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Abstract

In this paper we study the work of James Maynard [10], in which
he proves that

lim inf
n→∞

(pn+m − pn) <∞,

thus establishing that there are infinitely many intervals of finite length
that contain a fixed number of primes. We use Sieve theory, in par-
ticular Selberg’s sieve, and we look at preliminary work in order to
better understand this result. To conclude, we discuss the implications
of this result.
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1 Introduction

The study of prime numbers has intrigued people since antiquity. It rep-
resents the basis of Analytic Number Theory. In 1896 the prime number
theorem was proved independently by de la Vallée Poussin and Hadamard,
describing the asymptotic behaviour of primes.

Their work was based on that of Riemann and, with the clever use of
Complex Analysis (contour integration), they proved that

lim
x→∞

π(x)

x/ log x
= 1. (1)

We write this as π(x) ∼ x/ log x, where we define π(x) :=
∑

p≤x 1, the
number of primes less than or equal to x.

Equivalently, we can weight each prime with a weight log p to obtain the
estimate

ϑ(x) :=
∑
p≤x

log p ∼ x.

This implies that the average gap between consecutive primes less than
or equal to a given n is approximately log n, i.e. primes become less com-
mon as they become larger. People were concerned with investigating gaps
between prime numbers more thoroughly, and since then many conjectures
have arisen. We focus on small gaps between primes and when we say small
we mean in comparison to the average gap. There are spectacular results in
this area in the recent years.

In a paper printed in 2005 [7], Goldston et al. proved, among other things,
that:

lim inf
n→∞

pn+1 − pn
log pn

= 0,

where pn is the n−th prime, thus showing that there are infinitely many
consecutive primes that have an arbitrarily small gap compared to the av-
erage gap. In their proof they use Sieve Theory, which is a compilation of
techniques used to count a large set of integers which satisfy certain prop-
erties (usually involving prime numbers). Furthermore, under the Elliott–
Halberstam conjecture regarding the level of distribution of primes, they
prove that:

lim inf
n→∞

(pn+1 − pn) ≤ 16,

in other words there are infinitely many pairs of prime numbers that differ
by 16 or less.
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In 2013, Yitang Zhang published a paper [16] in which he established the
first finite bound on gaps between prime numbers, showing that

lim inf
n→∞

(pn+1 − pn) ≤ 7× 107.

His method was a refinement of that of Goldston et al. and the result was
a breakthrough as the proof is unconditional. The polymath project [12]
reduced the gap to 4680, by further developing Zhang’s techniques.

The aim of this project is to study the work of James Maynard, who, a
few months after Zhang, used a generalisation of the methods used in [7] to
prove that

lim inf
n→∞

(pn+m − pn) <∞.

In other words, there are infinitely many intervals of finite length that contain
m+ 1 or more primes.

He also improved Zhang’s estimate considerably by obtaining

lim inf
n→∞

(pn+1 − pn) ≤ 600, (2)

and, under the Elliott–Halberstam conjecture, that lim infn(pn+1 − pn) ≤ 12
and lim infn(pn+2 − pn) ≤ 600.

We will first discuss some sieving techniques which are useful in studying
gaps between primes. Then we talk about admissible sets and the Elliott–
Halberstam conjecture, as well as the level of distribution of primes, at which
point we state the Bombieri–Vinogradov theorem. In Section 3 we discuss
the methods used in the Goldston et al. paper, which will then help us
discuss Maynard’s techniques and results in Section 4.

2 Sieve theory

Sieve Theory is an important tool used in Number Theory, whose modern
version emerged more or less 100 years ago. To this day, there are a handful
of sieves that are used more often than others. Our focus will be on the sieve
of Eratosthenes, as an introduction, and the Selberg sieve, which we use in
our analysis of Maynard’s work.

Let us begin with a formal definition of a sieve, as stated in [1]:

Definition 2.1. Let A be a finite set of objects and let P be an indexed set
of primes such that to each p ∈ P we have associated a subset Ap of A. We
define the set

S(A,P) := A \ ∪p∈P Ap
The purpose of sieve theory is to estimate the size of this set from above and
below.
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In general, A is a set of positive integers and Ap is a subset of A consisting
of elements lying in specific congruence classes modulo p.

For example, if A = (1, N), P = {p, p ≤
√
N} and Ap = {n ∈ A, n ≡

0 (mod p) and n+2 ≡ 0 (mod p)}, then S(A,P) is the set of all twin primes
≤ N that are not in P .

We now introduce the sieve of Eratosthenes, which was written down in
the form we present by A.M. Legendre in 1808, in the second edition of his
book Théorie des Nombres.

2.1 Sieve of Eratosthenes

The sieve of Eratosthenes is a simple way of sifting out primes up to a certain
upper bound, x.

Informally, we make a list of all the integers 2, 3, . . . , bxc, where by bxc
we denote the greatest integer less than or equal to x. We start by calling
2 a prime and crossing all of its multiples off the list. As 3 is uncrossed,
we call it a prime, too, and proceed by crossing off all of its multiples. We
then pick the next uncrossed number and repeat the algorithm until the next
uncrossed number is greater than

√
x. All the numbers that are uncrossed

by the end are prime.
Formally, we wish to study the number

Φ(x, z) := #{n ≤ x : n is not divisible by any prime < z}, (3)

where x, z are positive real numbers.
Let

Pz :=
∏
p<z

p.

We can use the following result about the Möbius function, µ(·),∑
d|n

µ(d) =

{
1 if n = 1,
0 otherwise.

(4)

to write

Φ(x, z) =
∑
n≤x

∑
d|(n,Pz)

µ(d) =
∑
d|P (z)

µ(d)
∑
n≤x
d|n

1 =
∑
d|Pz

µ(d)
⌊x
d

⌋
(5)

= x
∑
d|Pz

µ(d)

d
+O(2z) = x

∏
p<z

(
1− 1

p

)
+O(2z),
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where in the first line we used the fact that #{n ≤ x : n ≡ 0 modulo d} =
bx/dc = x/d+O(1). We can relate this result to π(x). We have

π(x) = (π(x)− π(z)) + π(z)

≤ Φ(x, z) + π(z)

≤ Φ(x, z) + z. (6)

Since 1− x ≤ e−x holds for positive x, which can be shown by derivation, it
implies that ∏

p<z

(
1− 1

p

)
≤ exp

(
−
∑
p<z

1

p

)
.

In addition to this, we use the following result:∑
p≤z

1

p
≥ log log z +O(1),

which we prove using partial summation from the following theorem of Cheby-
cheff (1.4.5 in [1]):

Theorem 2.1. ∑
p≤z

log p

p
≥ log z +O(1).

We do the summation by parts:

∑
p≤z

1

p
=
∑
p≤z

log p

p

1

log p
=

1

log z

∑
p≤z

log p

p
+

z∫
1

∑
p≤t(log p/p)

t log2 t
dt

≥ 1

log z
(log z +O(1)) +

z∫
1

log t+O(1)

t log2 t
dt

= 1 +O

(
1

log z

)
+

z∫
1

1

t log t
dt+O

 z∫
1

1

t log2 t
dt


= 1 +O

(
1

log z

)
+O

(
− 1

log z

)
+ log log z,

which gives the required result.
Using this, we can obtain an upper bound for Φ(x, z) and, by substituting

in (6), for π(x). We choose z := c log x for a small positive constant c to get
the result:
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Proposition 2.2.

π(x)� x

log log x
.

We now want to study a more general setting. Let A be a set of natural
numbers lest than or equal to x and let P be a set of primes. To every p ∈ P
we assign a number ω(p) of distinct residue classes modulo p.

Remark 1. In Proposition 2.2, ω(p) = 1 and we fix the residue class 0 (mod
p).

Let Ap denote the set of elements of A belonging to at least one of these
distinct residue classes modulo p, let A1 := A and for any squarefree integer
d composed of primes in P we define

Ad :=
⋂
p|d

Ap

and
ω(d) :=

∏
p|d

ω(p).

The Chinese remainder theorem ensures ω(d) is well defined: given two dis-
tinct primes p1 and p2 and a residue class modulo each of these primes, there
exists a unique residue class modulo p1p2. We proceed by induction.

Let z be a positive real number and define

P (z) :=
∏
p∈P
p<z

p.

We define S(A,P , z) to be the number of elements of the set

A \
⋃
p|P (z)

Ap.

Assume that there exists an X such that

#Ad =
ω(d)

d
X +Rd

for some Rd.

Theorem 2.3 (The Sieve of Eratosthenes). With the above setting, suppose
the following conditions hold:
1. |Rd| = O(ω(d));
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2. for some κ ≥ 0, ∑
p|P (z)

ω(p) log p

p
≤ κ log z +O(1);

3. for some positive real number y, #Ad = 0 for every d > y.
Then

S(A,P , z) = XW (z) +O

((
X +

y

log z

)
(log z)κ+1 exp

(
− log y

log z

))
,

where

W (z) :=
∏
p∈P
p<z

(
1− ω(p)

p

)
.

Remark 2. As we assign more residue classes to each prime (ω(p) increases),
κ becomes bigger and, as a consequence, so does the error term in the third
condition.

Remark 3. In Proposition 2.2, κ = 1 and the second remark becomes∑
p<z

log p

p
≤ log z +O(1),

which was proven by Mertens (see [2] for alternative proof).

The proof requires the following lemmata, which we quote from [1] with-
out proof:

Lemma 2.4. With the setting and hypotheses of Theorem 2.3, let

F (t, z) :=
∑
d≤t
d|P (z)

ω(d).

Then

F (t, z) = O

(
t(log z)κ exp

(
− log t

log z

))
.

Lemma 2.5. With the setting and hypotheses of Theorem 2.3,∑
d|P (z)
d>y

ω(d)

d
= O

(
(log z)κ+1 exp

(
− log y

log z

))
.
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Proof of Theorem 2.3. We want to use the inclusion-exclusion principle from
combinatorics, namely∣∣∣∣∣

n⋃
i=1

Bi

∣∣∣∣∣ =
n∑
k=1

(−1)k+1

( ∑
1≤i1<...<ik≤n

|Bi1 ∩ . . . ∩Bik |

)
.

Using this and the first and third hypotheses of Theorem 2.3, we get

S(A,P , z) =
∑
d|P (z)
d≤y

µ(d)#Ad =
∑
d|P (z)
d≤y

µ(d)
Xω(d)

d
+O(F (y, z))

= X

( ∑
d|P (z)

µ(d)
ω(d)

d
−
∑
d|P (z)
d>y

µ(d)
ω(d)

d

)
+O(F (y, z)).

We write the first sum inside the main term as its Euler product and we
apply Lemma 2.5 to the second one and Lemma 2.4 to the error term to
obtain

S(A,P , z) = XW (z) +O

((
X +

y

log z

)
(log z)κ+1 exp

(
− log y

log z

))
.

2.2 Selberg’s sieve

In 1947, Selberg came with a clever contribution in estimating Φ(x, z), as
defined in (3). His idea was to replace the Möbius function in (5) with
a quadratic form, which can then be minimised for optimal results. This
method was then used with small modifications by Goldston et al. in [7]
and subsequently by Maynard, in a multi-dimensional setting, to obtain the
results mentioned in the Introduction.

Selberg made the observation that for any sequence (λd) of real numbers
such that λ1 = 1, the following holds:

∑
d|k

µ(d) ≤

(∑
d|k

λd

)2

.

This is because the left-hand side of the inequality is equal to 1 if k = 1 and
to 0 otherwise, while the right-hand side is 1 if k = 1 and greater than or
equal to 0 otherwise.
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Hence, from (5) we get

Φ(x, z) ≤
∑
n≤x

( ∑
d|(n,Pz)

λd

)2

=
∑
n≤x

( ∑
d1,d2|(n,Pz)

λd1λd2

)
=

∑
d1,d2|Pz

λd1λd2
∑
n≤x

[d1,d2]|n

1

≤ x
∑

d1,d2|Pz

λd1λd2
[d1, d2]

+O

( ∑
d1,d2|Pz

|λd1||λd2|

)
,

where by [a, b] we’ve denoted the least common multiple of a and b. Since
our sequence (λd) was chosen arbitrarily apart from the one condition, we
may make the assumption that λd = 0 for d > z and obtain

Φ(x, z) ≤ x
∑

d1,d2≤z

λd1λd2
[d1, d2]

+O

( ∑
d1,d2≤z

|λd1||λd2 |

)
. (7)

Our purpose is to estimate the main term so we look at∑
d1,d2≤z

λd1λd2
[d1, d2]

(8)

as a quadratic form in (λd)d≤z and we try to minimize it.
We use the fact that [d1, d2](d1, d2) = d1d2, where we’ve denote by (a, b)

the greatest common divisor of a and b, and that
∑

δ|d φ(δ) = d, where φ(·)
is Euler’s totient function, i.e. φ(δ) is the number of positive integers less
than or equal to δ that are relatively prime to δ. We write (8) as∑

d1,d2≤z

λd1λd2
[d1, d2]

=
∑

d1,d2≤z

λd1λd2
d1d2

(d1, d2) =
∑

d1,d2≤z

λd1λd2
d1d2

∑
δ|(d1,d2)

φ(δ)

=
∑
δ≤z

φ(δ)
∑

d1,d2≤z
δ|(d1,d2)

λd1λd2
d1d2

=
∑
δ≤z

φ(δ)

(∑
d≤z
δ|d

λd
d

)2

,

so we have diagonalised our quadratic form to∑
δ≤z

φ(δ)u2
δ ,
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under the linear transformation

uδ :=
∑
d≤z
δ|d

λd
d
. (9)

This transformation is invertible and we can use the dual Möbius inversion
formula (1.2.3 in [1]) to obtain

λδ
δ

=
∑
d≤z
δ|d

µ

(
d

δ

)
ud.

Bearing in mind our conditions on (λd), we have uδ = 0 for δ > z and∑
d≤z

µ(d)ud = λ1 = 1. (10)

Using this, we can write

∑
δ≤z

φ(δ)u2
δ =

∑
δ≤z

φ(δ)

(
uδ −

µ(δ)

φ(δ)V (z)

)2

+
1

V (z)
,

where V (z) :=
∑

d≤z µ
2(d)/φ(d).

We want to minimise this quadratic form under the constraint (10). It is
easy to see that we have a minimal value of 1/V (z), which occurs when

uδ =
µ(δ)

φ(δ)V (z)
=⇒ λδ = δ

∑
δ|d

µ(d/δ)µ(d)

φ(d)V (z)
.

Using this, we can prove that |λd| ≤ 1 for any d (see p.117 in [1] for proof).
Substituting our results into (7), we obtain

Φ(x, z) ≤ x

V (z)
+O(z2). (11)

Remark 4. We can use this to obtain a better estimate for π(x) than Propo-
sition 2.2, namely:

π(x)� x

log x
,

which is Chebyscheff’s upper bound for π(x). The proof is again based on
writing

π(x) ≤ Φ(x, z) + z
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and we use (11) to estimate Φ(x, z). We have∑
d≤z

µ(d)2

φ(d)
≥
∑
d≤z

µ(d)2

d
=
∑
d≤z

1

d
−
∑
d≤z

′ 1

d
,

where the
∑′

d≤z denotes that we are summing over non squarefree d. We
now quote without proof the following proposition from [1] (1.3.3):

Proposition 2.6. ∑
d≤z

1

d
= log z +O(1).

We use this and the fact that∑
d≤z

′ 1

d
≤ 1

4

∑
d≤z/4

1

d
,

since if d has a squarefree divisor k ≥ 2, say, then d ≤ z implies d/k2 ≤ z/4
and also

1

d
≤ 1

4d/k
.

We obtain
π(x)� x

log z
+ z2.

We then need to choose an appropriate z again, which in this case will be
z := (x/ log x)1/2. This gives the result.

We now discuss the general Selberg sieve. Let A be a finite set of natural
numbers and let P be a set of primes. For every p ∈ P , letAp be a subset ofA
(notice that, unlike the sieve of Eratosthenes, Ap does not necessarily depend
on fixed residue classes modulo p). LetA1 := A and for any squarefree integer
d composed of primes in P we define

Ad :=
⋂
p|d

Ap.

Let z be a positive real number and define P (z) and S(A,P , z) as before.

Theorem 2.7 (Selberg’s sieve). With the above setting, suppose there exists
X > 0 and a multiplicative function f(·) which satisfies f(p) > 1 for any
prime p ∈ P, such that for any squarefree integer d composed of primes in P
we have

#Ad =
X

f(d)
+Rd (12)
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for some real number Rd. Write

f(n) =
∑
d|n

f1(d), (13)

where f1(·) is a multiplicative function which is uniquely determined by f(·)
using the Möbius inversion formula, in other words f1(n) =

∑
d|n µ(d)f(n/d).

Set

V (z) :=
∑
d≤z
d|P (z)

µ2(d)

f1(d)
.

Then

S(A,P , z) ≤ X

V (z)
+O

( ∑
d1,d2≤z
d1,d2|P (z)

|R[d1,d2]|

)
.

Remark 5. Note the inequality sign in Selberg’s sieve, compared to the equal-
ity we had in Theorem 2.3. The main terms in the two sieves have the same
order of magnitude (both are O(x/ log z)), but there is an improvement in
the error term.

Remark 6. In (11), in the formula for V (z), we have f1(·) to be the Euler
function, hence f(n) =

∑
d|n φ(d) = n is the identity function.

The proof of this theorem is analogous to that of (11):

Proof of Theorem 2.7. As before, we start with a sequence (λd) of real num-
bers satisfying λ1 = 1 and λd = 0 for d > z.

We want to obtain a similar estimate for S(A,P , z) as we did for Φ(x, z).
By the inclusion-exclusion principle, we have

S(A,P , z) =
∑
a∈A

a/∈Ap∀p|P (z)

1 =
∑
d|P (z)

µ(d)
∑
a∈Ad

1 =
∑
a∈A

( ∑
d|P (z)
a∈Ad

µ(d)

)
.

We define, for any a ∈ A,

D(a) :=
∏
p∈P
a∈Ap

p,

and if a /∈ Ap for any p ∈ P , then D(a) := 1. We have

∑
d|P (z)
a∈Ad

µ(d) =
∑

d|(P (z),D(a))

µ(d) ≤

( ∑
d|(P (z),D(a))

λd

)2

=

( ∑
d|P (z)
a∈Ad

λd

)2

.

12



Substituting in our formula for S(A,P , z), we obtain:

S(A,P , z) ≤
∑
a∈A

( ∑
d|P (z)
a∈Ad

λd

)2

=
∑
a∈A

( ∑
d1,d2|P (z)
a∈A[d1,d2]

λd1λd2

)

=
∑

d1,d2≤z

λd1λd2#A[d1,d2]

= X
∑

d1,d2≤z
d1,d2|P (z)

λd1λd2
f([d1, d2])

+O

( ∑
d1,d2≤z
d1,d2|P (z)

|λd1||λd1||R[d1,d2]|

)
,

using (12).
We look at the sum in our main term as a quadratic form in (λd)d≤z,

which we want to diagonalise and then minimise in order to finish the proof.
For that, we need to use the fact that for a multiplicative function f(·) and
two positive squarefree integers d1 and d2,

f([d1, d2])f((d1, d2)) = f(d1)f(d2), (14)

which is similar to what we have used before. Using this and (13), we obtain∑
d1,d2≤z
d1,d2|P (z)

λd1λd2
f([d1, d2])

=
∑

d1,d2≤z
d1,d2|P (z)

λd1λd2
f(d1)f(d2)

f((d1, d2))

=
∑

d1,d2≤z
d1,d2|P (z)

λd1λd2
f(d1)f(d2)

∑
δ|(d1,d2)

f1(δ)

=
∑
δ≤z
δ|P (z)

f1(δ)
∑

d1,d2≤z
d1,d2|P (z)
δ|(d1,d2)

λd1λd2
f(d1)f(d2)

=
∑
δ≤z
δ|P (z)

f1(δ)

( ∑
d≤z
d|P (z)
δ|d

λd
f(d)

)2

.

Hence our quadratic form is reduced to the diagonal form∑
δ≤z
δ|P (z)

f1(δ)u2
δ ,
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under the linear transformation

uδ :=
∑
d≤z
d|P (z)
δ|d

λd
f(d)

,

which is invertible and by the dual Möbius inversion formula we have

λδ
f(δ)

=
∑
d|P (z)
δ|d

µ

(
d

δ

)
ud.

Bearing in mind our conditions on (λd), we have uδ = 0 for δ > z and∑
d≤z
d|P (z)

µ(d)ud = λ1 = 1. Using this, we can write

∑
δ≤z
δ|P (z)

f1(δ)u2
δ =

∑
δ≤z
δ|P (z)

f1(δ)

(
uδ −

µ(δ)

f1(δ)V (z)

)2

+
1

V (z)
,

from which we deduce that our quadratic form has a minimal value of 1/V (z),
which occurs when

uδ =
µ(δ)

f1(δ)V (z)
,

since the coefficients appearing in the quadratic form, f1(d), are positive by
multiplicativity of f1(·).

2.3 Admissible sets

In Maynard’s paper, the main focus is on k-tuples of prime numbers of the
form {n+ h1, . . . , n+ hk}. He proves that there are infinitely many intervals
of finite length that contain k primes.

This is something number theorist have been working on for a long time.
In 1849, de Polignac conjectured that for every positive even natural number
k there are infinitely many consecutive prime pairs {pn, pn+1} such that pn+1−
pn = k. Zhang proved that this holds for some k < 7 × 107 and the result
is being constantly improved with the help of sieve theory and computer
programs. The case k = 2 is the famous twin prime conjecture.

We start by considering a set H = {h1, . . . , hk} of natural numbers. For
each prime p we look at the set

Ω(p) = {n (mod p) : n ≡ −hi (mod p) for some hi ∈ H}

of residue classes in H modulo p.
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Definition 2.2 (Admissible set). We call a setH defined as above admissible
if, for every prime p, |Ω(p)| < p.

Remark 7. We want our set H to generate k-tuples of primes of the form
{n + h1, . . . , n + hk}. Therefore, if Ω(p) = p for some p, at least one of the
n+hi would be congruent to 0 modulo p and therefore could not be a prime.

Remark 8. Given a set H, it is enough to check if it is admissible up to the
biggest prime less than or equal to k, since for a prime greater than k it is
impossible to cover all residue classes modulo said prime.

Example 2.1. The set H = {1, 3, 5} is not admissible. We need to check for
primes less than or equal to 3: −1 ≡ −3 ≡ −5 ≡ 1 (mod 2), so Ω(2) = {1},
however −1 ≡ 2( mod 3), −3 ≡ 0( mod 3) and −5 ≡ 1( mod 3), so Ω(3) =
{1, 2, 3}.

G. H. Hardy and J. E. Littlewood [3] stated the following conjecture
regarding k-tuples of primes:

Conjecture 2.8 (Hardy-Littlewood). Let H be an admissible set. Then
there exist infinitely many k-tuples of primes of the form {n+h1, . . . , n+hk}
and in fact we can count them asymptotically:

#{n ≤ x : n+ h1, . . . , n+ hk all prime} ∼ G(H)
x

(log x)k
,

where we define

G(H) :=
∏
p

(
1− |Ω(p)|

p

)(
1− 1

p

)−k
(15)

and we call it the singular series.

Remark 9. We can see that for k = 1, the conjecture is equivalent to saying
that #{n ≤ x : n + h prime} ∼ G({h})x/ log x, and in this case |Ω(p)| = 1
for all p, implying G({h}) = 1. Thus we get a restatement of the prime
number theorem, (1).

Given an admissible set H = {h1, . . . , hk}, we can use Selberg’s sieving
technique to get an upper bound for the set

S = {n : n+ h1, . . . , n+ hk all prime and n ∈ [N, 2N ]},

for some large N , which will later become of interest to us. Let

P (n) := (n+ h1) . . . (n+ hk). (16)
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We want to use the same trick as the one in the Selberg sieve. To estimate
the size of our set S we need a function which is equal to 1 if all of the
n+h1, . . . , n+hk are prime and non-negative otherwise, to replace the Möbius
function. We define a sequence (λd) with λ1 = 1 and λd = 0 for d > R for
some R. Then

|S| ≤
∑

N≤n≤2N

∑
d|P (n)

λd

2

,

as long as we fix R to be less than N . This is because if this holds, when
all of the n + hi’s are prime, the only non-zero term in the inner sum is for
d = 1.

We want to extend Ω(·) multiplicatively (similar to how we extended ω(·)
multiplicatively in Subsection 2.1) as n ∈ Ω(d) if and only if n ∈ Ω(p) for all
p | d. We can use the Chinese remainder theorem to show that this implies
|Ω(d)| =

∏
p|d |Ω(p)|. We follow the same steps as in the proof of (11) to get

|S| ≤ x

( ∑
d1,d2≤R

λd1λd2
|Ω([d1, d2])|

[d1, d2]

)
+O

(∑
d1,d2

|Ω([d1, d2])||λd1||λd2|

)
.

Note that, compared to (7), there is an extra factor of |Ω([d1, d2])| appearing
both in the error term and in the main term. This is because if n ∈ Ω(d) for
some d, then so does n+ d, so when we split the interval [N, 2N ] into bx/dc
intervals of length d, each interval contains exactly |Ω(d)| integers n ∈ Ω(d).

To minimise the main term, we know from [14] that the best choice for
diagonalising λd is

λd ≈ µ(d)

(
logR/d

logR

)k
. (17)

With this choice, we get

|S| ≤ O

(
2kk!G(H)

N

(logN)k

)
,

which is a factor of 2k · k! away from the result stated in the conjecture.

2.4 Level of distribution of primes

We will now talk about primes in arithmetic progressions and we will state
the Bombieri–Vinogradov theorem.

We define π(x; k, a) to be the number of primes p ≤ x with p ≡ a (mod k).
The definition makes sense only when a is coprime to k, as otherwise p would
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be divisible by a and hence would not be a prime, unless a = p. Note that
the case k = 1 is simply π(x). The prime number theorem for primes in
progression states:

π(x; k, a) ∼ li(x)

φ(k)
, (18)

where li(x) :=
∫ x

2
log−1 t dt. When k = 1, we get π(x) ∼ li(x) and it is known

that li(x) ∼ x/ log x, thus we get the prime number theorem.
Note that a does not appear in the right-hand side of (18), implying that

primes in arithmetic progressions are evenly distributed, i.e. an arithmetic
progression of the form a (mod k) contains asymptotically as many primes
as one of the form b (mod k) whenever a and b are coprime to k.

It is proven in [15] that, for any fixed N > 0,

π(x; k, a) =
li(x)

φ(k)
+O(x exp (−c

√
log x))

holds for all x ≥ 2 and all integers k, a with (a, k) = 1 and 1 ≤ k ≤ (log x)N

and c is an absolute constant.
We now define the level of distribution of primes:

Definition 2.3 (Level of Distribution). Given θ > 0, we say that primes
have level of distribution θ if, for any A > 0, the following holds:∑

k≤xθ
max

(a,k)=1

∣∣∣∣π(x; k, a)− π(x)

φ(k)

∣∣∣∣�A
x

(log x)A
. (19)

Under the Generalised Riemann hypothesis (GRH), it can be shown that

π(x; k, a) =
π(x)

φ(k)
+O(x1/2 log x),

so if we allow k to vary up to x1/2 and take the maximum over it, this implies
that primes have level of distribution θ for θ < 1/2.

Bombieri and Vinogradov validated this claim independently in 1965
without the use of the GRH, by proving the following theorem:

Theorem 2.9 (Bombieri–Vinogradov). For any A > 0 there exists B =
B(A) > 0 such that∑

k≤ x1/2

(log x)B

max
y≤x

max
(a,k)=1

∣∣∣∣π(y; k, a)− li(y)

φ(k)

∣∣∣∣�A
x

(log x)A
. (20)
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Remark 10. We allow k to vary up to x1/2/(log x)B since we can find ε > 0
such that x1/2−ε � x1/2/(log x)B ≤ x1/2.

Remark 11. We are also taking the maximum over all y ≤ x, which is an
improvement to our definition.

Their proof was based estimating certain L-functions in various rectangles
with the use of the large sieve method, which we quote from [1]:

Theorem 2.10 (The large sieve). Let A be a set of natural numbers lest
than or equal to x and let P be a set of primes. For every p ∈ P suppose we
are given a set {w1,p, . . . , wω(p),p} of ω(p) distinct residue classes modulo p.
Let z be a positive real number and define P (z) as we have before. We define
S(A,P , z) to be the number of elements of the set

{n ∈ A : n 6≡ wi,p(mod p) ∀1 ≤ i ≤ ω(p), ∀p | P (z)}.

Then

S(A,P , z) ≤ z2 + 4πx

L(z)
,

where

L(z) :=
∑
d≤z

µ2(d)
∏
p|d

ω(p)

p− ω(p)
.

It was conjectured by Elliott and Halberstam [3] that primes have level
of distribution θ for θ < 1, while Friedlander and Granville [5] proved that
(19) does not hold if we replace xθ with x/(log x)B for any fixed B, like the
result obtained in Theorem 2.9.

We can also define an equivalent of the function ϑ(·) for primes in pro-
gressions, by

ϑ∗(y; q, a) :=
∑

y<n≤2y
n≡a mod q

$(n), (21)

where we define $(n) to be equal to log n if n is a prime and 0 otherwise. It
can be shown that (20) is equivalent to∑

q≤xθ
max
y≤x

max
(a,q)=1

∣∣∣∣ϑ∗(y; q, a)− y

φ(q)

∣∣∣∣� x

(log x)A
. (22)

3 The Goldston–Pintz–Yıldırım theorem

As we mentioned in the Introduction, Goldston et al. use a variation of
Selberg’s sieve to prove the following theorem:
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Theorem 3.1 (GPY).

lim inf
n→∞

pn+1 − pn
log pn

= 0.

This shows that there are infinitely many consecutive primes that have
an arbitrarily small gap between them, compared to the average gap implied
by (1). We will now highlight some of the ideas in their proof.

Proof of Theorem 3.1. We start by introducing some basic notation.
Let N be a parameter that increases monotonically to infinity and we fix

H and R such that

H � logN � logR ≤ logN.

By k and l we denote arbitrary positive integers that are bounded.

Remark 12. We will see later on that the condition that k and l are chosen
arbitrarily is crucial, because the correct choice enables us to complete the
proof.

LetH = {h1, . . . , hk} be an admissible set defined as before and we impose
on it the condition that H ⊆ [1, H]. We next define a sequence (λR(d; a)) in
a similar way to (17), by

λR(d; a) =

{
0 if d > R,
1
a!
µ(d)

(
log R

d

)a
if d ≤ R.

Our first aim is to evaluate the quantity

∑
N<n≤2N

 ∑
n∈Ω(d)

λR(d; k + l)

2

(23)

Note that n ∈ Ω(d) ⇐⇒ d | P (n) with P (n) defined as in (16). We let
ΛR(n;H, a) :=

∑
n∈Ω(d) λR(d; a) and we claim that the following holds:

Lemma 3.2. With the above notation, for R ≤ N1/2/(logN)C, where C > 0
depends only on k and l,∑

N<n≤2N

ΛR(n;H; k + l)2 =
G(H)

(k + 2l)!

(
2l

l

)
N(logR)k+2l

+O(N(logN)k+2l−1(log logN)c),

with G(H) defined as in (15).
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Sketch of proof of Lemma 3.2. We can expand the square in (23) and write
our quantity as

NT +O

((∑
d

|Ω(d)||λR(d; k + l)|
)2
)
,

with

T =
∑
d1,d2

|Ω([d1, d2])|
[d1, d2]

λR(d1; k + l)λR(d1; k + l).

To estimate the error term, note that if d is a squarefree integer which
can be written as the product of m distinct primes, we have that τk(d) =
km, where τk(·) is the generalised divisor function, τk(n) = |{(a1, . . . , ak) :
a1 . . . ak = n}|. Then, since |H| = k and we require |Ω(p)| to be less than k
be definition, we have

|Ω(d)| = |Ω(p1)| . . . |Ω(pm)| ≤ km = τk(d).

We have

ζk(s) =
∞∑
n=1

τk(n)

ns
.

We can then use Perron’s discontinuous integral and the Leibniz rule for
differentiation to get∑

n≤x

τk(n) =
x(log x)k−1

(k − 1)!
+O(x(log x)k−2),

hence we can write our error term as

O

((∑
d

τk(d) log

(
R

d

)a)2
)

= O((R(logR)k−1(logR)a)2)

= O(R2(logR)c). (24)

To estimate the main term, we use contour integration along cleverly
chosen vertical lines. We concentrate on the main ideas and ignore the error
terms. First, note that we can write

λR(d; a) =
µ(d)

2πi

∫
(1)

(
R

d

)s
ds

sa+1
, (25)

as long as a ≥ 1, where by (α) we denote the vertical line passing through α
in the complex plane. We use this to write T as

T =
1

(2πi)2

∫
(1)

∫
(1)

F (s1, s2; Ω)
Rs1+s2

(s1s2)k+l+1
ds1ds2, (26)
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with

F (s1, s2; Ω) =
∑
d1,d2

µ(d1)µ(d2)
|Ω([d1, d2])|
[d1, d2]ds11 d

s2
2

,

which can also be written as

F (s1, s2; Ω) =
∏
p

(
1− |Ω(p)|

p

(
1

ps1
+

1

ps2
− 1

ps1+s2

))
,

in the region of absolute convergence. We then let

G(s1, s2; Ω) := F (s1, s2; Ω)

(
ζ(s1 + 1)ζ(s2 + 1)

ζ(s1 + s2 + 1)

)k
,

which is regular and bounded for R(s1),R(s2) > −1/2.
We get the singular series in the main term from

G(0, 0; Ω) =
∏
p

(
1− |Ω(p)|

p

)(
1− 1

p

)−k
= G(H),

by definition.
We have G(s1, s2; Ω) = O(exp (c′(logN)−2σ log log logN)), with σ :=

min(<(s1),<(s2), 0), which we obtain by writing out logG(s1, s2; Ω) explic-
itly.

We can use G(·) to estimate T by shifting both contours in (26). We let
U = exp (

√
logN) and we shift the s1-contour to the vertical line c0(logU)−1+

it and the s2-contour to c0(2 logU)−1 + it, where t ∈ R and c0 is a sufficiently
small positive constant. Next, we truncate the contours to |t| ≤ U and
|t| ≤ U/2 and we denote the results by L1 and L2. With these choices (26)
becomes

T =
1

(2πi)2

∫
L1

∫
L2

G(s1, s2; Ω)

(
ζ(s1 + s2 + 1)

ζ(s1 + 1)ζ(s2 + 1)

)k
Rs1+s2

(s1s2)k+l+1
ds1ds2

+O(exp(−c
√

logN)).

We then shift the s1-contour to L3 = −c0(logU)−1 + it, for |t| ≤ U and we
encounter a pole of order l + 1 at s1 = 0 and a pole of order k at s1 = −s2.
We use Cauchy’s residue theorem to bound Res

s1=−s2
asymptotically and obtain

T =
1

2πi

∫
L2

{
Res
s1=0

}
ds2 +O((logN)k+l−1/2(log logN)c), (27)
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for some constant c. In order to estimate this, we define

Z(s1, s2) = G(s1, s2; Ω)

(
(s1 + s2)ζ(s1 + s2 + 1)

s1ζ(s1 + 1)ζ(s2 + 1)

)k
,

which is regular and bounded in a neighbourhood of the point (0, 0), since
G(·) is regular in that area, while the poles of ζ(si+1) and the zeros given by
si at si = 0 cancel each other in the denominator. Cauchy’s residue formula
gives us

Res
s1=0

=
Rs2

l!sl+1
2

(
∂

∂s1

)l
s1=0

{
Z(s1, s2)

(s1 + s2)k
Rs1

}
.

We substitute this into (27) and we shift the contour to L4 = −c0(logU)−1 +
it, for |t| ≤ U/2, which gives us an error term of size O(exp (−c

√
logN))

again. We have a new pole at s2 = 0 and we use Cauchy’s residue formula
to obtain

T = Res
s1=0

Res
s2=0

+O((logN)k+l)

=
1

(2πi)2

∫
C2

∫
C1

Z(s1, s2)Rs1+s2

(s1 + s2)k(s1s2)l+1
ds1ds2 +O((logN)k+l), (28)

where we denote by C1 and C2 the circles |s1| = ρ and |s2| = 2ρ, respectively,
where ρ > 0 is chosen to be small. We write s1 = s and s2 = ξs and substitute
into the main term of (28) to obtain

T =
1

(2πi)2

∫
C3

∫
C1

Z(s, ξs)Rs(ξ+1)

(ξ + 1)kξl+1sk+2l+1
dsdξ +O((logN)k+l),

where C3 is the circle |ξ = 2|. We first evaluate

I1 =
1

2πi

∫
C1

Z(s, sξ)Rs(ξ+1)

sk+2l+1
ds.

By Cauchy’s integral formula, we have

I1 =
1

(k + 2l)!

(
∂

∂s

)k+2l

s=0

(Z(s, ξs)Rs(ξ+1)).

We note that

∂mZ(s, ξs)

∂sm

∣∣∣∣∣
s=0

=
m!

2πi

∫
C(0,δ)

Z(s, ξs)

sm+1
ds = O((log logN)c),
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where C(0, δ) is the circle centered at 0 of radius δ and we obtain the asymp-
totic by choosing δ = 1/(log logN). On the other hand,

∂mRs(ξ+1)

∂sm

∣∣∣∣∣
s=0

= (logR)m(ξ + 1)m,

and we can use Leibniz’ rule for differentiation to obtain

T =
Z(0, 0)

2πi(k + 2l)!
(logR)k+2l

∫
C3

(ξ + 1)2l

ξl+1
dξ +O((logN)k+2l−1(log logN)c).

We estimate the integral

I2 =
1

2πi

∫
C3

(ξ + 1)2l

ξl+1
dξ =

1

l!
× ∂l(ξ + 1)2l

∂ξl

∣∣∣∣∣
ξ=0

=

(
2l

l

)
.

We obtain

T =
G(H)

(k + 2l)!

(
2l

l

)
(logR)k+2l +O((logN)k+2l−1(log logN)c) (29)

Observe that the estimate we obtained in (24) gets absorbed into the
error term given by (29) when we multiply through by N , because of the
initial conditions imposed on R and N . Hence, the proof is complete.

We next want to introduce weights for primes in our calculations. We
define the function $(·) to be $(n) := log n for n prime, and 0 otherwise.
We now want to evaluate the quantity∑

N<n≤2N

$(n+ h)ΛR(n;H, k + l)2, (30)

where h is an arbitrary positive integer less than or equal to H. We claim
that the following holds.

Lemma 3.3. Suppose that the following assumption holds: There exists an
absolute constant 0 < θ < 1 such that, for any fixed A > 0, (22) holds. Then,
with the notation from Subsection 2.4, for R ≤ N θ/2, we have∑

N<n≤2N

$(n+ h)ΛR(n;H, k + l)2

=



G(H ∪ {h})
(k + 2l)!

(
2l

l

)
N(logR)k+2l

+ O(N(logN)k+2l−1(log logN)c) if h 6∈ H,

G(H)

(k + 2l + 1)!

(
2(l + 1)

l + 1

)
N(logR)k+2l+1

+ O(N(logN)k+2l(log logN)c) if h ∈ H.
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Sketch of proof of Lemma 3.3. First, note that we may assume that h 6∈ H
since the factor (n + h) does not affect the computation of ΛR(n;H; k + l).
Then, let δ(x) = 1 if x = 1 and 0 otherwise. As before, we expand the square
and write (30) as∑
d1,d2

λR(d1; k+ l)λR(d2; k+ l)×
∑

b∈Ω([d1,d2])

δ((b+h, [d1, d2]))ϑ∗(N ; b+h, [d1, d2]),

with an error term of size O(R2(logN)c), which we can obtain in the same
way as (24). Note that we introduced the function δ(·) in the inner sum
because ϑ∗(N ; b+ h, [d1, d2]) = 0 when b+ h and [d1, d2] are not coprime.

We now use this and (22) to write our quantity as

NT ∗ +O

(
N

(logN)A/3

)
,

where

T ∗ =
∑
d1,d2

λR(d1; k + l)λR(d1; k + l)

φ([d1, d2])
×

∑
b∈Ω([d1,d2])

δ((b+ h, [d1, d2])).

We obtain the error term by comparing Ω(·) to the generalised divisor func-
tion τk(·) again.

To evaluate the main term, we write the inner sum in the expression of
T ∗ as ∏

p|[d1,d2]

 ∑
b∈Ω(p)

δ((b+ h, p))

 =
∏

p|[d1,d2]

(|Ω+(p)| − 1),

where Ω+(·) is defined to be the function Ω(·) for the set H ∪ {h}. This is
because δ((b + h, p)) = 0 ⇐⇒ −h ∈ Ω(p), meaning that δ((b + h, p)) = 1
for each residue class from H except for one.

We use (25) again to get

T ∗ =
1

(2πi)2

∫
(1)

∫
(1)

F ∗(s1, s2; Ω)
Rs1+s2

(s1s2)k+l+1
ds1ds2,

with

F ∗(s1, s2; Ω) =
∑
d1,d2

µ(d1)µ(d2)

∏
p|[d1,d2](|Ω+(p)| − 1)

φ([d1, d2])ds11 d
s2
2

,

We can write F ∗(·) equivalently as

F ∗(s1, s2; Ω) =
∏
p

(
1− |Ω

+(p)| − 1

p− 1

(
1

ps1
+

1

ps2
− 1

ps1+s2

))
,
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in the same region of absolute convergence as that of F .
We define

G∗(s1, s2; Ω) = F ∗(s1, s2; Ω)

(
ζ(s1 + 1)ζ(s2 + 1)

ζ(s1 + s2 + 1)

)k
,

and we consider two cases, according to whether h 6∈ H or h ∈ H.
If h 6∈ H, for p > H we have |Ω+(p)| = k + 1. If H+ is admissible, we

have, as before, G∗(0, 0; Ω) = G(H+), and we can estimate

T ∗ =
G(H+)

(k + 2l)!

(
2l

l

)
(logR)k+2l +O((logN)k+2l−1(log logN)c).

On the other hand, if H+ is not admissible, we have G(H+) = 0 and the
main term in the previous estimate vanishes, while the error term remains
the same.

If h ∈ H, the above calculations hold with the translation k 7→ k− 1, l 7→
l + 1. This is because for a prime p > H, |Ω+(p)| is equal to k instead of
k + 1 and (k − 1) + (l + 1) = k + l. Hence, the proof is complete.

We are now ready to bring everything together. We want to evaluate the
expression∑

H⊆[1,H]
|H|=k

∑
N<n≤2N

(∑
h≤H

$(n+ h)− log 3N

)
× λR(n;H, k + l)2, (31)

We want to prove that it is positive for sufficiently large N , using Lemmata
3.2 and 3.3, so we set R = N θ/2. If this turns out to be true, then the inner
sum must be positive, meaning that there exists an integer n ∈ (N, 2N ] such
that ∑

h≤H

$(n+ h)− log 3N > 0.

This in turns implies that there exists a subinterval of lengthH in (N, 2N+H]
which contains at least two primes. That is because, if there are no primes,
then the sum takes a negative value and if there is only one prime p, say,
occurring in the interval, then we have

log p− log 3N ≤ log (2N +H)− log 3N.

We know from our initial conditions that H � logN < N , so 2N+H < 3H,
making our expression negative. If, however, there were at least two primes
in the subinterval, we would have

min
N<pr≤2N+H

(pr+1 − pr) ≤ H. (32)

25



In order to prove that (31) is positive, we need to quote the following
result from [6]: ∑

H⊆[1,H]
|H|=k

G(H) = (1 + o(1))Hk, (33)

as H tends to infinity. Using this and Lemma 3.2, (31) becomes

∑
H⊆[1,H]
|H|=k

∑
N<n≤2N


∑
h≤H
h6∈H

+
∑
h≤H
h∈H

×$(n+ h)ΛR(n;H, k + l)2

− 1

(k + 2l)!

(
2l

l

)
NHk(logN)(logR)k+2l + o(NHk(logN)k+2l+1).

Using Lemma 3.3 and (33) again, this is asymptotically equal to

1

(k + 2l)!

(
2l

l

)
NHk+1(logR)k+2l

+
k

(k + 2l + 1)!

(
2(l + 1)

l + 1

)
NHk(logR)k+2l+1

− 1

(k + 2l!)

(
2l

l

)
NHk(logN)(logR)k+2l

=

{
H +

k

k + 2l + 1
· 2(2l + 1)

l + 1
· logR− logN

}
× 1

(k + 2l)!

(
2l

l

)
NHk(logR)k+2l.

So (31) is positive as long as

H

logN
≥ 1 + ε− k

k + 2l + 1
· 2(2l + 1)

l + 1
· θ

2
,

for any ε > 0. If we choose l = b
√
kc, it is enough to require

H

logN
≥ 1 + ε− 2θ.

By Bombieri–Vinogradov theorem, we can take θ = 1/2− ε for any ε > 0, so
we want

H

logN
≥ 1 + ε− 1 + 2ε.
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Choose ε = ε to get that we need

H

logN
≥ 3ε. (34)

Going back to (32), we have

min
N<pr≤2N+H

pr+1 − pr
log pr

< min
N<pr≤2N+H

pr+1 − pr
logN

≤ H

logN
, (35)

We know from our initial conditions that H = O(logN), so we can pick any
δ > 0 and pick H = δ logN . Then, choose ε = δ/3, so that (34) holds. Also,
(35) becomes

min
N<pr≤2N+H

pr+1 − pr
logN

≤ δ,

which in turn proves the theorem.

Furthermore, under the Elliott–Halberstam conjecture, Goldston et al.
use the admissible 6-tuple {7, 11, 13, 17, 19, 23} to show

lim inf
n→∞

(pn+1 − pn) ≤ 23− 7 = 16.

4 The Maynard theorems

We now look at Maynard’s work, which revolves around the following con-
jecture:

Conjecture 4.1 (Prime k-tuples conjecture). Let H = {h1, . . . , hk} be ad-
missible. Then there are infinitely many integers n such that all of n +
h1, . . . , n+ hk are prime.

He proves the following theorems:

Theorem 4.2.
lim inf

n
(pn+m − pn)� m3e4m,

holds for any integer m.

This shows that there are infinitely many intervals of finite length that
contain at least m+ 1 primes.
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Theorem 4.3. Let m ∈ N. Let r ∈ N be sufficiently large depending on m,
and let A = {a1, a2, . . . , ar} be a set of r distinct integers. Then

#{{h1, . . . , hm} ⊆ A : for infinitely many n all of n+ hi are prime}
#{{h1, . . . , hm} ⊆ A }

�m 1.

In other words, a positive proportion of admissible m-tuples satisfy the
prime m-tuple conjecture for every m.

Theorem 4.4. We have

lim inf
n

(pn+1 − pn) ≤ 600.

We note that the proof of this last theorem is based on the Bombieri–
Vinogradov theorem, namely on the fact that primes have level of distribution
θ for every 0 < θ < 1/2. If, however, we assume that primes have level of
distribution θ for every θ < 1, we can prove the following:

Theorem 4.5. Under the assumption that primes have level of distribution
θ for every θ < 1, we have

lim inf
n

(pn+1 − pn) ≤ 12,

lim inf
n

(pn+2 − pn) ≤ 600.

To prove these results, Maynard uses an improved GPY sieve method,
by looking at the following setting: fix k > 0 and fix an admissible set
H = {h1, . . . , hk} of size k. Consider the quantity

S(N, ρ) =
∑

N≤n<2N

(
k∑
i=1

χP(n+ hi)− ρ

)
wn, (36)

where χP(·) is the characteristic function of the primes, i.e. χP(n) = 1 if
n is prime and 0 otherwise, ρ > 0 and wn are non-negative weights. As in
Theorem 3.1, we want to prove that this quantity is positive. In that case, at
least one term in the sum over n must be positive. Since wn is positive, we
must have that at least bρ+1c of the n+hi are prime. So, as we let N →∞,
we get that there are infinitely many bounded length intervals containing
bρ+ 1c primes (bounded by maxk |hk|).

Unlike the weights ΛR(n;H, a) used in Theorem 3.1, we consider our
weights to be of the form

wn =

 ∑
di|n+hi∀i

λd1,...,dk

2

. (37)
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We will choose our λd1,...,dk to look like

λd1,...,dk ≈

(
k∏
i=1

µ(di)

)
f(d1, . . . , dk),

for a suitable smooth function f(·), which is a multi-dimensional generalisa-
tion of our choice for λR(d; a) in the previous section.

We begin by introducing some notation. For convenience, we choose our
weights wn to be 0 unless n ≡ ν0 (mod W ), where ν0 is a fixed residue class
(mod W ), and W =

∏
p≤D0

p, where it suffices to choose

D0 = log log logN.

Then,

logW =
∑
p≤D0

log p = ϑ(D0),

which, by calculations in [1] (p.8), is O(D0). Hence, W = O(log logN).
Since H is admissible, we can choose ν0 such that ν0 + hi is coprime to W ,
by applying the Chinese remainder theorem to the primes dividing W .

When n ≡ ν0 (mod W ), we define our weights as in (37).
In order to estimate S(N, ρ), we look at the following two sums

S1 =
∑

N≤n<2N
n≡ν0 (mod W )

 ∑
di|n+hi∀i

λd1,...,dk

2

, (38)

S2 =
∑

N≤n<2N
n≡ν0 (mod W )

(
k∑
i=1

χP(n+ hi)

) ∑
di|n+hi∀i

λd1,...,dk

2

, (39)

as we did with (23) and (30) in Theorem 3.1.

4.1 Main proposition

We aim to prove the following:

Proposition 4.6. Let the primes have level of distribution θ > 0 and let
R = N θ/2−δ for some small fixed δ > 0. Let λd1,...,dk be defined in terms of a
smooth function F (·) by

λd1,...,dk =

(
k∏
i=1

µ(di)di

) ∑
r1,...,rk
di|ri∀i

(ri,W )=1∀i

µ(
∏k

i=1 ri)
2∏k

i=1 φ(ri)
F

(
log r1

logR
, . . . ,

log rk
logR

)
,
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whenever (
∏k

i=1 d1,W ) = 1, and let λd1,...,dk = 0 otherwise. Moreover, let F

be supported on Rk = {(x1, . . . , xk) ∈ [0, 1]k :
∑k

i=1 xi ≤ 1}. Then we have

S1 =
(1 + o(1))φ(W )kN(logR)k

W k+1
Ik(F ),

S2 =
(1 + o(1))φ(W )kN(logR)k+1

W k+1 logN

k∑
m=1

J
(m)
k (F ),

provided Ik(F ) 6= 0 and J
(m)
k (F ) 6= 0 for each m, where

Ik(F ) =

∫ 1

0

. . .

∫ 1

0

F (t1, . . . , tk)
2dt1 . . . dtk,

J
(m)
k (F ) =

∫ 1

0

. . .

∫ 1

0

(∫ 1

0

F (t1, . . . , tk)dtm

)2

dt1 . . . dtm−1dtm+1 . . . dtk.

Remark 13. Note that in the expressions for S1 and S2 there is no dependency
on the actual elements of the admissible set H, only on its size, whereas in
Lemma 3.2 and Lemma 3.3, the singular series appears in the main term,
which clearly depends on the hi’s.

4.1.1 Selberg sieve manipulations

Our aim is to introduce a change of variables to rewrite S1 and S2 in a simpler
form.

We restrict the support of λd1,...,dk to tuples for which the product d :=∏k
i=1 di is less than R, similarly to how we had λR(d; a) = 0 for d > R in

the previous section. We also demand (d,W ) = 1 and µ(d)2 = 1, implying
that d is squarefree and so (di, dj) = 1 for all i 6= j. We want to prove the
following lemma:

Lemma 4.7. Let

yr1,...,rk =

(
k∏
i=1

µ(ri)φ(ri)

) ∑
d1,...,dk
ri|di∀i

λd1,...,dk∏k
i=1 di

.

Let ymax = supr1,...,rk |yr1,...,rk |. Then

S1 =
N

W

∑
r1,...,rk

y2
r1,...,rk∏k
i=1 φ(ri)

+O

(
y2
maxN(logR)k

WD0

)
. (40)
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Remark 14. This change of variables is a multi-dimensional generalisation
of the change of variables (9) we performed on the quadratic form (λd) in
Subsection 2.2.

Proof. We expand the square and swap the order of summation in (38) to
obtain

S1 =
∑

d1,...,dk
e1,...,ek

λd1,...,dkλe1,...,ek
∑

N≤n<2N
n≡ν0 (mod W)
[di,ei]|n+hi∀i

1.

We can use the Chinese remainder theorem again, this time to write the
inner sum as a sum over a single residue class modulo q = W

∏k
i=1[di, ei],

as long as W, [d1, e1], . . . , [dk, ek] are pairwise coprime. In that case, we have
that the inner sum is N/q + O(1). If W, [d1, e1], . . . , [dk, ek] are not pairwise
coprime, then the inner sum has no contribution: suppose some [di, ei] has a
common factor a 6= 1, say, with W. Then a | n+ hi and n− ν0 ≡ 0 (mod a),
implying a | n − ν0. So a | hi + ν0, contradicting the coprimality condition
between W and hi + ν0. On the other hand, if some [di, ei] and [dj, ej] have
a common factor b 6= 1, say, then n + hi and n + hj are both divisible by b,
contradicting the fact that they are distinct primes. Hence, we have

S1 =
N

W

∑
d1,...,dk
e1,...,ek

′ λd1,...,dkλe1,...,ek∏k
i=1[di, ei]

+O

( ∑
d1,...,dk
e1,...,ek

′ |λd1,...,dkλe1,...,ek |

)
,

where
∑′ denotes the coprimality restriction on W, [d1, e1], . . . , [dk, ek]. We

know λd1,...,dk is non-zero only when
∏k

i=1 di < R, so if we denote by λmax =
supd1,...,dk |λd1,...,dk |, we can estimate the error term as

O

(
λ2

max

(∑
d<R

τk(d)

)2)
= O(λ2

maxR
2(logR)2k−2), (41)

by the exact same argument as in Section 3.1.
To deal with the main term, we want to remove the dependencies between

the di and the ej variables. We start by using once again the fact that
[di, ei](di, ei) = diei and that

∑
δ|d φ(δ) = d to write

1

[di, ei]
=

1

diei

∑
ui|di,ei

φ(ui),

so that our main term becomes

N

W

∑
u1,...,uk

(
k∏
i=1

φ(ui)

) ∑
d1,...,dk
e1,...,ek

ui|(di,ei)∀i

′ λd1,...,dkλe1,...,ek
(
∏k

i=1 di)(
∏k

i=1 ei)
.
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We know that λd1,...,dk is non-zero only when (W,
∏k

i=1 di) = 1, so we may
drop from the summation the requirement that W is coprime to each [di, ei],
and we also know that we can assume that the di (and the ei) are all pairwise
coprime for the same reason. Thus we are only left with the condition that
(di, ej) = 1 for all i 6= j, which we can remove by multiplying our expression
by
∑

si,j |(di,ej) µ(si,j), since (4) holds. Our main term then becomes

N

W

∑
u1,...,uk

(
k∏
i=1

φ(ui)

) ∑
s1,2,...,sk,k−1

( ∏
1≤i,j≤k
i 6=j

µ(si,j)

) ∑
d1,...,dk
e1,...,ek

ui|(di,ei)∀i
si,j |(di,ej)∀i 6=j

λd1,...,dkλe1,...,ek
(
∏k

i=1 di)(
∏k

i=1 ei)
.

We can restrict the si,j to be coprime to ui and uj because otherwise one of the
pairs {di, dj},{ei, ej} would have a common factor, making the corresponding
λ vanish. By a similar argument, we can restrict our sum so that si,j is
coprime to si,a and sb,j for all a 6= j and b 6= i. We denote the summation
over the si,j with these restrictions by

∑∗.
We now want to introduce a change of variables, which will make it easier

for us to diagonalise our quadratic form.

yr1,...,rk =

(
k∏
i=1

µ(ri)φ(ri)

) ∑
d1,...,dk
ri|di∀i

λd1,...,dk∏k
i=1 di

. (42)

This change of variables is in fact invertible, since∑
r1,...,rk
di|ri∀i

yr1,...,rk∏k
i=1 φ(ri)

=
∑
r1,...,rk
di|ri∀i

(
k∏
i=1

µ(ri)

) ∑
e1,...,ek
ri|ei∀i

λe1,...,ek∏k
i=1 ei

=
∑

e1,...,ek

λe1,...,ek∏k
i=1 ei

∑
r1,...,rk
di|ri∀i
ri|ei∀i

k∏
i=1

µ(ri)

We take a closer look at the inner sum. We have∑
r1,...,rk
di|ri∀i
ri|ei∀i

k∏
i=1

µ(ri) =
∑
r1,...,rk

(ri/di)|(ei/di)∀i

k∏
i=1

µ

(
ri
di

)
µ(di)

=
k∏
i=1

µ(di)
∑

m1,...,mk
mi|ni∀i

k∏
i=1

µ(mi) =
k∏
i=1

µ(di)
k∏
i=1

∑
mi|ni∀i

µ(mi),
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where we let mi to be ri/di and ni to be ei/di. The inner product is equal to
1 if ni = 1 for all i and 0 otherwise, or in other words it is equal to 1 when
ei = di and 0 otherwise. Thus, we obtain∑

r1,...,rk
di|ri∀i

yr1,...,rk∏k
i=1 φ(ri)

=
λd1,...,dk∏k
i=1 µ(di)di

(43)

since 1/µ(n) = µ(n) holds for all n.
Since ri | di for all i, bearing in mind our conditions on the di, we have

that yr1,...,rk are non-zero only when the following conditions hold: the ri are

pairwise coprime, (ri,W ) = 1 for all i and
∏k

i=1 ri < R.
We now want to bound λmax asymptotically as a function of ymax, where

we let ymax = supr1,...,rk |yr1,...,rk |. We take r =
∏k

i=1mi and we use the fact
that |µ(·)| = µ2(·), µ(n)2 = 1 if n is squarefree and 0 otherwise and that
n =

∑
d|n φ(d) ⇐⇒ n = φ(n)

∑
e|n 1/φ(e) to write

λmax ≤ sup
d1,...,dk∏k

i=1 di squarefree

ymax

(
k∏
i=1

di

) ∑
r1,...,rk
di|ri∀i∏k
i=1 ri<R∏k

i=1 ri squarefree

(
k∏
i=1

µ(ri)
2

φ(ri)

)

≤ ymax sup
d1,...,dk∏k

i=1 di squarefree

(
k∏
i=1

di
φ(di)

) ∑
r<R/

∏k
i=1 di

(r,
∏k
i=1 di)=1

µ(r)2τk(r)

φ(r)

≤ ymax sup
d1,...,dk

∑
d|
∏k
i=1 di

µ(d)2

φ(d)

∑
r<R/

∏k
i=1 di

(r,
∏k
i=1 di)=1

µ(r)2τk(r)

φ(r)

≤ ymax

∑
u<R

µ(u)2τk(u)

φ(u)
,

where in the last line we took u = dr and used the fact that τk(dr) ≥ τk(r)
by definition. We now take a closer look at the inner sum without the
Möbius function. We know from the previous section that

∑
u<R τk(u) ∼

c R(logR)k−1, for some constant c. We have∑
u<R

τk(u) log u

u
∼ c R(logR)k−1 logR

R
+

∫ R

2

log t− 1

t2
c t(log t)k−1dt

≤ c (logR)k + c

∫ R

2

log t

t
(log t)k−1dt

≤ c (logR)k + c′(logR)k+1.
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We have φ(u) = u
∏

p|u(1− p−1) and so

1

φ(u)
=

1

u

∏
p|u

(1− p−1)−1 � 1

u

∏
p|u

(1 + p−1)

=
1

u

∑
d|u

1

d
=

1

u2

∑
d|u

d� 1

u2
u log u,

Where in the last step we used the following theorem from [2]:

σ(u) :=
∑
d|u

d� u log u. (44)

So 1/φ(u)� log u/u and∑
u<R

τk(u)

φ(u)
�
∑
u<R

τk(u) log u

u
� (logR)k+1.

Therefore, the error term given by (41) is O(y2
maxR

2(logN)4k).
We use this and we substitute our change of variables (42) into the main

term to obtain

S1 =
N

W

∑
u1,...,uk

(
k∏
i=1

φ(ui)

) ∑
s1,2,...,sk,k−1

∗

( ∏
1≤i,j≤k
i 6=j

µ(si,j)

)

×

(
k∏
i=1

µ(ai)µ(bi)

φ(bi)φ(ai)

)
ya1,...,akyb1,...,bk +O(y2

maxR
2(logR)4k),

where aj = uj
∏

i 6=j sj,i and bj = uj
∏

i 6=j si,j. We bear in mind that we have
restricted the si,j to be coprime to all the other terms in the expressions for
ai and bj. By definition, the y are equal to 0 when the ai and the bj are not
squarefree, so we can write µ(aj) = µ(uj)

∏
i 6=j(sj,i), and the same holds for

φ(ai), µ(bj) and φ(bj). Therefore, we can write

S1 =
N

W

∑
u1,...,uk

(
k∏
i=1

µ(ui)
2

φ(ui)

) ∑
s1,2,...,sk,k−1

∗

( ∏
1≤i,j≤k
i 6=j

µ(si,j)

φ(si,j)2

)
ya1,...,akyb1,...,bk

+O(y2
maxR

2(logR)4k). (45)

Bearing in mind the coprimality conditions between the ai and bj and W ,
we have that the si,j must be coprime to W , otherwise the y vanish. Since
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W =
∏

p<D0
p, we only need to consider si,j = 1 or si,j > D0. When the

latter holds, the contribution from the main term in (45) is

� y2
maxN

W

( ∑
u<R

(u,W )=1

µ(u)2

φ(u)

)k( ∑
si,j>D0

µ(si,j)
2

φ(si,j)2

)(∑
s≥1

µ(s)2

φ(s)2

)k2−k−1

, (46)

where we note that the last term appears because we have k(k − 1) choices
for the pair (i, j) inside the innermost product of (45). We now look at each
sum separately. The last sum is a convergent series (and so it is O(1)), since
we know from [2] that the following holds

1

2
≤ σ(n)φ(n)

n2
=⇒ 1

φ(n)2
≤ 4

σ(n)2

n4
� n2(log n)2

n4
=

(
log n

n

)2

,

where in the last step we used (44).
We now estimate the middle factor in (46), using Chen’s result again:∑

n≥D0

µ(n)2

φ(n)2
≤
∑
n≥D0

1

φ(n)2
≤ 4

∑
n≤D0

σ(n)2

n4
. (47)

We know from Ramanujan’s Identity (1.2.9 in [11]) with a = b = 1 that

∞∑
n=1

σ(n)2

ns
=
ζ(s)ζ(s− 1)2ζ(s− 2)

ζ(2s− 2)
.

The right-hand side has a pole of order 1 at s = 3, so by the Tauberian
theorem,

A(x) :=
∑
n≤x

σ(n)2 ∼ cx3,

for some constant c. We can now use summation by parts in (47) to obtain∑
D0≤n≤M

µ(n)2

φ(n)2
≤ 1

4

(
A(M)

M4
− A(D0)

D4
0

)
+

∫ M

D0

A(t)

t5
dt

∼ 1

4

(
c

M
− c′

D0

)
− 2

1

t

∣∣∣M
D0

.

By letting M → ∞, we obtain that the middle factor in (46) is O(1/D0).
Next, we want to prove: ∑

u<R
(u,W )=1

µ(u)2

φ(u)
� φ(W )

W
logR. (48)
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First, we note that the µ(·) in the numerator ensures we are working with
squarefree u’s. We then look at:

A(R) =
∑
u<R

(u,W )=1

u

φ(u)
.

Given that φ(u) = u
∏

p|u(1− p−1) holds for any u, we get

A(R) =
∑
u<R

(u,W )=1

∏
p|u

(
1− 1

p

)−1

=
∏
p|W

(
1− 1

p

)∑
u<R

∏
p|u

(
1− 1

p

)−1

. (49)

The first product in the right-hand side of (49) is precisely φ(W )/W and
what is left is

∑
u<R u/φ(u) . It is proved by Murty (4.4.12 in [11]) that:∑

u<R

u

φ(u)
� R.

So we have shown:

A(R)� φ(W )

W
R. (50)

We now do the summation by parts:∑
u<R

(u,W )=1

1

φ(u)
=

∑
u<R

(u,W )=1

u

φ(u)

1

u

=
1

R
A(R) +

R∫
1

A(t)

t2
dt.

Using (50), the first term of the sum becomes O(1) and is dominated by the
second one, which is:

�
∫ R

1

φ(W )

W

t

t2
dt =

φ(W )

W

∫ R

1

1

t
dt =

φ(W )

W
logR.

Bringing everything together, (46) can be estimated as

O

(
y2

maxφ(W )kN(logR)k

W k+1D0

)
.

Going back to our main estimate, we are left to consider the case when
si,j = 1 for all i 6= j. We have ai = bi and the ui are squarefree, so µ(ui)

2 = 1.
Therefore

S1 =
N

W

∑
u1,...,uk

y2
u1,...,uk∏k
i=1 φ(ui)

+O

(
y2

maxφ(W )kN(logR)k

W k+1D0

+ y2
maxR

2(logR)4k

)
(51)
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We have R = N θ/2−δ, so R2 = N θ−2δ ≤ N1−2δ, since 0 < θ ≤ 1. We also
have φ(W )/W < 1 and

W = exp(ϑ(D0)) =⇒ W ≥ exp(c log log logN) = (log logN c),

where to obtain the inequality we used that θ(n) ≤ 2n log 2 (for proof see p.8
in [1]). So the first error term dominates. Since φ(W )/W < 1, the lemma is
proved.

We now want to estimate for S2. We write S2 =
∑k

m=1 S
(m)
2 , where

S
(m)
2 =

∑
N≤n<2N

n≡ν0 (mod W )

χP(n+ hm)

( ∑
d1,...,dk
di|n+hi∀i

λd1,...,dk

)2

. (52)

We want to estimate S
(m)
2 in a similar way to how we estimated S1. We prove

the following lemma:

Lemma 4.8. Let

y(m)
r1,...,rk

=

(
k∏
i=1

µ(ri)g(ri)

) ∑
d1,...,dk
ri|di∀i
dm=1

λd1,...,dk∏k
i=1 φ(di)

, (53)

where g(·) is the totally multiplicative function defined on primes by g(p) =

p− 2. Let y
(m)
max = supr1,...,rk |y

(m)
r1,...,rk |. Then for any fixed A > 0 we have

S
(m)
2 =

N

φ(W ) logN

∑
r1,...,rk

(y
(m)
r1,...,rk)

2∏k
i=1 g(ri)

+O

(
(y

(m)
max)2φ(W )k−2N(logN)k−2

W k−1D0

)
+O

(
y2

maxN

(logN)A

)
. (54)

Proof. We expand the square and swap the order of summation in (52) to
obtain

S
(m)
2 =

∑
d1,...,dk
e1,...,ek

λd1,...,dkλe1,...,ek
∑

N≤n<2N
n≡ν0 (mod W)
[di,ei]|n+hi∀i

χP(n+ hm).

As before, we can write the inner sum as a sum over a single residue class
modulo q = W

∏k
i=1[di, ei], as long as W, [d1, e1], . . . , [dk, ek] are pairwise

coprime. If either one pair of W, [d1, e1], . . . , [dk, ek] have a common factor,
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then the inner sum has no contribution for the same reasons as in the previous
lemma. In that case, we will have a contribution in the inner sum only when
n+hm is prime, i.e. when it will lie in a residue class coprime to the modulus.
This happens if and only if dm = em = 1. The inner sum will then contribute
XN/φ(q) +O(E(N, q)), where

E(N, q) = 1 + sup
(a,q)=1

∣∣∣∣∣ ∑
N≤n<2N
n≡a (mod q)

χP(n)− 1

φ(q)

∑
N≤n<2N

χP(n)

∣∣∣∣∣,
is an alternative definition for the level of distribution of primes and

XN =
∑

N≤n<2N

χP(n).

Therefore we have

S
(m)
2 =

XN

φ(W )

∑
d1,...,dk
e1,...,ek

em=dm=1

λd1,...,dkλe1,...,ek∏k
i=1 φ([di, ei])

+O

( ∑
d1,...,dk
e1,...,ek

|λd1,...,dkλe1,...,ek |E(N, q)

)
,

with q = W
∏k

i=1[di, ei].
We now estimate the error term. We know that the λd1,...,dk are non-

zero only when q < WR2. Then, given a squarefree integer r, we have
at most τ3k(r) choices of d1, . . . , dk, e1, . . . , ek for which W

∏k
i=1[di, ei] = r,

since [di, ei] depends on di, ei and (di, ei). We use this and the fact that
λmax � ymax logRk+1 to estimate the error term as

� ymax logR2k+2
∑

r<R2W

µ(r)2τ3k(r)E(N, r).

Note that the Möbius function ensures we are working with squarefree r.
We have the trivial bound E(N, r) � N/φ(q) and we also assumed that
the primes have level of distribution θ, so we can use the Cauchy-Schwarz
inequality to obtain the estimate the error term as

� y2
max(logR)2k+2

( ∑
r<R2W

µ(r)2τ 2
3k(r)

N

φ(r)

)1/2( ∑
r<R2W

µ(r)2E(N, r)

)1/2

,

which gives an error term of size O(y2
maxN/(logN)A) for any fixed A > 0.

To estimate the main term, we remove the condition (di, ej) = 1 by
multiplying our expression by

∑
si,j |(di,ej) µ(si,j), like we did in the previous
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proof. We can again restrict si,j to be coprime to ui, uj, si,a and sb,j for all
a 6= j and b 6= i. We denote by

∑∗ the summation with these restrictions.
Next, we claim that

1

φ([di, ei])
=

1

φ(di)φ(ei)

∑
ui|(di,ei)

g(ui),

where g(·) is the totally multiplicative function defined on primes by g(p) =
p− 2. Using (14), we know that φ([d, e]) = φ(d)φ(e)/φ((d, e)), for squarefree
d and e. We are left to show that

φ(c) =
∑
u|c

g(u),

for squarefree c. Since Euler’s totient function is multiplicative, it is enough
to check that this is true when c is a prime. Indeed, φ(p) = p− 1, while the
right-hand side is equal to 1 + (p− 2).

Our main term becomes

XN

φ(W )

∑
u1,...,uk

(
k∏
i=1

g(ui)

) ∑
s1,2,...,sk,k−1

∗

( ∏
1≤i,j≤k

µ(si,j)

)∑
d1,...,dk
e1,...,ek

ui|(di,ei)∀i
si,j |(di,ej)∀i 6=j
dm=em=1

λd1,...,dkλe1,...,ek
(
∏k

i=1 φ(di))(
∏k

i=1 φ(ei))
.

Let

y(m)
r1,...,rk

=

(
k∏
i=1

µ(ri)g(ri)

) ∑
d1,...,dk
ri|di∀i
dm=1

λd1,...,dk∏k
i=1 φ(di)

,

Since dm = 1 and rm | dm, rm must be equal to 1. We substitute this into
our estimate to obtain

XN

φ(W )

∑
u1,...,uk

(
k∏
i=1

µ(ui)
2

g(ui)

) ∑
s1,2,...,sk,k−1

( ∏
1≤i,j≤k
i 6=j

µ(si,j)

g(si,j)2

)
y(m)
a1,...,ak

y
(m)
b1,...,bk

,

where aj = uj
∏

i 6=j sj,i and bj = uj
∏

i 6=j si,j. As before, the y are equal
to 0 when the ai and the bj are not squarefree, so we can write µ(aj) =
µ(uj)

∏
i 6=j(sj,i), and the same holds for φ(ai), µ(bj) and φ(bj).

Again, we consider the two cases of si,j = 1 and si,j > D0. When the
latter holds, we get a contribution which is

� (y
(m)
max)2N

φ(W ) logN

(∑
u<R

(u,W )=1

µ(u)2

g(u)

)k−1
 ∑
si,j>D0

µ(si,j)
2

g(si,j)2

(∑
s

µ(s)2

g(s)2

)k2−k−1

. (55)
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We have, for squarefree n, g(n) = n
∏

p|n(1− 2/p)−1. We consider, again for
squarefree n, the Dirichlet series

f(s) =
∑
n≤x

1

g(n)
· 1

ns
=
∏
p

(
1 +

1

ps(p− 2)

)
.

We then look at the quotient

f(s)

ζ(s+ 1)
=
∏
p

(
1 +

1

ps(p− 2)

)(
1− 1

ps+1

)
=
∏
p

(
1 +

ps+1 − ps(p− 2)− 1

p2s+1(p− 2)

)
.

The corresponding Dirichelt series is∑
p

ps+1 − ps(p− 2)− 1

p2s+1(p− 2)
=
∑
p

2ps − 1

p2s+2(1− 2p−1)
�
∑
p

1

ps+2
,

which converges for <(s) > −1. Thus we may write f(s) = ζ(s + 1)h(s), or
equivalently f(s− 1) = ζ(s)h(s− 1), with h(s− 1) regular for <(s) > 0. The
Tauberian theorem gives ∑

n≤x

n

g(n)
∼ c1x,

and we can apply similar calculations to the ones in the previous lemma to
obtain estimates for the last term of (55). We obtain that (55) is

� (y
(m)
max)2φ(W )k−2N(logR)k−1

W k−1D0 logN
,

where we have bounded XN by N/ logN , since XN = π(2N) − π(N) =⇒
XN = N/ logN +O(N/(logN)2). When si,j = 1, we obtain

S
(m)
2 =

XN

φ(W )

∑
u1,...,uk

(y
(m)
u1,...,uk)

2∏k
i=1 g(ui)

+O

(
(y

(m)
max)2φ(W )k−2N(logR)k−2

W k−1D0

)
+O

(
y2

maxN

(logN)A

)
, (56)

since logR/ logN = θ/2 − δ < 1. We apply our estimate ofXN to this and
obtain an error term of size

� (y
(m)
max)2N

φ(W )(logN)2

( ∑
u<R

(u,W )=1

µ(u)2

g(u)

)k−1

� (y
(m)
max)2φ(W )k−2N(logR)k−3

W k−1
,

where we used the fact that we can estimate the inner sum as O(φ(W )/W ×
logR) the same way we obtained (48) and that R = N θ/2−δ again. This is
absorbed by the first error term in (56), which completes the proof.
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We now want to relate our variables y
(m)
r1,...,rk to the variables yr1,...,rk from

Lemma 4.7. We prove the following lemma:

Lemma 4.9. If rm = 1 then

y(m)
r1,...,rk

=
∑
am

yr1,...,rm−1,am,rm+1,...,rk

φ(am)
+O

(
ymaxφ(W ) logR

WD0

)
.

Proof. We start by substituting (43) into (53) and we assume that rm = 1.
We have

y(m)
r1,...,rk

=

(
k∏
i=1

µ(ri)g(ri)

) ∑
d1,...,dk
ri|di∀i
dm=1

(
k∏
i=1

µ(di)di
φ(di)

) ∑
a1,...,ak
di|ai∀i

ya1,...,ak∏k
i=1 φ(ai)

.

We swap the summation between the d and the a variables and obtain

y(m)
r1,...,rk

=

(
k∏
i=1

µ(ri)g(ri)

) ∑
a1,...,ak
ri|ai∀i

ya1,...,ak∏k
i=1 φ(ai)

∑
d1,...,dk

di|ai,ri|di∀i
dm=1

(
k∏
i=1

µ(di)di
φ(di)

)
.

We evaluate the sum over the d variables explicitly. We want to prove the
following: ∑

d1...dk
di|ai,ri|di
dm=1

k∏
i=1

µ(di)di
φ(di)

=
∏
i 6=m

µ(ai)ri
φ(ai)

. (57)

We consider the 1-dim case of (57) and prove that instead. The result follows
by induction: ∑

d|a
r|d

µ(d)d

φ(d)
=
µ(a)r

φ(a)
. (58)

We see that the condition r | d | a is equivalent to d/r | a/r and we relabel
d/r = s. Using this and the multiplicativity of the Möbius and of the Euler
totient functions, (58) becomes:∑

s|a/r

µ(s)µ(r)sr

φ(s)φ(r)
=
µ(a)r

φ(a)
⇐⇒

∑
s|a/r

µ(s)s

φ(s)

µ(r)r

φ(r)
=
µ(a)r

φ(a)
,

and by separating the terms inside the sum that do not depend on s we get

(58) ⇐⇒
∑
s|a/r

µ(s)s

φ(s)
=
µ(a)r

φ(a)

φ(r)

µ(r)r
.
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Using the multiplicativity of µ(·) and φ(·) again and relabelling a/r = n, we
see that we are in fact trying to prove:∑

s|n

µ(s)s

φ(s)
=
µ(n)

φ(n)
. (59)

Let

F (n) =
∑
s|n

µ(s)s

φ(s)
.

This is a multiplicative function by definition, as all the functions inside
the sum are multiplicative. Hence, bearing in mind we are working with
square-free variables in (57) and (58), it is enough to prove (59) for primes
p. Indeed,

F (p) =
1

φ(1)
− p

φ(p)
= 1− p

p− 1
=
−1

p− 1
=
µ(p)

φ(p)
,

and so (59), (58) and (57) hold. Note that (59) does not hold for non square-
free numbers, as µ(pt) = 0 for t ≥ 2, implying F (pk) = µ(p)/φ(p) always.

So we have

y(m)
r1,...,rk

=

(
k∏
i=1

µ(ri)g(ri)

) ∑
a1,...,ak
ri|ai∀i

ya1,...,ak∏k
i=1 φ(ai)

∏
i 6=m

µ(ai)ai
φ(ai)

.

From the support of the y, we know that we can restrict the summation over
the aj so that (aj,W ) = 1, so we either have aj = rj or aj > D0rj. When
j 6= m, the contribution from when aj > D0rj is

� ymax

(
k∏
i=1

g(ri)ri

)( ∑
aj>D0rj

µ(aj)
2

φ(aj)2

)( ∑
am<R

(am,W )=1

µ(am)2

φ(am)

)∏
1≤i≤k
i 6=j,m

(∑
ri|ai

µ(ai)
2

φ(ai)2

)

�

(
k∏
i=1

g(ri)ri
φ(ri)2

)
ymaxφ(W ) logR

WD0

� ymaxφ(W ) logR

WD0

,

where we got from the first step to the second by using the same bounds as
in (46) and, in order to obtain the last estimate, note that the product in
the second line is over a finite number of i′s, so it is O(1).

Therefore, when aj = rj for all j 6= m, we have

y(m)
r1,...,rk

=

(
k∏
i=1

g(ri)ri
φ(ri)2

)∑
am

yr1,...,rm−1,am,rm+1,...,rk

φ(am)
+O

(
ymaxφ(W ) logR

WD0

)
.
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Note that

g(p)p

φ(p)2
=

(p− 2)p

(p− 1)2
= 1− 1

(p− 1)2
= 1 +O(p−2).

We know r :=
∏k

i=1 ri is coprime to W and that the ri are squarefree, so

k∏
i=1

g(ri)ri
φ(ri)2

=
∏
p|r

(r,W )=1

(1 +O(p−2)) = 1 +O

( ∑
p|r

(r,W )=1

p−2 +
∑
pq|r

r,W=1

(pq)−2 + ...

)
,

and the error term is in fact O(1/D0), since we can bound each term by∑
n>D0

1

n2
∼
∫ ∞
D0

1

x2
dx� 1

D0

. (60)

The new error term given by this estimate is absorbed by the old one and
the proof is complete.

4.1.2 Smooth choice of y

We now want to choose our y variables so that the ratio S2/S1 is maxi-
mal, ignoring the error terms. From our expressions (40) and (54), by using
Lagrange multipliers, we obtain

λyr1,...,rk =

(
k∏
i=1

φ(ri)

g(ri)

)
k∑

m=1

g(rm)

φ(rm)
y(m)
r1,...,rm−1,rm,rm+1,...,rk

for some fixed constant λ. We know from our choice of W that the variables
y are supported on integers free of small prime factors. Furthermore, we have
g(p) = p−2 and φ(p) = p−1, so for our variables ri, g(ri) ≈ φ(ri) ≈ ri holds
for all i. Therefore, the above reduces to

λyr1,...,rk ≈
k∑

m=1

y(m)
r1,...,rm−1,rm,rm+1,...,rk

.

We choose

yr1,...,rk = F

(
log r1

logR
, . . . ,

log rk
logR

)
, (61)

for some smooth function F : Rk → R, supported on Rk = {(x1, . . . , xk) ∈
[0, 1]k :

∑k
i=1 xi ≤ 1}. We restrict the support of F (·) to that particular set,

since we know that
∏

i ri < R, implying

log r1

logR
+ . . .+

log r1

logR
=

log r1 + . . .+ log rk
logR

=
log (r1 . . . rk)

logR
< 1.
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Bearing in mind that the ri are all squarefree and their product is coprime to
W , we set yr1,...,rk = 0, when this does not hold. We want to obtain estimates
for S1 and S2 with the choice of y given by (61). We use the following lemma
from [8], which we quote without proof, with slight changes of notation.

Lemma 4.10. Let κ,A1, A2, L > 0. Let γ(·) be a multiplicative function
satisfying

0 ≤ γ(p)

p
≤ 1− A1,

and

−L ≤
∑
w≤p≤z

γ(p) log p

p
− κ log

( z
w

)
≤ A2

for any 2 ≤ w ≤ z. Let h(·) be the totally multiplicative function defined on
primes by h(p) = γ(p)/(p − γ(p)). Finally, let G : [0, 1] → R be a smooth
function and let Gmax = supt∈[0,1](|G(t)|+ |G′(t)|). Then∑

d<z

µ(d)2h(d)G

(
log d

log z

)
=G

(log z)κ

Γ(κ)

∫ 1

0

G(x)xκ−1dx

+OA1,A2,κ(GLGmax(log z)κ−1), (62)

where

G =
∏
p

(
1− γ(p)

p

)−1(
1− 1

p

)κ
.

Here the constant implied by the ‘O’ term is independent of G and L.

Remark 15. We remind the reader that Γ(·) is the Gamma function, i.e.

Γ(t) =

∫ ∞
0

xt−1e−xdx,

which is well defined for t ∈ C and <(t) > 0. For n ∈ Z, Γ(n) = (n − 1)!
holds.

Remark 16. Note that the series appearing in this lemma is the equivalent
of the inverse of the singular series defined in (15), which also appears in the
GPY theorem.

We now estimate S1. We prove the following lemma:

Lemma 4.11. Let yr1,...,rk be defined by (61) in terms of a smooth function

F supported on Rk = {(x1, . . . , xk) ∈ [0, 1]k :
∑k

i=1 xi ≤ 1}. Let

Fmax = sup
(t1,...,tk)∈[0,1]k

|F (t1, . . . , tk)|+
k∑
i=1

∣∣∣∣∂F∂ti (t1, . . . , tk)
∣∣∣∣ .
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Then we have

S1 =
φ(W )kN(logR)k

W k+1
Ik(F ) +O

(
F 2

maxφ(W )kN(logR)k

W k+1D0

)
,

where

Ik(F ) =

∫ 1

0

. . .

∫ 1

0

F (t1, . . . , tk)
2dt1 . . . dtk.

Proof. We substitute our choice of y given by (61) into the expression for S1

given by (51) to obtain

S1 =
N

W

∑
u1,...,uk

(ui,uj)=1∀i 6=j
(ui,W )=1∀i

(
k∏
i=1

µ(ui)
2

φ(ui)

)
F

(
log u1

logR
, . . . ,

log uk
logR

)2

+O

(
F 2

maxφ(W )kN(logR)k

W k+1D0

)
. (63)

Note that if we have (ui, uj) 6= 1 and (ui,W ) = (uj,W ) = 1, then ui and uj
must have a common factor greater than D0, since W =

∏
p<D0

p. Thus we
can drop the requirement that ui 6= uj for all i 6= j at the cost of an error
term of size

� NF 2
max

W

∑
p>D0

∑
u1,...,uk<R
p|(ui,uj)

(ui,W )=1∀i 6=j

k∏
i=1

µ(ui)
2

φ(ui)
� NF 2

max

W

∑
p>D0

1

(p− 1)2

(∑
u<R

(u,W )=1

µ(u)2

φ(u)

)k
,

since φ(p) = p− 1 and by summing over a single variable u and then raising
that sum to the power k − 1 we are just adding more terms. We use (48)
and (60) to obtain an error of size

� F 2
maxφ(W )kN(logR)k

W k+1D0

. (64)

To estimate the main term, we apply Lemma 4.10 k times (once for each
variable ui). We take κ = 1 each time and we need γ(p)/(p− γ(p)) = h(p) =
1/φ(p) = 1/(p− 1), so we take

γ(p) =

{
1 if p 6 | W ,
0 otherwise.
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This gives γ(p)/p = 0 or γ(p)/p ≤ 1/2, so we can take A1 = 1/2. Also,

L�
∑
w≤p≤z
p 6 | W

log p

p
− log

( z
w

)
=
∑
w≤p≤z

log p

p
−
∑
w≤p≤z
p|W

log p

p
− log

( z
w

)

= log
( z
w

)
+O(1) +O

∑
p|W

log p

p

− log
( z
w

)
�
∑
p≤D0

log p

p
+O(1)� logD0,

by using Merten’s theorem repeatedly, which states∑
p≤x

log p

p
= log x+O(1).

We have

G =
∏
p|W

(
1− 1

p

) ∏
p 6 | W

1 =
φ(W )

W
.

When we apply the lemma for the first time, we obtain

∑
u1,...,uk

(ui,uj)=1∀i 6=j
(ui,W )=1∀i

(
k∏
i=1

µ(ui)
2

φ(ui)

)
F

(
log u1

logR
, . . . ,

log uk
logR

)2

=
∑

u2,...,uk
(ui,uj)=1∀i 6=j

(ui,W )=1∀i

(
k∏
i=2

µ(ui)
2

φ(ui)

)∑
u1

µ(u1)2

φ(u1)
F

(
log u1

logR
, . . . ,

log uk
logR

)2

=
φ(W ) logR

W

∑
u2,...,uk

(ui,uj)=1∀i 6=j
(ui,W )=1∀i

(
k∏
i=2

µ(ui)
2

φ(ui)

)∫ 1

0

F

(
t1, . . . ,

log uk
logR

)2

dt1

+O

(
F 2

maxφ(W ) logD0

W

( ∑
u<R

(u,W )=1

µ(u)2

φ(u)2

)k−1
)
.

The error term becomes

� F 2
maxφ(W )k logD0(logR)k−1

W k
,
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and for every subsequent applications of the lemma, the error terms we obtain
become smaller and smaller. Thus, the main term in (63) becomes

N

W

φ(W )k(logR)k

W k
Ik(F ) +O

(
F 2

maxφ(W )kN logD0(logR)k−1

W k+1

)
. (65)

Comparing the error terms in (65) and (64), we see that the former gets
absorbed into the latter, since D0 � log log logN and R = N θ/2. Hence, the
lemma is proved.

We now estimate S2. We prove the following lemma:

Lemma 4.12. Let yr1,...,rk , F (·) and Fmax be described as in Lemma 4.11.
Then we have

S
(m)
2 =

φ(W )kN(logR)k+1

W k+1 logN
J

(m)
k (F ) +O

(
F 2

maxφ(W )kN(logR)k

W k+1D0

)
,

where

J
(m)
k (F ) =

∫ 1

0

. . .

∫ 1

0

(∫ 1

0

F (t1, . . . , tk)dtm

)2

dt1 . . . dtm−1dtm+1 . . . dtk.

Proof. We begin by estimating y
(m)
r1,...,rk first. We know y

(m)
r1,...,rk = 0 when

rm 6= 1 or (
∏k

i=1 ri,W ) 6= 1 or the ri are not coprime and squarefree. We
substitute our choice of y into the expression for y(m) given by Lemma 4.9.
We first look at the case when y

(m)
r1,...,rk 6= 0. We have

y(m)
r1,...,rk

=
∑

(u,W
∏k
i=1 ri)=1

µ(u)2

φ(u)
F

(
log r1

logR
, . . . ,

log rm−1

logR
,

log u

logR
,
log rm+1

logR
, . . . ,

log rk
logR

)

+O

(
Fmaxφ(W ) logR

WD0

)
.

Since
∏k

i=1 ri < R, we have

y(m)
max �

Fmaxφ(W ) logR

W
. (66)

We now estimate the sum over u. We apply Lemma 4.10 with κ = 1 and

γ(p) =

{
1 if p 6 | W

∏k
i=1 ri,

0 otherwise.
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We can take A1 = 1/2 again and

L� 1 +
∑

p|W
∏k
i=1 ri

log p

p
�

∑
p<logR

log p

p
+

∑
p|W

∏k
i=1 ri

p>logR

log p

p

� log logR +
∑
p|W

p>logR

log p

p
+

∑
p|
∏k
i=1 ri

p>logR

log p

p

� log logR +
∑
p≤D0
p>logR

log p

p
+

∑
p|
∏
ri

log p

logR

� log logR + logD0 +
log
∏

i r1

logR
� log logR,

since R = N θ/2. In this case, we have

G =
φ(W )

W

k∏
i=1

φ(ri)

ri
.

Therefore, we have

y(m)
r1,...,rk

=(logR)
φ(W )

W

(
k∏
i=1

φ(ri)

ri

)
F (m)
r1,...,rk

+O

(
Fmaxφ(W )

W

k∏
i=1

φ(ri)

ri
log logR

)
+O

(
Fmaxφ(W ) logR

WD0

)
,

where

F (m)
r1,...,rk

=

∫ 1

0

F

(
log r1

logR
, . . . ,

log rm−1

logR
, tm,

log rm+1

logR
, . . . ,

log rk
logR

)
dtm,

and the second error term dominates. We now substitute this into our ex-
pression for S

(m)
2 given by Lemma 4.8 to obtain

S
(m)
2 =

φ(W )N(logR)2

W 2 logN

∑
r1,...,rk

(ri,W )=1∀i
(ri,rj)=1∀i 6=j

rm=1

(
k∏
i=1

µ(ri)
2φ(ri)

2

g(ri)r2
i

)
(F (m)

r1,...,rk
)2

+O

(
F 2

maxφ(W )kN(logN)k

W k+1D0

)
,
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where to obtain this error term we substituted (66) into the first error term
in (54) and the second error term in (54) gets absorbed into this one. The
error terms given by the expression for y(m) also get absorbed into it. The
first one is

� Fmaxφ(W ) logR

WD0

N

φ(W ) logN
ymax

( ∑
u<R

(u,W )=1

µ(u)2

g(u)

)k−1

� F 2
maxφ(W )N logR

W 2D0

(
φ(W ) logR

W

)k−1

=
F 2

maxφ(W )kN(logR)k

W k+1D0

.

The second error term given by the expression of y(m) is

� F 2
maxφ(W )2(logR)2

W 2D2
0

N

φ(W ) logN

( ∑
u<R

(u,W )=1

µ(u)2

g(u)

)k−1

� F 2
maxφ(W )kN(logR)k+1

W k+1D2
0 logN

.

We can remove the condition that (ri, rj) = 1 as we did in our treatment of
S1, at the cost of an error term of size

� φ(W )N(logR)2F 2
max

W 2 logN

(∑
p>D0

φ(p)4

g(p)2p4

)( ∑
r<R

(r,W )=1

µ(r)2φ(r)2

g(r)r2

)k−1

� F 2
maxφ(W )kN(logR)k

W k+1D0

,

where we bound the first sum by 1/D0 and the second by (logRφ(W )/W )k−1.
We now want to evaluate the quantity

S =
∑

r1,...,rm−1,rm+1,...,rk
(ri,W )=1∀i

( ∏
1≤i≤k
i 6=m

µ(ri)
2φ(ri)

2

g(ri)r2
i

)
(F (m)

r1,...,rk
)2.

We apply Lemma 4.10 again, once for each variable ri. We take κ = 1 and
we need h(p) = γ(p)/(p− γ(p), so

γ(p)

p− γ(p)
=

φ(p)2

g(p)p2
,
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which gives

γ(p) =
φ(p)2p

g(p)p2 + φ(p)2
,

so we take

γ(p) =

 1− p2 − 3p+ 1

p3 − p2 − 2p+ 1
if p 6 | W ,

0 otherwise.

This gives

G =
∏
p

(
1− γ(p)

p

)−1(
1− 1

p

)
=
φ(W )

W

∏
p 6 | W

(
1− γ(p)

p

)−1(
1− 1

p

)
.

Now, for primes not dividing W , γ(p) = 1 +O(1/p), so

log

( ∏
p 6 | W

(
1− γ(p)

p

)−1(
1− 1

p

))
=
∑
p>D0

log

(
1− 1/p

1− γ(p)/p

)

=
∑
p>D0

log

(
(p− 1)/p

1− 1/p−O(1/p2)

)
=
∑
p>D0

log

(
1 +O

(
1

p2 − p− 1

))
=
∑
p>D0

O

(
1

p2 − p− 1

)
= O(1/D0).

So, by Taylor expansion,

∏
p 6 | W

(
1− γ(p)

p

)−1(
1− 1

p

)
= eO(1/D0) = 1 +O(1/D0),

for D0 →∞. Hence,

G =
φ(W )

W

(
1 +O

(
1

D0

))
.

Also,

L� 1 +
∑
p|W

log p

p
� logD0.
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So, for the first application of the lemma, we obtain

S =
∑

r2,...,rm−1,rm+1,...,rk
(ri,W )=1∀i

( ∏
2≤i≤k
i 6=m

µ(ri)
2φ(ri)

2

g(ri)r2
i

)∑
r1

µ(r1)2φ(r1)2

g(r1)r2
1

(F (m)
r1,...,rk

)2

=
φ(W ) logR

W

(
1 +O

(
1

D0

)) ∑
r2,...,rm−1,rm+1,...,rk

(ri,W )=1∀i

( ∏
2≤i≤k
i 6=m

µ(ri)
2φ(ri)

2

g(ri)r2
i

)∫ 1

0

(F
(m)
t,...,rk

)2dt

+O

(
F 2

maxφ(W ) logD0

W

( ∑
u<R

(u,W )=1

µ(u)2φ(u)2

g(u)u2

)k−2
)
,

and the first error term dominates, becoming

� F 2
maxφ(W )k−1(logR)k−1

W k−1D0

and for every subsequent applications of the lemma, the error terms we obtain
become smaller and smaller. Thus, after k− 1 applications of the lemma, we
obtain

S
(m)
2 =

φ(W )kN(logR)k+1

W k+1 logN
J

(m)
k +O

(
F 2

maxφ(W )kN(logN)k

W k+1D0

)
,

where

J
(m)
k =

∫ 1

0

. . .

∫ 1

0

(∫ 1

0

F (t1, . . . , tk)dtm

)2

dt1 . . . dtm−1dtm+1 . . . dtk,

hence the lemma is proved.

4.2 Optimisation and consequences

Proposition 4.13. Let the primes have level of distribution θ > 0. Let δ > 0
and H = {h1, . . . , hk} be an admissible set. Let Ik(F ) and J

(m)
k (F ) be given as

in Proposition 4.6 and let Sk denote the set of Riemann-integrable functions
F : [0, 1]k → R supported on Rk = {(x1, . . . , xk) ∈ [0, 1]k :

∑k
i=1 xi ≤ 1} with

Ik(F ) 6= 0 and j
(m)
k (F ) 6= 0 for each m. Let

Mk = sup
F∈Sk

∑k
m=1 J

(m)
k (F )

Ik(F )
, rk =

⌈
θMk

2

⌉
,
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where dxe is the smallest integer bigger than or equal to x. Then there are
infinitely many integers n such that at least rk of the n+ hi (1 ≤ i ≤ k) are
prime. In particular,

lim inf
n

(pn+rk−1 − pn) ≤ max
1≤i,j≤k

(hi − hj).

Proof of Proposition 4.13. We recall that if we can show that (36) is positive
for all large N , then there are infinitely many integers n such that at least
two of the n+ hi are prime.

Let R = N θ/2−ε for a small ε > 0. By the definition of Mk, we can choose
F0 ∈ Sk such that

k∑
m=1

J
(m)
k (F0) > (Mk − ε)Ik(F0). (67)

Since F0(·) is Riemann-integrable, there exists a smooth function F1(·) such
that

k∑
m=1

J
(m)
k (F1) > (Mk − 2ε)Ik(F1). (68)

From Proposition 4.6 we know that we can choose λd1,...,dk such that

S(N, ρ) = S2 − ρS1

=
(1 + o(1))φ(W )kN(logR)k

W k+1

(
logR

logN

k∑
j=1

J
(m)
k (F1)− ρIk(F1)

)
,

so we can use (68) and the level of distribution to obtain

S(N, ρ) >
(1 + o(1))φ(W )kN(logR)k

W k+1
Ik(F1)

(
(
θ

2
− ε)(Mk − 2ε)− ρ

)
.

So S(N, ρ) > 0 for all large N if we choose ρ = θMk/2 − δ and we pick ε
to be sufficiently small. We deduce that there are infinitely many integers n
for which at least bρ + 1c of the n + hi are prime. If δ is sufficiently small,
bρ+ 1c = dθMk/2e = rk, hence the proof is complete.

Proposition 4.14. Let k ∈ N and let Mk be as given by Proposition 4.13.
Then

(1) We have M5 > 2.
(2) We have M105 > 4.
(3) If k is sufficiently large, we have Mk > log k − 2 log log k − 2.
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We discuss the proof of Proposition 4.14 briefly. For parts (1) and (2) we
want to find a lower bound for Mk when k is small. To do that, we use the
following lemma:

Lemma 4.15. Let Pj =
∑k

i=1 t
j
i denote the j-th symmetric power sum poly-

nomial. Then we have∫
Rk

(1− P1)aP b
j dt1 . . . dtk =

a!

(k + jb+ a)!
Gb,j(k),

where

Gb,j(x) = b!
b∑

r=1

(
x

r

) ∑
b1,...,br>1∑r
i=1 bi=b

r∏
i=1

(jbi)!

bi!

is a polynomial of degree b which depends only on b and j and Rk is defined
as in Proposition 4.13.

Proof. We use induction on k to show that∫
Rk

(
1−

k∑
i=1

ti

)a k∏
i=1

taii dt1 . . . dtk =
a!
∏k

i=1 ai!

(k + a+
∑k

i=1 ai)!
. (69)

We consider the integration with respect to t1 first and we make the substi-
tution ν = t1/(1−

∑k
i=2 ti), which gives dt1 = dν(1−

∑k
i=2 ti). We obtain

∫ 1−
∑k
i=2 ti

0

(
1−

k∑
i=1

ti

)a k∏
i=1

taii dt1=

(
k∏
i=2

taii

)(
1−

k∑
i=2

ti

)a+a1+1∫ 1

0

(1− ν)aνa1dν.

On the right-hand side of this equation, we recognise the Beta function,

B(a, b) =

∫ 1

0

xa−1(1− x)b−1dx,

which can be expressed in terms of the Gamma function as

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
.

Thus, we obtain

∫ 1−
∑k
i=2 ti

0

(
1−

k∑
i=1

ti

)a k∏
i=1

taii dt1 =
a!a1!

(a+ a1 + 1)!

(
k∏
i=2

taii

)(
1−

k∑
i=2

ti

)a+a1+1

.
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We see that (69) follows by induction. The binomial theorem gives

P b
j =

∑
b1,...,bk∑k
i=1 bi=b

b!∏k
i=1 bi!

k∏
i=1

tjbii .

Therefore,∫
Rk

(1− P1)aP b
j dt1 . . . dtk =

b!a!

(k + jb+ a)!

∑
b1,...,bk∑k
i=1 bi=b

k∏
i=1

(jbi)!

bi!
.

Now, there are
(
k
r

)
of choosing r of the b1, . . . , bk to be non-zero, so

∑
b1,...,bk∑k
i=1 bi=b

k∏
i=1

(jbi)!

bi!
=

b∑
r=1

(
k

r

) ∑
b1,...,br≥1

sumi=1rbi=b

r∏
i=1

(jbi)!

bi!
,

thus the lemma is proved.

We now concentrate on the case when P is a polynomial expression in P1

and P2 only.

Lemma 4.16. Let F (·) be given in terms of a polynomial P by

F (t1, . . . , tk) =

{
P (t1, . . . , tk) if (t1, . . . , tk) ∈ Rk,
0 otherwise.

Let P be given in terms of a polynomial expression in the symmetric power
polynomials P1 =

∑k
i=1 ti and P2 =

∑k
i=1 t

2
i by P =

∑d
i=1 ai(1− P1)biP c1

2 for
constants ai ∈ R and non-negative integers bi, ci. Then for each 1 ≤ m ≤ k
we have

Ik(F ) =
∑

1≤i,j≤d

aiaj
(bi + bj)!Gci+cj ,2(k)

(k + bi + bj + 2ci + 2cj)!
,

J
(m)
k (F ) =

∑
1≤i,j≤d

aiaj

ci∑
c′1=0

cj∑
c′2=0

(
ci
c′1

)(
cj
c′2

)
γbi,bj ,ci,cj ,c′1,c′2Gc′1+c′2,2

(k − 1)

(k + ci + bj + 2ci + 2cj + 1)!
,

where

γbi,bj ,ci,cj ,c′1,c′2=
bi!bj!(2ci − 2c′1)!(2cj − 2c′2)!(bi + bj + 2ci + 2cj − 2c′1 − 2c′2 + 2)!

(bi + 2ci − 2c′1 + 1)!(bj + 2cj − 2c′2 + 1)!

and where G is the polynomial given by Lemma 4.15.
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We omit the proof of this lemma, but note that its importance is that we
deduce from it that Ik(F ) and

∑k
i=1 J

(m)
k (F ) can be expressed as quadratic

forms in the coefficients a = (a1, . . . , ad) of P . They will be positive definite
real quadratic forms and so∑k

m=1 J
(m)
k (F )

Ik(F )
=

aTM2a

aTM1a
,

for two rational symmetric positive definite matrices M1,M2, which we can
calculate explicitly in terms of k for any choice of exponents bi, ci. To max-
imise this expression we use the following lemma from linear algebra:

Lemma 4.17. Let M1,M2 be real, symmetric, positive definite matrices.
Then

aTM2a

aTM1a

is maximised when a is an eigenvector of M−1
1 M2 corresponding to the largest

eigenvalue of M−1
1 M2. The value of the ratio at its maximum is this largest

eigenvalue.

Proof. We can normalise the denominator of this ratio, since multiplying a
does not change its value. Thus, we can use Lagrange multipliers to maximise
aTM2a subject to the constraint aTM1a = 1. We write

L(a, λ) = aTM2a− λ(aTM1a− 1)

and, differentiating, we obtain the following system of equations

0 =
∂L

∂ai
= ((2M2 − 2λM1)a)i,

where we have used the fact that the matrices Mi are symmetric, and so
aTMia =

∑
j,kmjkajak. Since M1 is invertible by positive definiteness, this

implies that
M−1

1 M2a = λa.

It follows that
aTM2a

aTM1a
= λ.

To obtain our estimates, we let F (·) be defined in terms of a polynomial P
as in Lemma 4.15. Let P be given by a polynomial expression in P1 =

∑k
i=1 ti

and P2 =
∑k

i=1 t
2
i which is a linear combination of all monomials (1−P1)bP c

2
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with b + 2c ≤ 11. There are 42 such monomials and if we take k = 105 we
can calculate the rational symmetric matrices M1 and M2 corresponding to
the coefficients of our two quadratic forms Ik(F ) and

∑k
i=1 J

(m)
k (F ). With

the help of a computer, Maynard found the largest eigenvalue of M−1
1 M2 to

be
λ ≈ 4.0020697... > 4,

thus establishing part (1). To establish part (2), take

P = (1− P1)P2 +
7

10
(1− P1)2 +

1

14
P2 −

3

14
(1− P1)

and k = 5 to find that

M5 ≥
∑k

m=1 J
(m)
k (F )

Ik(F )
=

1, 417, 255

708, 216
> 2.

To prove (3), we want to find a lower bound for Mk when k is large. We
choose F (·) to be of the form

F (t1, . . . , tk) =

{ ∏k
i=1 g(kti) if

∑k
i=1 ti ≤ 1,

0 otherwise,

for some smooth function g : [0,∞] → R, supported on [0, T ]. This choice

makes F (·) symmetric, thus removing the dependency of J
(m)
k (F ) on m. So

we only need to consider Jk(F ) = J
(1)
k (F ). Furthermore, we note that for

large k we can drop the constraints
∑k

i=1 ti ≤ 1 at the cost of a small error
term. Next, we let γ =

∫
u≥0

g(u)2du, and look at the case when g(·) satisfies
γ > 0. We have

Ik(F ) =

∫
Rk
F (t1, . . . , tk)

2dt1 . . . dtk ≤
(∫ ∞

0

g(kt)2dt

)k
= k−kγk.

In order to obtain a lower bound for Jk(F ), we restrict our integral to∑k
i=2 ti < 1− T/k for some positive quantity T . We have

Jk ≥
∫

t2,...,tk≥0∑k
i=2 ti≤1−T/k

(∫ T/k

0

(
k∏
i=1

g(kti)

)
dt1

)2

dt2 . . . dtk

and we write the right-hand side as J∗k (F )− E∗k(F ), where

J∗k (F ) =

∫
t2,...,tk≥0

(∫ T/k

0

(
k∏
i=1

g(kti)

)
dt1

)2

dt2 . . . dtk

= k−k−1γk−1

(∫ ∞
0

g(u)du

)2

,
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E∗k(F ) =

∫
t2,...,tk≥0∑k
i=2 ti>1−T/k

(∫ T/k

0

(
k∏
i=1

g(kti)

)
dt1

)2

dt2 . . . dtk

= k−k−1

(∫ ∞
0

g(u)du

)2 ∫
u2,...,uk≥0∑k
i=2 ui>k−T

(
k∏
i=2

g(ui)

)2

du2 . . . duk.

Under the restriction

µ =

∫∞
0
ug(u)2du∫∞

0
g(u)2du

< 1− T

k
,

we obtain through simple calculations that

kJk(F )

Ik(F )
≥
(∫∞

0
g(u)du

)2∫∞
0
g(u)2du

(
1− T

k(1− T/k − µ)2

)
. (70)

We want to maximise this lower bound, so we use Lagrange multipliers to
maximise

∫ T
0
g(u)du subject to the constraints∫ T

o

g(u)2du = γ and

∫ T

0

ug(u)2du = µγ.

We use the Euler–Lagrange equations to obtain

g(t) =
1

2α + 2βt
,

where α and β are Lagrange multipliers and 0 ≤ t ≤ T . We then restrict our
attention to functions g(·) of the form 1/(1 + At) for some constant A > 0
and t ∈ [0, T ]. This gives∫ T

0

g(u)du =
log (1 + AT )

A
,

∫ T

0

g(u)2du =
1

A

(
1− 1

1 + AT

)
(71)

and ∫ T

0

ug(u)2du =
1

A2

(
log (1 + AT )− 1 +

1

1 + AT

)
.

Next, we choose T such that 1 + AT = eT and, substituting (71) into (70),
we obtain

kJk(F )

Ik(F )
≥ A

(
1− AeA

k(1− A/(eA − 1)− eA/k)2

)
.

We then choose A = log k − 2 log log k to obtain the final result.
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4.3 Main results

We are now ready to prove the main theorems of this section.

Proof of Theorem 4.2. We look at admissible setsH of size k, when k is large.
By Theorem 2.9, we know primes have level of distribution θ = 1/2 − ε for
any ε > 0. By Propositions 4.14 and 4.13,

θMk

2
≥ 1/2− ε

2
(log k − 2 log log k − 2).

If we choose ε = 1/k, we have θMk/2 > m if k ≥ Cm2e4m for some absolute
constant C which is independent of m and k:

θMk

2
≥k − 2

4k
(log k − 2 log log k − 2) > m ⇐⇒

log k − 2 log log k − 2 > m
4k

k − 2
⇐⇒

log k > 2 log log k + 2 +m
4k

k − 2
⇐⇒

k > (log k)2 · exp 2 · exp (4mk/(k − 2))

= (log k)2 · exp 2 · exp(4m) · exp (8m/(k − 2)).

Now, k > e4m by choice, so exp (8m/(k − 2)) < exp (8m/(e4m − 2)) ≤ P for
some constant P , since k sufficiently large implies we can take m sufficiently
large. Therefore, we require

k > Q(log k)2 exp (4m),

where Q := P exp 2. This is equivalent to

1

R
>

(log k)2

k
exp(4m).

Note that the function f(x) := (log x)2/x is decreasing, so for k ≥ Cm2e4m,
we need

1

R
>

(logC + 2 logm+ 4m)2

Cm2
.

For m sufficiently large, we can choose C so that this holds at all times.
Therefore, for any admissible set H of size k ≥ Cm2e4m, at least m + 1

of the n + hi must be prime for infinitely many integers n. If we choose
H = {pπ(k)+1, . . . , pπ(k)+k}, it will be admissible since there are k elements
and none of them is a multiple of a prime less than k. By the prime number
theorem, pπ(k)+1 − pπ(k)+k � k log k. If we choose k = dCm2e4me, k log k ∼
Cm2e4m(logC + 2 logm+ 4m)� m3e4m. Hence, the proof is complete.
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Proof of Theorem 4.4. We look at admissible sets of size k = 105. We know
primes have level of distribution θ = 1/2 − ε for any ε > 0. So if we take
ε sufficiently small, we have 2 > θM105/2 > 1 and r105 = 2 in Proposition
4.13. So lim infn(pn+1− pn) ≤ max1≤i,j≤105(hi− hj) for any admissible set H
of size 105. Thomas Engelsma found such an admissible set with h1 = 0 and
h105 = 600. Hence, the proof is complete.

Proof of Theorem 4.5. If we assume that primes have level of distribution θ
for any θ = 1 − ε, then Propositions 4.13 and 4.14 tell us that r105 = 2 for
small enough ε. So lim infn(pn+2− pn) ≤ max1≤i,j≤105(hi− hj), and if we use
the same admissible set as above, the first part of the proof is complete.

We next take k = 5 and H = {0, 2, 6, 8, 12}. We have Ω(2) = {0},
Ω(3) = {0, 2} and Ω(5) = {0, 2, 3, 4}, henceH is admissible. We take θ = 1−ε
again and, by Proposition 4.14, M5 > 2 and so r5 = 1 for ε sufficiently small.
Thus, Proposition 4.13 gives lim infn(pn+1 − pn) ≤ 12. Hence, the proof is
complete.

5 Conclusions and further directions

Before the work of Maynard and Zhang, the strongest unconditional result
about small gaps between primes had been the GPY theorem, which does
not prove the existence of infinitely many bounded gaps. Recent results take
us one step closer to obtaining the twin prime conjecture, as we aim to reduce
the gap in (2) to 2.

Many mathematicians are working on this problem, and the polymath
project [13] reduces the gap to 246 by combining the techniques developed
by Maynard with those in [12]. Furthermore, it is proved in [13] that under
the generalised Elliott–Halberstam conjecture 5.1, the gap is reduced to 6.

Conjecture 5.1 (Generalised Elliott–Halberstam conjecture). Let ε > 0
and A ≥ 1 be fixed. Let N,M be quantities such that xε � N � x1−ε and
xε �M � x1−ε with NM � x, and let α, β : N→ R be sequences supported
on [N, 2N ] and [M, 2M ] respectively, such that one has the pointwise bounds

|α(n)| � τ(n)O(1)(log x)O(1); |β(m)| � τ(m)O(1)(log x)O(1) (72)

for all natural numbers n,m. Suppose also that β(·) obeys the Siegel-Walfisz
type bound

|∆(β1(·,r)=1; a(q))| � τ(qr)O(1)M(log x)−A
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for any q, r ≥ 1, any fixed A and any primitive residue class a modulo q.
Then, for any Q� xθ, we have∑

q≤Q

sup
a∈(Z/qZ)×

|∆(α ? β; a(q))| � x(log x)−A.

Remark 17. We define α ? β(·) to be the Dirichlet convolution of α(·) and
β(·), that is

α ? β(n) :=
∑
d|n

α(n)β
(n
d

)
.

We also define, for any function α : N → C with finite support and any
residue class a modulo q, the (signed) discrepancy ∆(α; a(q)) to be the quan-
tity

∆(α; a(q)) :=
∑

n≡a (mod q)

α(n)− 1

φ(q)

∑
(n,q)=1

α(n).

Remark 18. It is proved in [13] that for any fixed 0 < θ < 1 the generalised
Elliott–Halberstam conjecture implies the Elliott–Halberstam conjecture.

For a review of the topic of bounded gaps between primes and some of
the applications of Maynard’s work, see [9].

On a separate note, mathematicians are also interested in estimating
‘long’ gaps between primes, i.e the quantity lim supn→∞(pn+1 − pn). In their
paper [4], Ford et al. prove that

max
pn+1≤X

(pn+1 − pn)� logX log logX log log log logX

log log logX
,

for sufficiently large X.
Maynard’s results are incredibly strong on their own, but it is his tech-

niques that represent the most powerful tool in [10]. He brought the multi-
dimensional Selberg sieve back into prominence, as it continues to be devel-
oped and used not only in the study of small gaps between primes, but in
various other classical problems in analytic number theory.
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