
INTRODUCTION TO MODULAR FORMS
UON MATHEMATICS STUDENT THEORY

ANDREEA MOCANU

Number Theory as a subject started off in the Antiquity as the study
of natural numbers N = {0, 1, 2, . . . }. Then it became the study of
integer numbers Z = {. . . ,−2,−1, 0, 1, 2, . . . } and now it has become
the study of any mathematical object that is related to integer numbers.

This is why Number Theory has applications in many other areas of
Maths, such as Group Theory, Galois Theory, Representation Theory,
Algebraic Geometry, but also outside of Maths, such as Cryptography,
Computer Science and Mathematical Physics.

The purpose of this talk is to discuss modular forms, which are func-
tions f defined on the upper half-plane, H = {z ∈ C : =(z) > 0}. They
are functions which are intimately related to integer numbers, as we
shall see in their definition:

Definition 0.1 (Modular form). A modular form of integer weight
k with respect to SL2(Z) is a functions as above which satisfies the
following properties:

• f is holomorphic.
• For any γ = ( a bc d ) ∈ SL2(Z) (the group of 2× 2 matrices with

determinant ad− bc = 1), we have

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ),

for any τ ∈ H.

These functions form a C-vector space for fixed k, which is usually
denoted by Mk( SL2(Z)). In particular, this vector space is finite di-
mensional, so it has a basis and any modular form of weight k is a
combination of elements in that basis. We could have defined modular
forms with respect to any Fuchsian group G ⊆SL2(Z) (i.e. a finite
index subgroup of SL2(Z)).

We can map the upper half-plane to the Poincaré disk (i.e. the disk
of radius 1 centered at the origin) via the map τ 7→ e2πiτ . Thus, every
modular form f determines uniquely a function g(q) = f(τ), where
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q = e2πiτ . The function g then has a Fourier expansion

g(q) =
∑
n≥0

anq
n,

and we call this the Fourier expansion of f as well. Thus, every modular
forms determines a sequence (an)n∈N, the sequence of its Fourier coef-
ficients and it is in fact uniquely determined by this sequence. Thus,
we get another connection with the integer numbers.

Conversely, if we are given a sequence (an)n∈N, we could ask our-
selves: Is its generating function of modular form? If the answer is
yes, then we can use the vector space structure of Mk(G) to find in-
teresting and useful information about our sequence. For a sequence
(an)n∈N, its generating functions is simply

f(τ) =
∑
n≥0

ane
2πiτ .

Let us consider the following:

Example 0.1 (Sums of squares). Given positive integers m and n, we
want to count the number of integral solutions of the equation

m∑
i=1

x2i = n.

In other words, we are looking for the number rm(n) of ways of writing
n as a sum of m squares. This was investigated by a number of famous
mathematicians, such as Fermat, Jacobi and Lagrange. For example,
when m = 1, we will have r1(0) = 1, r1(n) = 0 if n is not a square and
r1(n) = 2 for a square number different from zero.

It turns out that if we define

θ(τ) =
∑
j∈Z

qj
2

=
∑
n≥0

r1(n)qn,

then θ2 is a modular form of weight 1, θ2k is a modular form of weight
k and, in general, θm is the generating function of rm(n).
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Using known facts about spaces of modular forms, we can write down
formulas of the type

r2(n) = 4
∑
d|n

χ(n)

r4(n) = 8(2 + (−1)n)
∑
d|n
2-d

d

r6(n) = 16
∑
d|n

χ
(n
d

)
d2 − 4

∑
d|n

χ(d)d2,

and so on, where χ(n) is a Dirichlet character which is equal to
1, n = 4k + 1

−1, n = 4k + 3

0, n = 2k.


