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1. Setup

e(x) = e2πix, H := {z ∈ C : =(z) > 0}, Γ denotes SL2(Z) and

Γ0(m) :=

{(
∗ ∗

0 mod m ∗

)}
∩ Γ

�x k in N and a lattice L = (L, β) over Z which is
positive-de�nite: β(λ, λ) > 0 for all λ in L

even: β(λ) :=
β(λ,λ)

2
∈ Z

the rank of L is the rank of L as a Z-module: L ' Zrk(L)

the dual of L is L# := {t ∈ L⊗Z Q : β(t, λ) ∈ Z for all λ in L}
the level of L is lev(L) := min{N ∈ N : Nβ(t) ∈ Z for all t in L#}
the integral Jacobi group JL := SL2(Z)un L2 acts H× (L⊗Z C):[(

a b
c d

)
, (λ, µ)

]
(τ, z) :=

(
aτ + b

cτ + d
,
z + τλ+ µ

cτ + d

)
JL acts on holomorphic functions ϕ : H× (L⊗Z C)→ C via:

ϕ|k,Lγ(τ, z) :=ϕ (γ(τ, z)) (cτ + d)−k

× e
(
−cβ(z + λτ + µ)

cτ + d
+ τβ(λ) + β(λ, z)

)
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Jacobi forms of lattice index

De�nition

A function ϕ as above is a Jacobi form of weight k and index L if

1 ϕ|k,Lγ(τ, z) = ϕ(τ, z) for all γ in JL and

2 ϕ has a Fourier expansion of the form

ϕ(τ, z) =
∑

n∈Z,t∈L#

n≥β(t)

cϕ(n, t)e (nτ + β(t, z)) .

Jk,L := {space of ϕ as above}
cϕ(n, t) only depends on t mod L and on n− β(t), so we can write

ϕ(τ, z) =
∑

D∈Q≤0,t∈L#

D≡β(t) mod Z

Cϕ(D, t)e ((β(t)−D)τ + β(t, z))

with Cϕ(D, t) := cϕ(β(t)−D, t)
Sk,L :=

{
ϕ ∈ Jk,L : Cϕ(0, t) = 0 for all t ∈ L# such that β(t) ∈ Z

}
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2. Examples

gL,D,t(τ, z) := e ((β(t)−D)τ + β(t, z))

J
L
∞ := {(( 1 n

0 1 ) , (0, µ)) : n ∈ Z, µ ∈ L}
for every pair (D, t) such that D ∈ Q<0, t ∈ L# and β(t) ≡ D mod Z,
de�ne the Poincaré series

Pk,L,D,t(τ, z) :=
∑

γ∈JL
∞\JL

gL,D,t|k,Lγ(τ, z)

and, for every r in L# such that β(r) ∈ Z, de�ne the Eisenstein series

Ek,L,r(τ, z) :=
1

2

∑
γ∈JL
∞\JL

gL,0,r|k,Lγ(τ, z)

set Iso(L) := {r ∈ L#/L : β(r) ∈ Z} and JEis
k,L := {Ek,L,r : r ∈ Iso(L)}
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Theorem (M. 2017)

The Poincaré series span Sk,L and

Jk,L = Sk,L ⊕ JEis
k,L.

meaning:

k > rk(L) + 2 for Poincaré series and k >
rk(L)

2
+ 2 for Eisenstein series

Pk,L,D,t ∈ Sk,L and Ek,L,r ∈ Jk,L
∃ constants λk,L,D in C such that 〈ϕ, Pk,L,D,t〉 = λk,L,DCϕ(D, t) for
every ϕ in Sk,L
〈JEis
k,L, Sk,L〉 = 0

Fourier expansions: CPk,L,D,t(0, s) = 0 and

CPk,L,D,t(G, s) :=δL(D, t,G, s) + (−1)kδL(D,−t, G, s) +
2πik

det(L)
1
2

×
(
G

D

) k
2
− rk(L)

4
− 1

2 ∑
c≥1

c−
rk(L)

2
−1J

k− rk(L)
2
−1

(
4π(DG)

1
2

c

)

×
(
HL,c(D, t,G, s) + (−1)kHL,c(D,−t, G, s)

)
,

with HL,c(D, t,G, s) equal to∑
d∈(Z/cZ)×,λ∈L/cL

ec
(
β(λ+ t)−D)d−1 + (β(s)−G)d+ β(s, λ+ t)

)
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Examples (continued)

the Dedekind η-function

η(τ) := q
1
24

∏
n≥1

(1− qn)

is an elliptic modular form of weight 1/2 for Γ; the Jacobi theta series

ϑ(τ, z) :=
∑
n∈Z

(−4
n

)
e

(
τ
n2

8
+
nz

2

)
is a Jacobi form of weight 1

2
and scalar index 1

2

for 2 ≤ k ≤ 8, the function

ψ12−k,Dk (τ, z) := η(τ)24−3kϑ(τ, z1) . . . ϑ(τ, zk)

is an element of J12−k,Dk (z = (z1, . . . , zk)) and in fact an element of
S12−k,Dk for k ≤ 7 (note that D3 = A3)
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de�ne

Θ(τ, z1, z2) := ϑ(τ, z1)ϑ(τ, z2 − z1)ϑ(τ, z2)/η(τ) ∈ J1,A2(v8η);

then

ψ9,A2(τ, z) :=η16(τ)Θ(τ, z1, z2) ∈ S9,A2

ψ6,2A2(τ, z) :=η8(τ)Θ(τ, z1, z2)Θ(τ, z3, z4) ∈ S6,2A2

ψ3,3A2(τ, z) :=Θ(τ, z1, z2)Θ(τ, z3, z4)Θ(τ, z5, z6) ∈ J3,3A2

Gritsenko�Skoruppa�Zagier (preprint): Theta blocks

for every t in L#/L, de�ne

ϑL,t(τ, z) :=
∑
s∈L#

s≡t mod L

e (β(s)τ + β(s, z)) ;

if L is an even, unimodular lattice, then ϑL,0 is an element of J rk(L)
2

,L

in general, Ek,L,r = 1
2

(
ϑL,r + (−1)kϑL,−r

)
+ . . .
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3. Some applications

Gritsenko (1988): introduces Jacobi forms of lattice index as
Fourier�Jacobi coe�cients of orthogonal modular forms

embed L into a lattice of signature (2, rk(L) + 2): M = H1 ⊕L(−1)⊕H2

write Z = (ω, z, τ) ∈ H(M) and embedd JL into O+(M) as

OJ :=

diag(A∗, Erk(L), A)


1 0 µtG β(λ, µ) β(µ)
0 1 λtG β(λ) 0
0 0 Erk(L) λ µ
0 0 0 1 0
0 0 0 0 1




where A∗ = I(At)−1I and I = ( 0 1
1 0 )

then ϕ ∈ Jk,L ⇐⇒ Φ(Z) := ϕ(τ, z)e(2πiω) ∈Mk(OJ)

one can lift Jacobi forms to re�ective modular forms

some RMFs are the automorphic discriminants of moduli spaces (e.g.
lattice polarized K3 surfaces - Gritsenko�Nikulin (1996))

this allows for the construction of modular varieties (e.g. Gritsenko (2010):
modular varieties of Calabi�Yau type of dim 4, 6 and 7 and Kodaira dim 0)

if a RMF is a lift of a Jacobi form, then one obtains a simple formula for
its Fourier coe�cients at a 0-dim cusp; these determine the generators and
relations of Lorentzian Kac�Moody algebras (Grisenko�Nikulin (1997))
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Relation to elliptic modular forms

Conjecture ? (Ajouz, 2015)

If rk(L) is odd, then there exists a Hecke-equivariant isomorphism

Jk,L 'Mε
2k−rk(L)−1(lev(L)/4),

where ε = −1 if rk(L) ≡ 1 or 3 mod 8 and ε = 1 otherwise.

Wm := ( 0 −1
m 0 ) and Mε

k(m) :=
{
f ∈Mk(m) : f |kWm = εi−kf

}
f ∈Mε

k(m) =⇒ Λm(f, s) = εΛm(f, k − s)
every Hecke eigenform f in Mk(m) �comes from� a newform g in Mk(n)

L(f, s)

L(g, s)
=
∏
p|m

n

Qp(s)

if f is an eigenform for all Atkin�Lehner involutions, then every Qp has a
functional equation

Qp(k − s) = ±p−vp(m/n)(k−2s)Qp(s)

let Mk(m) denote the subspace spanned by all f for which the sign in the
above equation is + for all p | (m/n) ; set Mε

k(m) := Mk(m) ∩Mε
k(m)
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this was proved for rk(L) = 1 by Skoruppa�Zagier (1988) by using trace
formulas and the theory of newforms

the result was used by Gross�Kohnen�Zagier (1987) to show that the classes
of Heegner points on a modular curve X0(m) in the Mordell�Weil group of
its Jacobian are the coe�cients of a Jacobi form of weight 2 and index m

Goal

Study Ajouz's conjecture.

intermediate goal: develop e theory of newforms, meaning

Given Jk,L, how many of its elements `come from' Jacobi forms of weight
k and index M with lev(M) | lev(L)?

Conjecture ?:
Jk,L 'M±1

2k−1−rk(L)(lev(L)/4),

Sakata (2018):
Snew,+
k,1 (m) ' Snew

k,m
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4. Hecke operators and the action of the orthogonal group

de�ned by Ajouz (2015) for (`, lev(L)) = 1:

T0(`)ϕ := `k−rk(L)−2
∑

γ∈JL\JL
(
1/` 0
0 `

)
JL

ϕ|k,Lγ

then

T (`)ϕ :=



∑
d2|`

d2k−rk(L)−3T0

(
`

d2

)
ϕ, rk(L) odd

∑
s,d>0

sd2|`,s square-free

χL(s)(sd2)k−
rk(L)

2
−2T0

(
`

sd2

)
ϕ, rk(L) even

they map Jk,L to itself and they preserve cusp forms and Eisenstein series
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Properties of Hecke operators

they are Hermitian: 〈T (`)ϕ,ψ〉 = 〈ϕ, T (`)ψ〉
they commute:

T (`)T (m) =


∑

d|(`,m)

d2k−rk(L)−2T
(
`m/d2

)
ϕ, rk(L) odd

∑
d|(`2,m2)

χL(d)dk−
rk(L)

2
−1T (`m/d)ϕ, rk(L) even,

a well-known result from Linear Algebra implies the following:

Theorem

The space Sk,L has a basis of simultaneous eigenforms for all T (`).

let ϕ be an eigenform of all T (`): T (`)ϕ = λ(`)ϕ; if rk(L) is odd, then

L(s, ϕ) :=
∑
`∈N

(`,lev(L))=1

λ(`)`−s =
∏

(p,lev(L))=1

(
1− p−2λ(p) + p2k−rk(L)−2−2s

)−1

correspondence for rk(L) even:

Jk,L  M
k− rk(L)

2

(?, χLξ)
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let r ∈ Iso(L) and let χ be a primitive Dirichlet character modulo F for
some F | ord(r); de�ne the twisted Eisenstein series

Ek,L,r,χ :=
∑

d∈(Z/ord(r)Z)×
χ(d)Ek,L,dr

Theorem (Ajouz, 2015)

The twisted Eisenstein series Ek,L,r,χ (r as above modulo (Z/lev(L)Z)× and χ
as above with χ(−1) = (−1)k) form a system of Hecke eigenforms for JEis

k,L

with eigenvalues

λ(`) =

σ
χ,χ
2k−rk(L)−2(`), rk(L) odd

χ(`)σ
χ,χL

k− rk(L)
2
−1

(`2), rk(L) even.
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The action of the orthogonal group

the discriminant module associated to L is DL := (L#/L, β mod Z)

the orthogonal group of DL is O(DL) := {s : DL
∼−→ DL : β ◦ s = β}

Ajouz (2015): there exists an action of O(DL) on Jk,L

(s, ϕ) 7→W (s)ϕ(τ, z) :=
∑
D,t

Cϕ (D, s(t)) e ((β(t)−D)τ + β(t, z))

these operators commute with T (`) ; therefore W (s)ϕ and ϕ have the
same Hecke eigenvalues if ϕ is an eigenform

an element α in L#/L such that ord(α) = lev(α) or 2ord(α) = lev(α) is
called admissible

for every admissible α, consider the re�ection map

sα(t) := t− β(t, α)

β(α)
α

Lemma

The maps sα are elements of O(DL) and involutions.
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Example

Skoruppa (1984) de�nes an operator on Jk,m for every n ‖ m:

Wnϕ(τ, z) =
∑
D,t

C(D,λnt)e
(
(mt2 −D)τ + 2tz

)
,

where λn is uniquely determined modulo 2m by the modular equations

λn ≡ −1 mod 2n

λn ≡ 1 mod
2m

n
.

it can be shown that Wn = W (sα) for some α in 1
2m

Z/Z
the Wn are called Atkin�Lehner involutions by Skoruppa�Zagier (1988),
because

tr (T (l) ◦Wn, Jk,m) = tr
(
T (l) ◦Wn,M

−
2k−2(m)

)
Proposition (M. 2018)

The operators W (s) are unitary for all s in O(DL) and they are Hermitian
when s is a re�ection.
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5. Level raising operators
I) The V operators

Eichler�Zagier (1985):

V (`) : ϕ(τ, z) 7→ 1

`

∑
ad=`

ak
∑

b mod d

ϕ

(
aτ + b

d
, az

)
maps Jk,m to Jk,m` (` ∈ N)
Gritsenko (1988) constructs these operators for arbitrary lattice index L
using the embedding of Jk,L into Mk(OJ) :

remember elliptic Hecke operators

T (`) :=
∑
ad=`
a|d

SL2(Z)
(
a 0
0 d

)
SL2(Z)

set

GJ :=


A∗ X1 T

0 Erk(L) X
0 0 A

 ∈ SOQ(M) : det(A) > 0


consider the following embedding of H(SL2(Z),M+

2 (Z)) into H(OJ , GJ ):

ι : SL2(Z)A SL2(Z) 7→ OJdiag
((

det(A)−1A
)∗
, Erk(L), det(A)−1A

)
OJ
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if OJgOJ =
∑
iO

Jgi, then set

ϕ|
(
OJgOJ

)
(τ, z) :=

∑
i

Φ|kgi(Z)e

(
−ω

det(A)

)

Proposition (Gritsenko, 1988)

If ϕ ∈ Jk,L and OJgOJ is an element of H(OJ , GJ), then

ϕ|
(
OJgOJ

)
∈ Jk,L(1/ det(A)).

we have V (`) = 1
`
ι(T (`))

Corollary

It follows that V (`) maps Jk,L to Jk,L(`), raising the level by a factor of `.
Furthermore, the V (·) operators commute.
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V operators and liftings

the V (·) operators are precisely the ones used for additive liftings:

ϕ ∈ Jk,L =⇒
∑
`≥1 V (`)ϕ(τ, z)e(`ω) ∈Mk

(
Õ+(M)

)
ϕ ∈ Jk,1 =⇒

∑
`≥1 V (`)ϕ(τ, z)e(`w) ∈M∗k (Γ2)

note that

V (`)ϕ(τ, z) =
∑

n∈Z,t∈L#

`n≥β(t)

∑
d|(n,`)
t
d
∈L#

dk−1cϕ

(
nl

d2
,
t

d

)
e (nτ + β(t, z)) ,

in particular, they preserve cusp forms and Eisenstein series
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II) The U operators

Eichler�Zagier (1985): U(`) : ϕ(τ, z) 7→ ϕ(τ, `z) maps Jk,m to Jk,m`2

let L = (L, β) and L′ = (L′, β′) be two lattices; an isometry of L into L′

is an injective linear map σ : L⊗Z Q→ L′ ⊗Z Q such that

β′ ◦ σ = β and σL ⊆ L′

De�nition

For every isometry σ of L into L′, de�ne a linear operator U(σ) from Jk,L′ to
Hol(H× (L⊗Z C)→ C) as

U(σ)ϕ(τ, z) := ϕ(τ, σ(z)).

Proposition (M. 2018)

When L⊗Z Q ' L′ ⊗Z Q, the operator U(σ) maps Jk,L′ to Jk,L.

for example, the map σ` : Q→ Q, σ`(x) = `x is an isometry of
(Z, (x, y) 7→ 2m`2xy) into (Z, (x, y) 7→ 2mxy) and U(σ`) = U(`) maps
Jk,m to Jk,m`2
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the de�nition of the dual lattice implies that lev(L′) | lev(L) and it follows
that U(σ) raises the level

when rk(L) = 1, the level is always raised by a square factor, but for
higher rank this need not be the case

(σ(L), β′) is a sublattice of L′ and L ' (σ(L), β′); conversely, any
sublattice (M,β′) of L′ gives rise to an isometry of (M,β′) into L′

the previous Proposition can be rephrased as

Every Jacobi form of weight k and index L′ is
a Jacobi form of weight k and index M

in particular, the U operators preserve cusp forms and Eisenstein series

Proposition (Nikulin, 1980)

Let L = (L, β) be a positive-de�nite, even lattice. Then there is a one-to-one
correspondence between overlattices of L and isotropic subgroups of DL. For
every such overlattice L′ = (L′, β), the correspondence is given by

L′ 7→ L′/L.
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for every isotropic subgroup I of DL, set LI := (L+ I, β)

we obtain an operator U(I) = U(ιL,LI
) which acts as an inclusion map of

Jk,LI
into Jk,L

Theorem (M. 2018)

The operators U(·) and V (·) commute with each other. They commute with
the Hecke operators. Furthermore, if an admissible element α in L#/L is such
that (lev(α), `) = 1, then V (`)W (sα) = W (sα)V (`). If I is an isotropic
subgroup of DL and α is admissible both in L#/L and in L#

I /LI , then
U(I)W (sα) = W (sα)U(I).

De�nition

An oldform in Jk,L is an element ϕ which is either equal to V (`)ψ for some `
in N and some ψ in Jk,L(1/`) or it is an element of Jk,LI

for some isotropic
subgroup I of DL.

Lemma

If ϕ ∈ Jk,L is such that Cϕ(D, r) = 0 for r not it L#
I , then ϕ is an oldform.
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Eisenstein series

Proposition (M. 2018)

The following holds for every s in O(DL):

W (s)Ek,L,r,χ = Ek,L,s−1(r),χ.

Proposition (M. 2018)

The following holds for every ` in N and every isotropic I in DL:

V (`)U(I)Ek,LI ,r
=

∑
t∈L(`)#/L
`β(t)∈Z

∑
d|(`β(t),`)

dk−1δLI

(
r,
`t

d

)
Ek,L(`),t

Proposition

If F 6= ord(r), then Ek,L,r,χ is an oldfrom.
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To do

is the above criterion for oldforms exhaustive?

are there more V (·) operators?
guess: no

do we have Multiplicity One?

there should be more old Eisenstein series
when rk(L) = 1, all Eisenstein series are old if m is not a square and, if
m = f2, then only Ek,f2, 1

f
,χ is new

Thank you!
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