and only if
[L′/L] = [L′′/L] in O(L) \ IL
for every element I in IL, set LI := (L+ I, β) and let ιI
denote the inclusion map between L and LI and set
UI := U(ιI)

Definition
Let L be a positive-definite, even lattice. Define the space of
oldfroms of weight k and index L with respect to isometries as

Jold,iso
k,L :=

∑
I∈O(L)\IL

I 6=0

Jk,LI |UI
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Level raising operators and Eisenstein series

it is easy to show that U maps Eisenstein series to Eisenstein
series and cusp forms to cusp forms
given L, fix r in Iso(DL) and F | Nr

write Nr = N0
∏
p|F p

vp(Nr)

for every divisor f of N0, set rf := fFr

Theorem
If χ is a primitive Dirichlet character modulo F for some F | Nr

such that F 6= Nr, then Ek,L,r,χ is an oldfrom. More precisely,

Ek,L,r,χ = χ(N0)
∑
f |N0

µ(f)Ek,L〈rf 〉,N0r,χ|U〈rf 〉.

this was shown for vector-valued modular forms by
Schwagenscheidt (2018)

Ek,L,r,χ(τ, z) =
∑
d∈Z×Nr

χ(d)Ek,L,dr(τ, z)
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To do

we want to classify old Jacobi forms obtained in this way
explicitly

we need to compute lev(LI)
lev(L)

define Vl?

Thank you!
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To do

we want to classify old Jacobi forms obtained in this way
explicitly

we need to compute lev(LI)
lev(L)

define Vl?

Questions?
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