Newform theory for Jacobi forms of lattice index

Andreea Mocanu

The University of Nottingham/MPIM

TU Darmstadt 27th of November 2018

Andreea Mocanu Newform theory for Jacobi forms of lattice index

E • 9 Q (?

 $\exists \rightarrow$

- Setup
- Examples of Jacobi forms
- Applications
- Hecke operators and the action of the orthogonal group
- Level raising operators

1. Setup

• $e(x) = e^{2\pi i x}$, $\mathfrak{H} := \{z \in \mathbb{C} : \Im(z) > 0\}$, Γ denotes $\mathrm{SL}_2(\mathbb{Z})$ and

$$\Gamma_0(m) := \left\{ \begin{pmatrix} * & * \\ 0 \mod m & * \end{pmatrix} \right\} \cap \Gamma$$

 $\bullet \mbox{ fix } k \mbox{ in } \mathbb N \mbox{ and a lattice } \underline{L} = (L,\beta) \mbox{ over } \mathbb Z \mbox{ which is }$

- positive-definite: $\beta(\lambda, \lambda) > 0$ for all λ in L• even: $\beta(\lambda) := \frac{\beta(\lambda, \lambda)}{2} \in \mathbb{Z}$
- the *rank* of \underline{L} is the rank of L as a \mathbb{Z} -module: $L \simeq \mathbb{Z}^{\mathsf{rk}(\underline{L})}$
- the *dual* of \underline{L} is $L^{\#} := \{t \in L \otimes_{\mathbb{Z}} \mathbb{Q} : \beta(t, \lambda) \in \mathbb{Z} \text{ for all } \lambda \text{ in } L\}$
- the *level* of \underline{L} is $\operatorname{lev}(\underline{L}) := \min\{N \in \mathbb{N} : N\beta(t) \in \mathbb{Z} \text{ for all } t \text{ in } L^{\#}\}$
- the integral Jacobi group $J^{\underline{L}} := \mathrm{SL}_2(\mathbb{Z})u \ltimes L^2$ acts $\mathfrak{H} \times (L \otimes_{\mathbb{Z}} \mathbb{C})$:

$$\left[\begin{pmatrix} a & b \\ c & d \end{pmatrix}, (\lambda, \mu) \right] (\tau, \mathfrak{z}) := \left(\frac{a\tau + b}{c\tau + d}, \frac{\mathfrak{z} + \tau\lambda + \mu}{c\tau + d} \right)$$

• $J^{\underline{L}}$ acts on holomorphic functions $\varphi : \mathfrak{H} \times (L \otimes_{\mathbb{Z}} \mathbb{C}) \to \mathbb{C}$ via:

Definition

A function φ as above is a Jacobi form of weight k and index \underline{L} if

2 φ has a Fourier expansion of the form

$$\varphi(\tau,\mathfrak{z}) = \sum_{\substack{n \in \mathbb{Z}, t \in L^{\#} \\ n \ge \beta(t)}} c_{\varphi}(n,t) e\left(n\tau + \beta(t,\mathfrak{z})\right).$$

•
$$J_{k,\underline{L}} := \{ \text{space of } \varphi \text{ as above} \}$$

• $c_{arphi}(n,t)$ only depends on t mod L and on n-eta(t), so we can write

$$\varphi(\tau,\mathfrak{z}) = \sum_{\substack{D \in \mathbb{Q}_{\leq 0}, t \in L^{\#} \\ D \equiv \beta(t) \bmod \mathbb{Z}}} C_{\varphi}(D,t) e\left((\beta(t) - D)\tau + \beta(t,\mathfrak{z})\right)$$

with $C_{\varphi}(D,t) := c_{\varphi}(\beta(t) - D,t)$ • $S_{k,\underline{L}} := \left\{ \varphi \in J_{k,\underline{L}} : C_{\varphi}(0,t) = 0 \text{ for all } t \in L^{\#} \text{ such that } \beta(t) \in \mathbb{Z} \right\}$

2. Examples

•
$$g_{\underline{L},D,t}(\tau,\mathfrak{z}) := e\left((\beta(t) - D)\tau + \beta(t,\mathfrak{z})\right)$$

- $J_{\infty}^{\underline{L}} := \left\{ \left(\left(\begin{smallmatrix} 1 & n \\ 0 & 1 \end{smallmatrix} \right), \left(0, \mu \right) \right) : n \in \mathbb{Z}, \mu \in L \right\}$
- for every pair (D, t) such that $D \in \mathbb{Q}_{<0}$, $t \in L^{\#}$ and $\beta(t) \equiv D \mod \mathbb{Z}$, define the *Poincaré series*

$$P_{k,\underline{L},D,t}(\tau,\mathfrak{z}):=\sum_{\gamma\in J^{\underline{L}}_{\underline{\infty}}\setminus J^{\underline{L}}}g_{\underline{L},D,t}|_{k,\underline{L}}\gamma(\tau,\mathfrak{z})$$

and, for every r in $L^{\#}$ such that $eta(r)\in\mathbb{Z}$, define the *Eisenstein series*

$$E_{k,\underline{L},r}(\tau,\mathfrak{z}) := \frac{1}{2} \sum_{\gamma \in J_{\infty}^{\underline{L}} \setminus J^{\underline{L}}} g_{\underline{L},0,r}|_{k,\underline{L}} \gamma(\tau,\mathfrak{z})$$

• set $\operatorname{Iso}(\underline{L}) := \{r \in L^{\#}/L : \beta(r) \in \mathbb{Z}\}$ and $J_{k,\underline{L}}^{\operatorname{Eis}} := \{E_{k,\underline{L},r} : r \in \operatorname{Iso}(\underline{L})\}$

Theorem (M. 2017)

The Poincaré series span $S_{k,\underline{L}}$ and

$$J_{k,\underline{L}} = S_{k,\underline{L}} \oplus J_{k,\underline{L}}^{\mathrm{Eis}}.$$

• meaning:

d

- $k > \mathsf{rk}(\underline{L}) + 2$ for Poincaré series and $k > \frac{\mathsf{rk}(\underline{L})}{2} + 2$ for Eisenstein series
- $P_{k,\underline{L},D,t} \in S_{k,\underline{L}}$ and $E_{k,\underline{L},r} \in J_{k,\underline{L}}$
- $\exists \text{ constants } \lambda_{k,\underline{L},D} \text{ in } \mathbb{C} \text{ such that } \langle \varphi, P_{k,\underline{L},D,t} \rangle = \lambda_{k,\underline{L},D} C_{\varphi}(D,t) \text{ for every } \varphi \text{ in } S_{k,\underline{L}}$

•
$$\langle J_{k,\underline{L}}^{\mathrm{Eis}}, S_{k,\underline{L}} \rangle = 0$$

• Fourier expansions: $C_{P_{k,\underline{L},D,t}}(0,s) = 0$ and

 $C_{P_{k,\underline{L},D,t}}(G,s) := \delta_{\underline{L}}(D,t,G,s) + (-1)^{k} \delta_{\underline{L}}(D,-t,G,s) + \frac{2\pi i^{k}}{\det(\underline{L})^{\frac{1}{2}}}$

$$\begin{split} & \times \left(\frac{G}{D}\right)^{\frac{k}{2}-\frac{\mathbf{rk}(\underline{L})}{4}-\frac{1}{2}} \sum_{c\geq 1} c^{-\frac{\mathbf{rk}(\underline{L})}{2}-1} J_{k-\frac{\mathbf{rk}(\underline{L})}{2}-1} \left(\frac{4\pi (DG)^{\frac{1}{2}}}{c}\right) \\ & \times \left(H_{\underline{L},c}(D,t,G,s)+(-1)^{k}H_{\underline{L},c}(D,-t,G,s)\right), \end{split}$$

with $H_{\underline{L},c}(D,t,G,s)$ equal to

$$\sum_{\in (\mathbb{Z}/c\mathbb{Z})^{\times}, \lambda \in L/cL} e_c \left(\beta(\lambda+t) - D \right) d^{-1} + \left(\beta(s) - G \right) d + \beta(s, \lambda+t) \right)$$

• the Dedekind η -function

$$\eta(\tau) := q^{\frac{1}{24}} \prod_{n \ge 1} (1 - q^n)$$

is an elliptic modular form of weight 1/2 for Γ ; the Jacobi theta series

$$\vartheta(\tau, z) := \sum_{n \in \mathbb{Z}} \left(\frac{-4}{n} \right) e\left(\tau \frac{n^2}{8} + \frac{nz}{2} \right)$$

is a Jacobi form of weight $\frac{1}{2}$ and scalar index $\frac{1}{2}$ \bullet for $2\leq k\leq 8,$ the function

$$\psi_{12-k,D_k}(\tau,\mathfrak{z}) := \eta(\tau)^{24-3k} \vartheta(\tau,z_1) \dots \vartheta(\tau,z_k)$$

is an element of J_{12-k,D_k} $(\mathfrak{z} = (z_1, \ldots, z_k))$ and in fact an element of S_{12-k,D_k} for $k \leq 7$ (note that $D_3 = A_3$)

define

$$\Theta(\tau, z_1, z_2) := \vartheta(\tau, z_1)\vartheta(\tau, z_2 - z_1)\vartheta(\tau, z_2)/\eta(\tau) \in J_{1,A_2}(v_\eta^8);$$

then

$$\begin{split} \psi_{9,A_2}(\tau,\mathfrak{z}) &:= \eta^{16}(\tau)\Theta(\tau,z_1,z_2) \in S_{9,A_2} \\ \psi_{6,2A_2}(\tau,\mathfrak{z}) &:= \eta^8(\tau)\Theta(\tau,z_1,z_2)\Theta(\tau,z_3,z_4) \in S_{6,2A_2} \\ \psi_{3,3A_2}(\tau,\mathfrak{z}) &:= \Theta(\tau,z_1,z_2)\Theta(\tau,z_3,z_4)\Theta(\tau,z_5,z_6) \in J_{3,3A_2} \end{split}$$

- Gritsenko-Skoruppa-Zagier (preprint): Theta blocks
- for every t in $L^{\#}/L$, define

$$\vartheta_{\underline{L},t}(\tau,\mathfrak{z}) := \sum_{\substack{s \in L^{\#} \\ s \equiv t \bmod L}} e\left(\beta(s)\tau + \beta(s,\mathfrak{z})\right);$$

- if \underline{L} is an even, unimodular lattice, then $\vartheta_{\underline{L},0}$ is an element of $J_{\frac{\mathsf{rk}(\underline{L})}{2},\underline{L}}$
- in general, $E_{k,\underline{L},r} = \frac{1}{2} \left(\vartheta_{\underline{L},r} + (-1)^k \vartheta_{\underline{L},-r} \right) + \dots$

프 - 프

3. Some applications

- Gritsenko (1988): introduces Jacobi forms of lattice index as *Fourier–Jacobi coefficients* of *orthogonal modular forms*
- embed \underline{L} into a lattice of signature $(2, \mathsf{rk}(\underline{L}) + 2)$: $\underline{M} = H_1 \oplus \underline{L}(-1) \oplus H_2$
- write $Z=(\omega,\mathfrak{z},\tau)\in\mathcal{H}(\underline{M})$ and embedd $J^{\underline{L}}$ into $O^+(\underline{M})$ as

$$O^{J} := \left\{ \operatorname{diag}(A^{*}, E_{\mathsf{rk}(\underline{L})}, A) \begin{pmatrix} 1 & 0 & \mu^{t}G & \beta(\lambda, \mu) & \beta(\mu) \\ 0 & 1 & \lambda^{t}G & \beta(\lambda) & 0 \\ 0 & 0 & E_{\mathsf{rk}(\underline{L})} & \lambda & \mu \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \right\}$$

where $A^* = I(A^t)^{-1}I$ and $I = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

- then $\varphi \in J_{k,\underline{L}} \iff \Phi(Z) := \varphi(\tau,\mathfrak{z})e(2\pi i\omega) \in M_k(O^J)$
- one can lift Jacobi forms to reflective modular forms
- some RMFs are the *automorphic discriminants* of moduli spaces (e.g. lattice polarized K3 surfaces Gritsenko-Nikulin (1996))
- this allows for the construction of modular varieties (e.g. Gritsenko (2010): modular varieties of Calabi-Yau type of dim 4, 6 and 7 and Kodaira dim 0)
- if a RMF is a lift of a Jacobi form, then one obtains a simple formula for its Fourier coefficients at a 0-dim cusp; these determine the generators and relations of Lorentzian Kac-Moody algebras (Grisenko-Nikulin (1997))

Conjecture * (Ajouz, 2015)

If $rk(\underline{L})$ is odd, then there exists a Hecke-equivariant isomorphism

$$J_{k,\underline{L}} \simeq \mathfrak{M}_{2k-\mathbf{rk}(\underline{L})-1}^{\varepsilon}(\operatorname{lev}(\underline{L})/4),$$

where $\varepsilon = -1$ if $\mathsf{rk}(\underline{L}) \equiv 1$ or $3 \mod 8$ and $\varepsilon = 1$ otherwise.

- $W_m := \begin{pmatrix} 0 & -1 \\ m & 0 \end{pmatrix}$ and $M_k^{\varepsilon}(m) := \left\{ f \in M_k(m) : f|_k W_m = \varepsilon i^{-k} f \right\}$
- $f \in M_k^{\varepsilon}(m) \implies \Lambda_m(f,s) = \varepsilon \Lambda_m(f,k-s)$
- every Hecke eigenform f in $M_k(m)$ "comes from" a newform g in $M_k(n)$

$$\frac{L(f,s)}{L(g,s)} = \prod_{p \mid \frac{m}{n}} Q_p(s)$$

 $\bullet\,$ if f is an eigenform for all Atkin–Lehner involutions, then every Q_p has a functional equation

$$Q_p(k-s) = \pm p^{-v_p(m/n)(k-2s)} Q_p(s)$$

• let $\mathfrak{M}_k(m)$ denote the subspace spanned by all f for which the sign in the above equation is + for all $p \mid (m/n)$; set $\mathfrak{M}_k^{\varepsilon}(m) := \mathfrak{M}_k(m) \cap M_k^{\varepsilon}(m)$.

- this was proved for $rk(\underline{L}) = 1$ by Skoruppa–Zagier (1988) by using *trace formulas* and the theory of *newforms*
 - the result was used by Gross-Kohnen-Zagier (1987) to show that the classes of Heegner points on a modular curve $X_0(m)$ in the Mordell-Weil group of its Jacobian are the coefficients of a Jacobi form of weight 2 and index m

Goal

Study Ajouz's conjecture.

• intermediate goal: develop e theory of newforms, meaning

Given $J_{k,\underline{L}}$, how many of its elements 'come from' Jacobi forms of weight k and index \underline{M} with $lev(\underline{M}) \mid lev(\underline{L})$?

• Conjecture *:

$$J_{k,\underline{L}} \simeq \mathfrak{M}_{2k-1-\mathsf{rk}(\underline{L})}^{\pm 1}(\operatorname{lev}(\underline{L})/4),$$

• Sakata (2018):

$$S_{k,1}^{\text{new},+}(m) \simeq S_{k,m}^{\text{new}}$$

• defined by Ajouz (2015) for $(\ell, \text{lev}(\underline{L})) = 1$:

$$T_0(\ell)\varphi := \ell^{k-\mathsf{rk}(\underline{L})-2} \sum_{\gamma \in J^{\underline{L}} \setminus J^{\underline{L}} \binom{1/\ell \ 0}{0 \ \ell} J^{\underline{L}}} \varphi|_{k,\underline{L}} \gamma$$

then

$$T(\ell)\varphi := \begin{cases} \sum_{d^2|\ell} d^{2k-\mathsf{rk}(\underline{L})-3}T_0\left(\frac{\ell}{d^2}\right)\varphi, & \mathsf{rk}(\underline{L}) \text{ odd} \\ \\ \sum_{\substack{s,d>0\\ sd^2|\ell,s \text{ square-free}}} \chi_{\underline{L}}(s)(sd^2)^{k-\frac{\mathsf{rk}(\underline{L})}{2}-2}T_0\left(\frac{\ell}{sd^2}\right)\varphi, & \mathsf{rk}(\underline{L}) \text{ even} \end{cases}$$

• they map $J_{k,\underline{L}}$ to itself and they *preserve* cusp forms and Eisenstein series

Properties of Hecke operators

- they are Hermitian: $\langle T(\ell)\varphi,\psi\rangle=\langle\varphi,T(\ell)\psi\rangle$
- they *commute*:

$$T(\ell)T(m) = \begin{cases} \displaystyle \sum_{d \mid (\ell,m)} d^{2k - \mathsf{rk}(\underline{L}) - 2} T\left(\ell m/d^2\right) \varphi, & \mathsf{rk}(\underline{L}) \text{ odd} \\ \\ \displaystyle \sum_{d \mid (\ell^2,m^2)} \chi_{\underline{L}}(d) d^{k - \frac{\mathsf{rk}(\underline{L})}{2} - 1} T\left(\ell m/d\right) \varphi, & \mathsf{rk}(\underline{L}) \text{ even}, \end{cases}$$

• a well-known result from Linear Algebra implies the following:

Theorem

The space $S_{k,\underline{L}}$ has a basis of simultaneous eigenforms for all $T(\ell)$.

• let φ be an *eigenform* of all $T(\ell)$: $T(\ell)\varphi = \lambda(\ell)\varphi$; if $\mathsf{rk}(\underline{L})$ is odd, then

$$L(s,\varphi) := \sum_{\substack{\ell \in \mathbb{N} \\ (\ell, \operatorname{lev}(\underline{L})) = 1}} \lambda(\ell) \ell^{-s} = \prod_{(p, \operatorname{lev}(\underline{L})) = 1} \left(1 - p^{-2}\lambda(p) + p^{2k - \mathsf{rk}(\underline{L}) - 2 - 2s} \right)^{-1}$$

• correspondence for rk(<u>L</u>) even:

$$J_{k,\underline{L}} \rightsquigarrow M_{k-\frac{\mathsf{rk}(\underline{L})}{2}}(?,\chi_{\underline{L}}\xi)$$

 let r ∈ Iso(<u>L</u>) and let χ be a primitive Dirichlet character modulo F for some F | ord(r); define the *twisted* Eisenstein series

$$E_{k,\underline{L},r,\chi} := \sum_{d \in (\mathbb{Z}/\mathrm{ord}(r)\mathbb{Z})^{\times}} \chi(d) E_{k,\underline{L},dr}$$

Theorem (Ajouz, 2015)

The twisted Eisenstein series $E_{k,L,r,\chi}$ $(r \text{ as above modulo } (\mathbb{Z}/\text{lev}(\underline{L})\mathbb{Z})^{\times}$ and χ as above with $\chi(-1) = (-1)^k$) form a system of Hecke eigenforms for $J_{k,\underline{L}}^{\text{Eis}}$ with eigenvalues

$$\lambda(\ell) = \begin{cases} \sigma_{2k-\mathsf{rk}(\underline{L})-2}^{\chi,\overline{\chi}}(\ell), & \mathsf{rk}(\underline{L}) \text{ odd} \\ \overline{\chi(\ell)}\sigma_{k-\frac{\mathsf{rk}(\underline{L})}{2}-1}^{\chi,\chi_{\underline{L}}}(\ell^2), & \mathsf{rk}(\underline{L}) \text{ even.} \end{cases}$$

- the *discriminant module* associated to \underline{L} is $D_{\underline{L}} := (L^{\#}/L, \beta \mod \mathbb{Z})$
- the orthogonal group of $D_{\underline{L}}$ is $O(D_{\underline{L}}) := \{s : D_{\underline{L}} \xrightarrow{\sim} D_{\underline{L}} : \beta \circ s = \beta\}$
- Ajouz (2015): there exists an action of $O(D_{\underline{L}})$ on $J_{k,\underline{L}}$

$$(s, \varphi) \mapsto W(s)\varphi(\tau, \mathfrak{z}) := \sum_{D,t} C_{\varphi} (D, s(t)) e ((\beta(t) - D)\tau + \beta(t, \mathfrak{z})))$$

- these operators commute with $T(\ell)$; therefore $W(s)\varphi$ and φ have the same Hecke eigenvalues if φ is an eigenform
- an element α in $L^{\#}/L$ such that $\operatorname{ord}(\alpha) = \operatorname{lev}(\alpha)$ or $2\operatorname{ord}(\alpha) = \operatorname{lev}(\alpha)$ is called *admissible*
- for every admissible α , consider the *reflection map*

$$s_{\alpha}(t) := t - \frac{\beta(t,\alpha)}{\beta(\alpha)}\alpha$$

Lemma

The maps s_{α} are elements of $O(D_{\underline{L}})$ and involutions.

Example

Skoruppa (1984) defines an operator on $J_{k,m}$ for every $n \parallel m$:

$$W_n\varphi(\tau,z) = \sum_{D,t} C(D,\lambda_n t) e\left((mt^2 - D)\tau + 2tz\right),$$

where λ_n is uniquely determined modulo 2m by the modular equations

 $\lambda_n \equiv -1 \mod 2n$ $\lambda_n \equiv 1 \mod \frac{2m}{n}.$

- it can be shown that $W_n = W(s_\alpha)$ for some α in $\frac{1}{2m}\mathbb{Z}/\mathbb{Z}$
- the W_n are called Atkin-Lehner involutions by Skoruppa-Zagier (1988), because

$$\operatorname{tr}\left(T(l)\circ W_{n}, J_{k,m}\right) = \operatorname{tr}\left(T(l)\circ W_{n}, \mathfrak{M}_{2k-2}^{-}(m)\right)$$

Proposition (M. 2018)

The operators W(s) are unitary for all s in $O(D_{\underline{L}})$ and they are Hermitian when s is a reflection.

• Eichler-Zagier (1985):

$$V(\ell): \varphi(\tau, z) \mapsto \frac{1}{\ell} \sum_{ad=\ell} a^k \sum_{b \bmod d} \varphi\left(\frac{a\tau + b}{d}, az\right)$$

maps $J_{k,m}$ to $J_{k,m\ell}$ $(\ell \in \mathbb{N})$

- Gritsenko (1988) constructs these operators for arbitrary lattice index \underline{L} using the embedding of $J_{k,\underline{L}}$ into $M_k(O^J)$:
 - remember elliptic Hecke operators

$$T(\ell) := \sum_{\substack{ad=\ell\\a\mid d}} \operatorname{SL}_2(\mathbb{Z}) \begin{pmatrix} a & 0\\ 0 & d \end{pmatrix} \operatorname{SL}_2(\mathbb{Z})$$

set

$$G^J := \left\{ \begin{pmatrix} A^* & X_1 & T \\ 0 & E_{\mathsf{rk}(\underline{L})} & X \\ 0 & 0 & A \end{pmatrix} \in SO_{\mathbb{Q}}(\underline{M}) : \det(A) > 0 \right\}$$

• consider the following embedding of $\mathcal{H}(\mathrm{SL}_2(\mathbb{Z}),\mathrm{M}_2^+(\mathbb{Z}))$ into $\mathcal{H}(O^J,G^J)$:

$$\iota: \mathrm{SL}_2(\mathbb{Z})A \ \mathrm{SL}_2(\mathbb{Z}) \mapsto O^J \mathrm{diag}\left(\left(\mathrm{det}(A)^{-1}A \right)^*, E_{\mathsf{rk}(\underline{L})}, \mathrm{det}(A)^{-1}A \right) O^J \right)$$

• if
$$O^J g O^J = \sum_i O^J g_i$$
, then set

$$\varphi|\left(O^{J}gO^{J}\right)(\tau,\mathfrak{z}) := \sum_{i} \Phi|_{k}g_{i}(Z)e\left(\frac{-\omega}{\det(A)}\right)$$

Proposition (Gritsenko, 1988)

If $\varphi \in J_{k,\underline{L}}$ and $O^J g O^J$ is an element of $\mathcal{H}(O^J,G^J)$, then

$$\varphi | \left(O^J g O^J \right) \in J_{k,\underline{L}(1/\det(A))}.$$

• we have $V(\ell) = \frac{1}{\ell}\iota(T(\ell))$

Corollary

It follows that $V(\ell)$ maps $J_{k,\underline{L}}$ to $J_{k,\underline{L}(\ell)}$, raising the level by a factor of ℓ . Furthermore, the $V(\cdot)$ operators commute.

ullet the $V(\cdot)$ operators are precisely the ones used for additive liftings:

•
$$\varphi \in J_{k,\underline{L}} \Longrightarrow \sum_{\ell \ge 1} V(\ell)\varphi(\tau,\mathfrak{z})e(\ell\omega) \in M_k\left(\tilde{O}^+(\underline{M})\right)$$

• $\varphi \in J_{k,1} \Longrightarrow \sum_{\ell \ge 1} V(\ell)\varphi(\tau,z)e(\ellw) \in M_k^*(\Gamma_2)$

note that

$$V(\ell)\varphi(\tau,\mathfrak{z}) = \sum_{\substack{n \in \mathbb{Z}, t \in L^{\#} \\ \ell n \ge \beta(t)}} \sum_{\substack{d \mid (n,\ell) \\ \frac{1}{d} \in L^{\#}}} d^{k-1} c_{\varphi}\left(\frac{nl}{d^2}, \frac{t}{d}\right) e\left(n\tau + \beta(t,\mathfrak{z})\right),$$

• in particular, they *preserve* cusp forms and Eisenstein series

Э

II) The U operators

- Eichler-Zagier (1985): $U(\ell): \varphi(\tau, z) \mapsto \varphi(\tau, \ell z)$ maps $J_{k,m}$ to $J_{k,m\ell^2}$
- let $\underline{L} = (L, \beta)$ and $\underline{L}' = (L', \beta')$ be two lattices; an *isometry* of \underline{L} into \underline{L}' is an *injective* linear map $\sigma : L \otimes_{\mathbb{Z}} \mathbb{Q} \to L' \otimes_{\mathbb{Z}} \mathbb{Q}$ such that

$$\beta' \circ \sigma = \beta$$
 and $\sigma \underline{L} \subseteq \underline{L}'$

Definition

For every isometry σ of \underline{L} into \underline{L}' , define a linear operator $U(\sigma)$ from $J_{k,\underline{L}'}$ to $\operatorname{Hol}(\mathfrak{H} \times (L \otimes_{\mathbb{Z}} \mathbb{C}) \to \mathbb{C})$ as

$$U(\sigma)\varphi(\tau,z):=\varphi(\tau,\sigma(z)).$$

Proposition (M. 2018)

When $L \otimes_{\mathbb{Z}} \mathbb{Q} \simeq L' \otimes_{\mathbb{Z}} \mathbb{Q}$, the operator $U(\sigma)$ maps $J_{k,\underline{L'}}$ to $J_{k,\underline{L}}$.

• for example, the map $\sigma_{\ell}: \mathbb{Q} \to \mathbb{Q}, \sigma_{\ell}(x) = \ell x$ is an isometry of $(\mathbb{Z}, (x, y) \mapsto 2m\ell^2 xy)$ into $(\mathbb{Z}, (x, y) \mapsto 2mxy)$ and $U(\sigma_{\ell}) = U(\ell)$ maps $J_{k,m}$ to $J_{k,m\ell^2}$

- the definition of the dual lattice implies that $lev(\underline{L}') \mid lev(\underline{L})$ and it follows that $U(\sigma)$ raises the level
- \bullet when ${\rm rk}(\underline{L})=1,$ the level is always raised by a square factor, but for higher rank this need not be the case
- $(\sigma(L), \beta')$ is a sublattice of \underline{L}' and $\underline{L} \simeq (\sigma(L), \beta')$; conversely, any sublattice (M, β') of \underline{L}' gives rise to an isometry of (M, β') into \underline{L}'
- the previous Proposition can be rephrased as

Every Jacobi form of weight k and index \underline{L}' is a Jacobi form of weight k and index \underline{M}

ullet in particular, the U operators *preserve* cusp forms and Eisenstein series

Proposition (Nikulin, 1980)

Let $\underline{L} = (L, \beta)$ be a positive-definite, even lattice. Then there is a one-to-one correspondence between overlattices of \underline{L} and isotropic subgroups of $D_{\underline{L}}$. For every such overlattice $\underline{L}' = (L', \beta)$, the correspondence is given by

$$\underline{L}' \mapsto L'/L.$$

 \equiv

- - E - E

- for every isotropic subgroup I of $D_{\underline{L}}$, set $\underline{L}_I := (L + I, \beta)$
- we obtain an operator $U(I)=U(\iota_{\underline{L},\underline{L}_I})$ which acts as an inclusion map of J_{k,\underline{L}_I} into $J_{k,\underline{L}}$

Theorem (M. 2018)

The operators $U(\cdot)$ and $V(\cdot)$ commute with each other. They commute with the Hecke operators. Furthermore, if an admissible element α in $L^{\#}/L$ is such that $(\text{lev}(\alpha), \ell) = 1$, then $V(\ell)W(s_{\alpha}) = W(s_{\alpha})V(\ell)$. If I is an isotropic subgroup of $D_{\underline{L}}$ and α is admissible both in $L^{\#}/L$ and in $L_{I}^{\#}/L_{I}$, then $U(I)W(s_{\alpha}) = W(s_{\alpha})U(I)$.

Definition

An oldform in $J_{k,\underline{L}}$ is an element φ which is either equal to $V(\ell)\psi$ for some ℓ in \mathbb{N} and some ψ in $J_{k,\underline{L}(1/\ell)}$ or it is an element of $J_{k,\underline{L}_{I}}$ for some isotropic subgroup I of $D_{\underline{L}}$.

Lemma

If $\varphi \in J_{k,\underline{L}}$ is such that $C_{\varphi}(D,r) = 0$ for r not it $L_{I}^{\#}$, then φ is an oldform.

5900

Э

Proposition (M. 2018)

The following holds for every s in $O(D_{\underline{L}})$:

$$W(s)E_{k,\underline{L},r,\chi} = E_{k,\underline{L},s^{-1}(r),\chi}.$$

Proposition (M. 2018)

The following holds for every ℓ in \mathbb{N} and every isotropic I in $D_{\underline{L}}$:

$$V(\ell)U(I)E_{k,\underline{L}_{I},r} = \sum_{\substack{t \in L(\ell)^{\#}/L \\ \ell \beta(t) \in \mathbb{Z}}} \sum_{d \mid \ell \beta(t), \ell \mid d \mid \ell \beta(t), \ell \mid} d^{k-1}\delta_{\underline{L}_{I}}\left(r, \frac{\ell t}{d}\right)E_{k,\underline{L}(\ell),t}$$

Proposition

If $F \neq \operatorname{ord}(r)$, then $E_{k,\underline{L},r,\chi}$ is an oldfrom.

To do

- is the above criterion for oldforms *exhaustive*?
- are there more $V(\cdot)$ operators?
 - guess: no
- do we have *Multiplicity One*?
- there should be more *old* Eisenstein series
 - when $\mathsf{rk}(\underline{L})=1,$ all Eisenstein series are old if m is not a square and, if $m=f^2,$ then only $E_{k,f^2,\frac{1}{f},\chi}$ is new

Thank you!

Э